linux/fs/io-wq.c
Jens Axboe 613eeb600e io-wq: don't ask for a new worker if we're exiting
If we're in the process of shutting down the async context, then don't
create new workers if we already have at least the fixed one.

Signed-off-by: Jens Axboe <axboe@kernel.dk>
2021-03-04 06:32:53 -07:00

1158 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Basic worker thread pool for io_uring
*
* Copyright (C) 2019 Jens Axboe
*
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/sched/signal.h>
#include <linux/mm.h>
#include <linux/sched/mm.h>
#include <linux/percpu.h>
#include <linux/slab.h>
#include <linux/rculist_nulls.h>
#include <linux/cpu.h>
#include <linux/tracehook.h>
#include "../kernel/sched/sched.h"
#include "io-wq.h"
#define WORKER_IDLE_TIMEOUT (5 * HZ)
enum {
IO_WORKER_F_UP = 1, /* up and active */
IO_WORKER_F_RUNNING = 2, /* account as running */
IO_WORKER_F_FREE = 4, /* worker on free list */
IO_WORKER_F_FIXED = 8, /* static idle worker */
IO_WORKER_F_BOUND = 16, /* is doing bounded work */
};
enum {
IO_WQ_BIT_EXIT = 0, /* wq exiting */
};
enum {
IO_WQE_FLAG_STALLED = 1, /* stalled on hash */
};
/*
* One for each thread in a wqe pool
*/
struct io_worker {
refcount_t ref;
unsigned flags;
struct hlist_nulls_node nulls_node;
struct list_head all_list;
struct task_struct *task;
struct io_wqe *wqe;
struct io_wq_work *cur_work;
spinlock_t lock;
const struct cred *cur_creds;
const struct cred *saved_creds;
struct completion ref_done;
struct completion started;
struct rcu_head rcu;
};
#if BITS_PER_LONG == 64
#define IO_WQ_HASH_ORDER 6
#else
#define IO_WQ_HASH_ORDER 5
#endif
#define IO_WQ_NR_HASH_BUCKETS (1u << IO_WQ_HASH_ORDER)
struct io_wqe_acct {
unsigned nr_workers;
unsigned max_workers;
atomic_t nr_running;
};
enum {
IO_WQ_ACCT_BOUND,
IO_WQ_ACCT_UNBOUND,
};
/*
* Per-node worker thread pool
*/
struct io_wqe {
struct {
raw_spinlock_t lock;
struct io_wq_work_list work_list;
unsigned flags;
} ____cacheline_aligned_in_smp;
int node;
struct io_wqe_acct acct[2];
struct hlist_nulls_head free_list;
struct list_head all_list;
struct wait_queue_entry wait;
struct io_wq *wq;
struct io_wq_work *hash_tail[IO_WQ_NR_HASH_BUCKETS];
};
/*
* Per io_wq state
*/
struct io_wq {
struct io_wqe **wqes;
unsigned long state;
free_work_fn *free_work;
io_wq_work_fn *do_work;
struct task_struct *manager;
struct user_struct *user;
struct io_wq_hash *hash;
refcount_t refs;
struct completion done;
atomic_t worker_refs;
struct completion worker_done;
struct hlist_node cpuhp_node;
pid_t task_pid;
};
static enum cpuhp_state io_wq_online;
static bool io_worker_get(struct io_worker *worker)
{
return refcount_inc_not_zero(&worker->ref);
}
static void io_worker_release(struct io_worker *worker)
{
if (refcount_dec_and_test(&worker->ref))
complete(&worker->ref_done);
}
static inline struct io_wqe_acct *io_work_get_acct(struct io_wqe *wqe,
struct io_wq_work *work)
{
if (work->flags & IO_WQ_WORK_UNBOUND)
return &wqe->acct[IO_WQ_ACCT_UNBOUND];
return &wqe->acct[IO_WQ_ACCT_BOUND];
}
static inline struct io_wqe_acct *io_wqe_get_acct(struct io_worker *worker)
{
struct io_wqe *wqe = worker->wqe;
if (worker->flags & IO_WORKER_F_BOUND)
return &wqe->acct[IO_WQ_ACCT_BOUND];
return &wqe->acct[IO_WQ_ACCT_UNBOUND];
}
