ecab6be7e5
This means that btree node splits don't have to automatically trigger a transaction restart. Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2042 lines
52 KiB
C
2042 lines
52 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
#include "bcachefs.h"
|
|
#include "alloc_foreground.h"
|
|
#include "bkey_methods.h"
|
|
#include "btree_cache.h"
|
|
#include "btree_gc.h"
|
|
#include "btree_update.h"
|
|
#include "btree_update_interior.h"
|
|
#include "btree_io.h"
|
|
#include "btree_iter.h"
|
|
#include "btree_locking.h"
|
|
#include "buckets.h"
|
|
#include "error.h"
|
|
#include "extents.h"
|
|
#include "journal.h"
|
|
#include "journal_reclaim.h"
|
|
#include "keylist.h"
|
|
#include "replicas.h"
|
|
#include "super-io.h"
|
|
#include "trace.h"
|
|
|
|
#include <linux/random.h>
|
|
|
|
/* Debug code: */
|
|
|
|
/*
|
|
* Verify that child nodes correctly span parent node's range:
|
|
*/
|
|
static void btree_node_interior_verify(struct bch_fs *c, struct btree *b)
|
|
{
|
|
#ifdef CONFIG_BCACHEFS_DEBUG
|
|
struct bpos next_node = b->data->min_key;
|
|
struct btree_node_iter iter;
|
|
struct bkey_s_c k;
|
|
struct bkey_s_c_btree_ptr_v2 bp;
|
|
struct bkey unpacked;
|
|
char buf1[100], buf2[100];
|
|
|
|
BUG_ON(!b->c.level);
|
|
|
|
if (!test_bit(BCH_FS_BTREE_INTERIOR_REPLAY_DONE, &c->flags))
|
|
return;
|
|
|
|
bch2_btree_node_iter_init_from_start(&iter, b);
|
|
|
|
while (1) {
|
|
k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked);
|
|
if (k.k->type != KEY_TYPE_btree_ptr_v2)
|
|
break;
|
|
bp = bkey_s_c_to_btree_ptr_v2(k);
|
|
|
|
if (bpos_cmp(next_node, bp.v->min_key)) {
|
|
bch2_dump_btree_node(c, b);
|
|
panic("expected next min_key %s got %s\n",
|
|
(bch2_bpos_to_text(&PBUF(buf1), next_node), buf1),
|
|
(bch2_bpos_to_text(&PBUF(buf2), bp.v->min_key), buf2));
|
|
}
|
|
|
|
bch2_btree_node_iter_advance(&iter, b);
|
|
|
|
if (bch2_btree_node_iter_end(&iter)) {
|
|
if (bpos_cmp(k.k->p, b->key.k.p)) {
|
|
bch2_dump_btree_node(c, b);
|
|
panic("expected end %s got %s\n",
|
|
(bch2_bpos_to_text(&PBUF(buf1), b->key.k.p), buf1),
|
|
(bch2_bpos_to_text(&PBUF(buf2), k.k->p), buf2));
|
|
}
|
|
break;
|
|
}
|
|
|
|
next_node = bpos_successor(k.k->p);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Calculate ideal packed bkey format for new btree nodes: */
|
|
|
|
void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b)
|
|
{
|
|
struct bkey_packed *k;
|
|
struct bset_tree *t;
|
|
struct bkey uk;
|
|
|
|
for_each_bset(b, t)
|
|
bset_tree_for_each_key(b, t, k)
|
|
if (!bkey_deleted(k)) {
|
|
uk = bkey_unpack_key(b, k);
|
|
bch2_bkey_format_add_key(s, &uk);
|
|
}
|
|
}
|
|
|
|
static struct bkey_format bch2_btree_calc_format(struct btree *b)
|
|
{
|
|
struct bkey_format_state s;
|
|
|
|
bch2_bkey_format_init(&s);
|
|
bch2_bkey_format_add_pos(&s, b->data->min_key);
|
|
bch2_bkey_format_add_pos(&s, b->data->max_key);
|
|
__bch2_btree_calc_format(&s, b);
|
|
|
|
return bch2_bkey_format_done(&s);
|
|
}
|
|
|
|
static size_t btree_node_u64s_with_format(struct btree *b,
|
|
struct bkey_format *new_f)
|
|
{
|
|
struct bkey_format *old_f = &b->format;
|
|
|
|
/* stupid integer promotion rules */
|
|
ssize_t delta =
|
|
(((int) new_f->key_u64s - old_f->key_u64s) *
|
|
(int) b->nr.packed_keys) +
|
|
(((int) new_f->key_u64s - BKEY_U64s) *
|
|
(int) b->nr.unpacked_keys);
|
|
|
|
BUG_ON(delta + b->nr.live_u64s < 0);
|
|
|
|
return b->nr.live_u64s + delta;
|
|
}
|
|
|
|
/**
|
|
* btree_node_format_fits - check if we could rewrite node with a new format
|
|
*
|
|
* This assumes all keys can pack with the new format -- it just checks if
|
|
* the re-packed keys would fit inside the node itself.
|
|
*/
|
|
bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b,
|
|
struct bkey_format *new_f)
|
|
{
|
|
size_t u64s = btree_node_u64s_with_format(b, new_f);
|
|
|
|
return __vstruct_bytes(struct btree_node, u64s) < btree_bytes(c);
|
|
}
|
|
|
|
/* Btree node freeing/allocation: */
|
|
|
|
static void __btree_node_free(struct bch_fs *c, struct btree *b)
|
|
{
|
|
trace_btree_node_free(c, b);
|
|
|
|
BUG_ON(btree_node_dirty(b));
|
|
BUG_ON(btree_node_need_write(b));
|
|
BUG_ON(b == btree_node_root(c, b));
|
|
BUG_ON(b->ob.nr);
|
|
BUG_ON(!list_empty(&b->write_blocked));
|
|
BUG_ON(b->will_make_reachable);
|
|
|
|
clear_btree_node_noevict(b);
|
|
|
|
bch2_btree_node_hash_remove(&c->btree_cache, b);
|
|
|
|
mutex_lock(&c->btree_cache.lock);
|
|
list_move(&b->list, &c->btree_cache.freeable);
|
|
mutex_unlock(&c->btree_cache.lock);
|
|
}
|
|
|
|
void bch2_btree_node_free_never_inserted(struct bch_fs *c, struct btree *b)
|
|
{
|
|
struct open_buckets ob = b->ob;
|
|
|
|
b->ob.nr = 0;
|
|
|
|
clear_btree_node_dirty(c, b);
|
|
|
|
btree_node_lock_type(c, b, SIX_LOCK_write);
|
|
__btree_node_free(c, b);
|
|
six_unlock_write(&b->c.lock);
|
|
|
|
bch2_open_buckets_put(c, &ob);
|
|
}
|
|
|
|
void bch2_btree_node_free_inmem(struct bch_fs *c, struct btree *b,
|
|
struct btree_iter *iter)
|
|
{
|
|
struct btree_iter *linked;
|
|
|
|
trans_for_each_iter(iter->trans, linked)
|
|
BUG_ON(linked->l[b->c.level].b == b);
|
|
|
|
six_lock_write(&b->c.lock, NULL, NULL);
|
|