static void io_worker_exit(struct io_worker *worker)
{
struct io_wqe *wqe = worker->wqe;
struct io_wqe_acct *acct = io_wqe_get_acct(worker);
unsigned flags;
if (refcount_dec_and_test(&worker->ref))
complete(&worker->ref_done);
wait_for_completion(&worker->ref_done);
preempt_disable();
current->flags &= ~PF_IO_WORKER;
flags = worker->flags;
worker->flags = 0;
if (flags & IO_WORKER_F_RUNNING)
atomic_dec(&acct->nr_running);
worker->flags = 0;
preempt_enable();
if (worker->saved_creds) {
revert_creds(worker->saved_creds);
worker->cur_creds = worker->saved_creds = NULL;
}
raw_spin_lock_irq(&wqe->lock);
if (flags & IO_WORKER_F_FREE)
hlist_nulls_del_rcu(&worker->nulls_node);
list_del_rcu(&worker->all_list);
acct->nr_workers--;
raw_spin_unlock_irq(&wqe->lock);
kfree_rcu(worker, rcu);
if (atomic_dec_and_test(&wqe->wq->worker_refs))
complete(&wqe->wq->worker_done);
}
static inline bool io_wqe_run_queue(struct io_wqe *wqe)
__must_hold(wqe->lock)
{
if (!wq_list_empty(&wqe->work_list) &&
!(wqe->flags & IO_WQE_FLAG_STALLED))
return true;
return false;
}
/*
* Check head of free list for an available worker. If one isn't available,
* caller must wake up the wq manager to create one.
*/
static bool io_wqe_activate_free_worker(struct io_wqe *wqe)
__must_hold(RCU)
{
struct hlist_nulls_node *n;
struct io_worker *worker;
n = rcu_dereference(hlist_nulls_first_rcu(&wqe->free_list));
if (is_a_nulls(n))
return false;
worker = hlist_nulls_entry(n, struct io_worker, nulls_node);
if (io_worker_get(worker)) {
wake_up_process(worker->task);
io_worker_release(worker);
return true;
}
return false;
}
/*
* We need a worker. If we find a free one, we're good. If not, and we're
* below the max number of workers, wake up the manager to create one.
*/
static void io_wqe_wake_worker(struct io_wqe *wqe, struct io_wqe_acct *acct)
{
bool ret;
/*
* Most likely an attempt to queue unbounded work on an io_wq that
* wasn't setup with any unbounded workers.
*/
WARN_ON_ONCE(!acct->max_workers);
rcu_read_lock();
ret = io_wqe_activate_free_worker(wqe);
rcu_read_unlock();
if (!ret && acct->nr_workers < acct->max_workers)
wake_up_process(wqe->wq->manager);
}
static void io_wqe_inc_running(struct io_worker *worker)
{
struct io_wqe_acct *acct = io_wqe_get_acct(worker);
atomic_inc(&acct->nr_running);
}
static void io_wqe_dec_running(struct io_worker *worker)
__must_hold(wqe->lock)
{
struct io_wqe_acct *acct = io_wqe_get_acct(worker);
struct io_wqe *wqe = worker->wqe;
if (atomic_dec_and_test(&acct->nr_running) && io_wqe_run_queue(wqe))
io_wqe_wake_worker(wqe, acct);
}
static void io_worker_start(struct io_worker *worker)
{
worker->flags |= (IO_WORKER_F_UP | IO_WORKER_F_RUNNING);
io_wqe_inc_running(worker);
complete(&worker->started);
}
/*
* Worker will start processing some work. Move it to the busy list, if
* it's currently on the freelist
*/
static void __io_worker_busy(struct io_wqe *wqe, struct io_worker *worker,
struct io_wq_work *work)
__must_hold(wqe->lock)
{
bool worker_bound, work_bound;
if (worker->flags & IO_WORKER_F_FREE) {
worker->flags &= ~IO_WORKER_F_FREE;
hlist_nulls_del_init_rcu(&worker->nulls_node);
}
/*
* If worker is moving from bound to unbound (or vice versa), then
* ensure we update the running accounting.
*/
worker_bound = (worker->flags & IO_WORKER_F_BOUND) != 0;
work_bound = (work->flags & IO_WQ_WORK_UNBOUND) == 0;
if (worker_bound != work_bound) {
io_wqe_dec_running(worker);
if (work_bound) {
worker->flags |= IO_WORKER_F_BOUND;
wqe->acct[IO_WQ_ACCT_UNBOUND].nr_workers--;
wqe->acct[IO_WQ_ACCT_BOUND].nr_workers++;
} else {
worker->flags &= ~IO_WORKER_F_BOUND;
wqe->acct[IO_WQ_ACCT_UNBOUND].nr_workers++;
wqe->acct[IO_WQ_ACCT_BOUND].nr_workers--;
}
io_wqe_inc_running(worker);
}
}
/*
* No work, worker going to sleep. Move to freelist, and unuse mm if we
* have one attached. Dropping the mm may potentially sleep, so we drop
* the lock in that case and return success. Since the caller has to
* retry the loop in that case (we changed task state), we don't regrab
* the lock if we return success.
*/
static void __io_worker_idle(struct io_wqe *wqe, struct io_worker *worker)
__must_hold(wqe->lock)
{
if (!(worker->flags & IO_WORKER_F_FREE)) {
worker->flags |= IO_WORKER_F_FREE;
hlist_nulls_add_head_rcu(&worker->nulls_node, &wqe->free_list);
}
if (worker->saved_creds) {
revert_creds(worker->saved_creds);
worker->cur_creds = worker->saved_creds = NULL;
}
}
static inline unsigned int io_get_work_hash(struct io_wq_work *work)
{
return work->flags >> IO_WQ_HASH_SHIFT;
}
static void io_wait_on_hash(struct io_wqe *wqe, unsigned int hash)
{
struct io_wq *wq = wqe->wq;
spin_lock(&wq->hash->wait.lock);
if (list_empty(&wqe->wait.entry)) {
__add_wait_queue(&wq->hash->wait, &wqe->wait);
if (!test_bit(hash, &wq->hash->map)) {
__set_current_state(TASK_RUNNING);
list_del_init(&wqe->wait.entry);
}
}
spin_unlock(&wq->hash->wait.lock);
}
static struct io_wq_work *io_get_next_work(struct io_wqe *wqe)
__must_hold(wqe->lock)
{
struct io_wq_work_node *node, *prev;
struct io_wq_work *work, *tail;
unsigned int stall_hash = -1U;
wq_list_for_each(node, prev, &wqe->work_list) {
unsigned int hash;
work = container_of(node, struct io_wq_work, list);
/* not hashed, can run anytime */
if (!io_wq_is_hashed(work)) {
wq_list_del(&wqe->work_list, node, prev);
return work;
}
hash = io_get_work_hash(work);
/* all items with this hash lie in [work, tail] */
tail = wqe->hash_tail[hash];
/* hashed, can run if not already running */
if (!test_and_set_bit(hash, &wqe->wq->hash->map)) {
wqe->hash_tail[hash] = NULL;
wq_list_cut(&wqe->work_list, &tail->list, prev);
return work;
}
if (stall_hash == -1U)
stall_hash = hash;
/* fast forward to a next hash, for-each will fix up @prev */
node = &tail->list;
}
if (stall_hash != -1U) {
raw_spin_unlock(&wqe->lock);
io_wait_on_hash(wqe, stall_hash);
raw_spin_lock(&wqe->lock);
}
return NULL;
}
static void io_flush_signals(void)
{
if (unlikely(test_tsk_thread_flag(current, TIF_NOTIFY_SIGNAL))) {
if (current->task_works)
task_work_run();
clear_tsk_thread_flag(current, TIF_NOTIFY_SIGNAL);
}
}
static void io_wq_switch_creds(struct io_worker *worker,
struct io_wq_work *work)
{
const struct cred *old_creds = override_creds(work->creds);
worker->cur_creds = work->creds;
if (worker->saved_creds)
put_cred(old_creds); /* creds set by previous switch */
else
worker->saved_creds = old_creds;
}
static void io_assign_current_work(struct io_worker *worker,
struct io_wq_work *work)
{
if (work) {
io_flush_signals();
cond_resched();
}
spin_lock_irq(&worker->lock);
worker->cur_work = work;
spin_unlock_irq(&worker->lock);
}
static void io_wqe_enqueue(struct io_wqe *wqe, struct io_wq_work *work);
static void io_worker_handle_work(struct io_worker *worker)
__releases(wqe->lock)
{
struct io_wqe *wqe = worker->wqe;
struct io_wq *wq = wqe->wq;
do {
struct io_wq_work *work;
get_next:
/*
* If we got some work, mark us as busy. If we didn't, but
* the list isn't empty, it means we stalled on hashed work.
* Mark us stalled so we don't keep looking for work when we
* can't make progress, any work completion or insertion will
* clear the stalled flag.
*/
work = io_get_next_work(wqe);
if (work)
__io_worker_busy(wqe, worker, work);
else if (!wq_list_empty(&wqe->work_list))
wqe->flags |= IO_WQE_FLAG_STALLED;
raw_spin_unlock_irq(&wqe->lock);
if (!work)
break;
io_assign_current_work(worker, work);
__set_current_state(TASK_RUNNING);
/* handle a whole dependent link */
do {
struct io_wq_work *next_hashed, *linked;
unsigned int hash = io_get_work_hash(work);
next_hashed = wq_next_work(work);
if (work->creds && worker->cur_creds != work->creds)
io_wq_switch_creds(worker, work);
wq->do_work(work);
io_assign_current_work(worker, NULL);
linked = wq->free_work(work);
work = next_hashed;
if (!work && linked && !io_wq_is_hashed(linked)) {
work = linked;
linked = NULL;
}
io_assign_current_work(worker, work);
if (linked)
io_wqe_enqueue(wqe, linked);
if (hash != -1U && !next_hashed) {
clear_bit(hash, &wq->hash->map);
if (wq_has_sleeper(&wq->hash->wait))
wake_up(&wq->hash->wait);
raw_spin_lock_irq(&wqe->lock);
wqe->flags &= ~IO_WQE_FLAG_STALLED;
/* skip unnecessary unlock-lock wqe->lock */
if (!work)
goto get_next;
raw_spin_unlock_irq(&wqe->lock);
}
} while (work);
raw_spin_lock_irq(&wqe->lock);
} while (1);
}
static int io_wqe_worker(void *data)
{
struct io_worker *worker = data;
struct io_wqe *wqe = worker->wqe;
struct io_wq *wq = wqe->wq;
io_worker_start(worker);
while (!test_bit(IO_WQ_BIT_EXIT, &wq->state)) {
set_current_state(TASK_INTERRUPTIBLE);
loop:
raw_spin_lock_irq(&wqe->lock);
if (io_wqe_run_queue(wqe)) {
io_worker_handle_work(worker);
goto loop;
}
__io_worker_idle(wqe, worker);
raw_spin_unlock_irq(&wqe->lock);
io_flush_signals();
if (schedule_timeout(WORKER_IDLE_TIMEOUT))
continue;
if (fatal_signal_pending(current))
break;
/* timed out, exit unless we're the fixed worker */
if (test_bit(IO_WQ_BIT_EXIT, &wq->state) ||
!(worker->flags & IO_WORKER_F_FIXED))
break;
}
if (test_bit(IO_WQ_BIT_EXIT, &wq->state)) {
raw_spin_lock_irq(&wqe->lock);
if (!wq_list_empty(&wqe->work_list))
io_worker_handle_work(worker);
else
raw_spin_unlock_irq(&wqe->lock);
}
io_worker_exit(worker);
return 0;
}
/*
* Called when a worker is scheduled in. Mark us as currently running.
*/
void io_wq_worker_running(struct task_struct *tsk)
{
struct io_worker *worker = tsk->pf_io_worker;
if (!worker)
return;
if (!(worker->flags & IO_WORKER_F_UP))
return;
if (worker->flags & IO_WORKER_F_RUNNING)
return;
worker->flags |= IO_WORKER_F_RUNNING;
io_wqe_inc_running(worker);
}
/*
* Called when worker is going to sleep. If there are no workers currently
* running and we have work pending, wake up a free one or have the manager
* set one up.
*/
void io_wq_worker_sleeping(struct task_struct *tsk)
{
struct io_worker *worker = tsk->pf_io_worker;
if (!worker)
return;
if (!(worker->flags & IO_WORKER_F_UP))
return;
if (!(worker->flags & IO_WORKER_F_RUNNING))
return;
worker->flags &= ~IO_WORKER_F_RUNNING;
raw_spin_lock_irq(&worker->wqe->lock);
io_wqe_dec_running(worker);
raw_spin_unlock_irq(&worker->wqe->lock);
}
static int task_thread(void *data, int index)
{
struct io_worker *worker = data;
struct io_wqe *wqe = worker->wqe;
struct io_wqe_acct *acct = &wqe->acct[index];
struct io_wq *wq = wqe->wq;
char buf[TASK_COMM_LEN];
sprintf(buf, "iou-wrk-%d", wq->task_pid);
set_task_comm(current, buf);
current->pf_io_worker = worker;
worker->task = current;
set_cpus_allowed_ptr(current, cpumask_of_node(wqe->node));
current->flags |= PF_NO_SETAFFINITY;
raw_spin_lock_irq(&wqe->lock);
hlist_nulls_add_head_rcu(&worker->nulls_node, &wqe->free_list);
list_add_tail_rcu(&worker->all_list, &wqe->all_list);
worker->flags |= IO_WORKER_F_FREE;
if (index == IO_WQ_ACCT_BOUND)
worker->flags |= IO_WORKER_F_BOUND;
if (!acct->nr_workers && (worker->flags & IO_WORKER_F_BOUND))
worker->flags |= IO_WORKER_F_FIXED;
acct->nr_workers++;
raw_spin_unlock_irq(&wqe->lock);
io_wqe_worker(data);
do_exit(0);
}
static int task_thread_bound(void *data)
{
return task_thread(data, IO_WQ_ACCT_BOUND);
}
static int task_thread_unbound(void *data)
{
return task_thread(data, IO_WQ_ACCT_UNBOUND);
}
pid_t io_wq_fork_thread(int (*fn)(void *), void *arg)
{
unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
CLONE_IO|SIGCHLD;
struct kernel_clone_args args = {
.flags = ((lower_32_bits(flags) | CLONE_VM |
CLONE_UNTRACED) & ~CSIGNAL),
.exit_signal = (lower_32_bits(flags) & CSIGNAL),
.stack = (unsigned long)fn,
.stack_size = (unsigned long)arg,
};
return kernel_clone(&args);
}
static bool create_io_worker(struct io_wq *wq, struct io_wqe *wqe, int index)
{
struct io_worker *worker;
pid_t pid;
__set_current_state(TASK_RUNNING);
worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, wqe->node);
if (!worker)
return false;
refcount_set(&worker->ref, 1);
worker->nulls_node.pprev = NULL;
worker->wqe = wqe;
spin_lock_init(&worker->lock);
init_completion(&worker->ref_done);
init_completion(&worker->started);
atomic_inc(&wq->worker_refs);
if (index == IO_WQ_ACCT_BOUND)
pid = io_wq_fork_thread(task_thread_bound, worker);
else
pid = io_wq_fork_thread(task_thread_unbound, worker);
if (pid < 0) {
if (atomic_dec_and_test(&wq->worker_refs))
complete(&wq->worker_done);
kfree(worker);
return false;
}
wait_for_completion(&worker->started);
return true;
}
static inline bool io_wqe_need_worker(struct io_wqe *wqe, int index)
__must_hold(wqe->lock)
{
struct io_wqe_acct *acct = &wqe->acct[index];
if (acct->nr_workers && test_bit(IO_WQ_BIT_EXIT, &wqe->wq->state))
return false;
/* if we have available workers or no work, no need */
if (!hlist_nulls_empty(&wqe->free_list) || !io_wqe_run_queue(wqe))
return false;
return acct->nr_workers < acct->max_workers;
}
/*
* Iterate the passed in list and call the specific function for each
* worker that isn't exiting
*/
static bool io_wq_for_each_worker(struct io_wqe *wqe,
bool (*func)(struct io_worker *, void *),
void *data)
{
struct io_worker *worker;
bool ret = false;
list_for_each_entry_rcu(worker, &wqe->all_list, all_list) {
if (io_worker_get(worker)) {
/* no task if node is/was offline */
if (worker->task)
ret = func(worker, data);
io_worker_release(worker);
if (ret)
break;
}
}
return ret;
}
static bool io_wq_worker_wake(struct io_worker *worker, void *data)
{
wake_up_process(worker->task);
return false;
}
static void io_wq_check_workers(struct io_wq *wq)
{
int node;
for_each_node(node) {
struct io_wqe *wqe = wq->wqes[node];
bool fork_worker[2] = { false, false };
if (!node_online(node))
continue;
raw_spin_lock_irq(&wqe->lock);
if (io_wqe_need_worker(wqe, IO_WQ_ACCT_BOUND))
fork_worker[IO_WQ_ACCT_BOUND] = true;
if (io_wqe_need_worker(wqe, IO_WQ_ACCT_UNBOUND))
fork_worker[IO_WQ_ACCT_UNBOUND] = true;
raw_spin_unlock_irq(&wqe->lock);
if (fork_worker[IO_WQ_ACCT_BOUND])
create_io_worker(wq, wqe, IO_WQ_ACCT_BOUND);
if (fork_worker[IO_WQ_ACCT_UNBOUND])
create_io_worker(wq, wqe, IO_WQ_ACCT_UNBOUND);
}
}
/*
* Manager thread. Tasked with creating new workers, if we need them.
*/
static int io_wq_manager(void *data)
{
struct io_wq *wq = data;
char buf[TASK_COMM_LEN];
int node;
sprintf(buf, "iou-mgr-%d", wq->task_pid);
set_task_comm(current, buf);
current->flags |= PF_IO_WORKER;
wq->manager = current;
complete(&wq->done);
do {
set_current_state(TASK_INTERRUPTIBLE);
io_wq_check_workers(wq);
schedule_timeout(HZ);
if (fatal_signal_pending(current))
set_bit(IO_WQ_BIT_EXIT, &wq->state);
} while (!test_bit(IO_WQ_BIT_EXIT, &wq->state));
io_wq_check_workers(wq);
rcu_read_lock();
for_each_node(node)
io_wq_for_each_worker(wq->wqes[node], io_wq_worker_wake, NULL);
rcu_read_unlock();
/* we might not ever have created any workers */
if (atomic_read(&wq->worker_refs))
wait_for_completion(&wq->worker_done);
wq->manager = NULL;
io_wq_put(wq);
do_exit(0);
}
static void io_run_cancel(struct io_wq_work *work, struct io_wqe *wqe)
{
struct io_wq *wq = wqe->wq;
do {
work->flags |= IO_WQ_WORK_CANCEL;
wq->do_work(work);
work = wq->free_work(work);
} while (work);
}
static void io_wqe_insert_work(struct io_wqe *wqe, struct io_wq_work *work)
{
unsigned int hash;
struct io_wq_work *tail;
if (!io_wq_is_hashed(work)) {
append:
wq_list_add_tail(&work->list, &wqe->work_list);
return;
}
hash = io_get_work_hash(work);
tail = wqe->hash_tail[hash];
wqe->hash_tail[hash] = work;
if (!tail)
goto append;
wq_list_add_after(&work->list, &tail->list, &wqe->work_list);
}
static int io_wq_fork_manager(struct io_wq *wq)
{
int ret;
if (wq->manager)
return 0;
reinit_completion(&wq->worker_done);
clear_bit(IO_WQ_BIT_EXIT, &wq->state);
refcount_inc(&wq->refs);
current->flags |= PF_IO_WORKER;
ret = io_wq_fork_thread(io_wq_manager, wq);
current->flags &= ~PF_IO_WORKER;
if (ret >= 0) {
wait_for_completion(&wq->done);
return 0;
}
io_wq_put(wq);
return ret;
}
static void io_wqe_enqueue(struct io_wqe *wqe, struct io_wq_work *work)
{
struct io_wqe_acct *acct = io_work_get_acct(wqe, work);
int work_flags;
unsigned long flags;
/* Can only happen if manager creation fails after exec */
if (unlikely(io_wq_fork_manager(wqe->wq))) {
work->flags |= IO_WQ_WORK_CANCEL;
wqe->wq->do_work(work);
return;
}
work_flags = work->flags;
raw_spin_lock_irqsave(&wqe->lock, flags);
io_wqe_insert_work(wqe, work);
wqe->flags &= ~IO_WQE_FLAG_STALLED;
raw_spin_unlock_irqrestore(&wqe->lock, flags);
if ((work_flags & IO_WQ_WORK_CONCURRENT) ||
!atomic_read(&acct->nr_running))
io_wqe_wake_worker(wqe, acct);
}
void io_wq_enqueue(struct io_wq *wq, struct io_wq_work *work)
{
struct io_wqe *wqe = wq->wqes[numa_node_id()];
io_wqe_enqueue(wqe, work);
}
/*
* Work items that hash to the same value will not be done in parallel.
* Used to limit concurrent writes, generally hashed by inode.
*/
void io_wq_hash_work(struct io_wq_work *work, void *val)
{
unsigned int bit;
bit = hash_ptr(val, IO_WQ_HASH_ORDER);
work->flags |= (IO_WQ_WORK_HASHED | (bit << IO_WQ_HASH_SHIFT));
}
struct io_cb_cancel_data {
work_cancel_fn *fn;
void *data;
int nr_running;
int nr_pending;
bool cancel_all;
};
static bool io_wq_worker_cancel(struct io_worker *worker, void *data)
{
struct io_cb_cancel_data *match = data;
unsigned long flags;
/*
* Hold the lock to avoid ->cur_work going out of scope, caller
* may dereference the passed in work.
*/
spin_lock_irqsave(&worker->lock, flags);
if (worker->cur_work &&
match->fn(worker->cur_work, match->data)) {
set_notify_signal(worker->task);
match->nr_running++;
}
spin_unlock_irqrestore(&worker->lock, flags);
return match->nr_running && !match->cancel_all;
}
static inline void io_wqe_remove_pending(struct io_wqe *wqe,
struct io_wq_work *work,
struct io_wq_work_node *prev)
{
unsigned int hash = io_get_work_hash(work);
struct io_wq_work *prev_work = NULL;
if (io_wq_is_hashed(work) && work == wqe->hash_tail[hash]) {
if (prev)
prev_work = container_of(prev, struct io_wq_work, list);
if (prev_work && io_get_work_hash(prev_work) == hash)
wqe->hash_tail[hash] = prev_work;
else
wqe->hash_tail[hash] = NULL;
}
wq_list_del(&wqe->work_list, &work->list, prev);
}
static void io_wqe_cancel_pending_work(struct io_wqe *wqe,
struct io_cb_cancel_data *match)
{
struct io_wq_work_node *node, *prev;
struct io_wq_work *work;
unsigned long flags;
retry:
raw_spin_lock_irqsave(&wqe->lock, flags);
wq_list_for_each(node, prev, &wqe->work_list) {
work = container_of(node, struct io_wq_work, list);
if (!match->fn(work, match->data))
continue;
io_wqe_remove_pending(wqe, work, prev);
raw_spin_unlock_irqrestore(&wqe->lock, flags);
io_run_cancel(work, wqe);
match->nr_pending++;
if (!match->cancel_all)
return;
/* not safe to continue after unlock */
goto retry;
}
raw_spin_unlock_irqrestore(&wqe->lock, flags);
}
static void io_wqe_cancel_running_work(struct io_wqe *wqe,
struct io_cb_cancel_data *match)
{
rcu_read_lock();
io_wq_for_each_worker(wqe, io_wq_worker_cancel, match);
rcu_read_unlock();
}
enum io_wq_cancel io_wq_cancel_cb(struct io_wq *wq, work_cancel_fn *cancel,
void *data, bool cancel_all)
{
struct io_cb_cancel_data match = {
.fn = cancel,
.data = data,
.cancel_all = cancel_all,
};
int node;
/*
* First check pending list, if we're lucky we can just remove it
* from there. CANCEL_OK means that the work is returned as-new,
* no completion will be posted for it.
*/
for_each_node(node) {
struct io_wqe *wqe = wq->wqes[node];
io_wqe_cancel_pending_work(wqe, &match);
if (match.nr_pending && !match.cancel_all)
return IO_WQ_CANCEL_OK;
}
/*
* Now check if a free (going busy) or busy worker has the work
* currently running. If we find it there, we'll return CANCEL_RUNNING
* as an indication that we attempt to signal cancellation. The
* completion will run normally in this case.
*/
for_each_node(node) {
struct io_wqe *wqe = wq->wqes[node];
io_wqe_cancel_running_work(wqe, &match);
if (match.nr_running && !match.cancel_all)
return IO_WQ_CANCEL_RUNNING;
}
if (match.nr_running)
return IO_WQ_CANCEL_RUNNING;
if (match.nr_pending)
return IO_WQ_CANCEL_OK;
return IO_WQ_CANCEL_NOTFOUND;
}
static int io_wqe_hash_wake(struct wait_queue_entry *wait, unsigned mode,
int sync, void *key)
{
struct io_wqe *wqe = container_of(wait, struct io_wqe, wait);
int ret;
list_del_init(&wait->entry);
rcu_read_lock();
ret = io_wqe_activate_free_worker(wqe);
rcu_read_unlock();
if (!ret)
wake_up_process(wqe->wq->manager);
return 1;
}
struct io_wq *io_wq_create(unsigned bounded, struct io_wq_data *data)
{
int ret = -ENOMEM, node;
struct io_wq *wq;
if (WARN_ON_ONCE(!data->free_work || !data->do_work))
return ERR_PTR(-EINVAL);
wq = kzalloc(sizeof(*wq), GFP_KERNEL);
if (!wq)
return ERR_PTR(-ENOMEM);
wq->wqes = kcalloc(nr_node_ids, sizeof(struct io_wqe *), GFP_KERNEL);
if (!wq->wqes)
goto err_wq;
ret = cpuhp_state_add_instance_nocalls(io_wq_online, &wq->cpuhp_node);
if (ret)
goto err_wqes;
refcount_inc(&data->hash->refs);
wq->hash = data->hash;
wq->free_work = data->free_work;
wq->do_work = data->do_work;
ret = -ENOMEM;
for_each_node(node) {
struct io_wqe *wqe;
int alloc_node = node;
if (!node_online(alloc_node))
alloc_node = NUMA_NO_NODE;
wqe = kzalloc_node(sizeof(struct io_wqe), GFP_KERNEL, alloc_node);
if (!wqe)
goto err;
wq->wqes[node] = wqe;
wqe->node = alloc_node;
wqe->acct[IO_WQ_ACCT_BOUND].max_workers = bounded;
atomic_set(&wqe->acct[IO_WQ_ACCT_BOUND].nr_running, 0);
wqe->acct[IO_WQ_ACCT_UNBOUND].max_workers =
task_rlimit(current, RLIMIT_NPROC);
atomic_set(&wqe->acct[IO_WQ_ACCT_UNBOUND].nr_running, 0);
wqe->wait.func = io_wqe_hash_wake;
INIT_LIST_HEAD(&wqe->wait.entry);
wqe->wq = wq;
raw_spin_lock_init(&wqe->lock);
INIT_WQ_LIST(&wqe->work_list);
INIT_HLIST_NULLS_HEAD(&wqe->free_list, 0);
INIT_LIST_HEAD(&wqe->all_list);
}
wq->task_pid = current->pid;
init_completion(&wq->done);
refcount_set(&wq->refs, 1);
init_completion(&wq->worker_done);
atomic_set(&wq->worker_refs, 0);
ret = io_wq_fork_manager(wq);
if (!ret)
return wq;
io_wq_put(wq);
io_wq_put_hash(data->hash);
err:
cpuhp_state_remove_instance_nocalls(io_wq_online, &wq->cpuhp_node);
for_each_node(node)
kfree(wq->wqes[node]);
err_wqes:
kfree(wq->wqes);
err_wq:
kfree(wq);
return ERR_PTR(ret);
}
static void io_wq_destroy(struct io_wq *wq)
{
int node;
cpuhp_state_remove_instance_nocalls(io_wq_online, &wq->cpuhp_node);
set_bit(IO_WQ_BIT_EXIT, &wq->state);
if (wq->manager)
wake_up_process(wq->manager);
spin_lock_irq(&wq->hash->wait.lock);
for_each_node(node) {
struct io_wqe *wqe = wq->wqes[node];
list_del_init(&wqe->wait.entry);
kfree(wqe);
}
spin_unlock_irq(&wq->hash->wait.lock);
io_wq_put_hash(wq->hash);
kfree(wq->wqes);
kfree(wq);
}
void io_wq_put(struct io_wq *wq)
{
if (refcount_dec_and_test(&wq->refs))
io_wq_destroy(wq);
}
static bool io_wq_worker_affinity(struct io_worker *worker, void *data)
{
struct task_struct *task = worker->task;
struct rq_flags rf;
struct rq *rq;
rq = task_rq_lock(task, &rf);
do_set_cpus_allowed(task, cpumask_of_node(worker->wqe->node));
task->flags |= PF_NO_SETAFFINITY;
task_rq_unlock(rq, task, &rf);
return false;
}
static int io_wq_cpu_online(unsigned int cpu, struct hlist_node *node)
{
struct io_wq *wq = hlist_entry_safe(node, struct io_wq, cpuhp_node);
int i;
rcu_read_lock();
for_each_node(i)
io_wq_for_each_worker(wq->wqes[i], io_wq_worker_affinity, NULL);
rcu_read_unlock();
return 0;
}
static __init int io_wq_init(void)
{
int ret;
ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "io-wq/online",
io_wq_cpu_online, NULL);
if (ret < 0)
return ret;
io_wq_online = ret;
return 0;
}
subsys_initcall(io_wq_init);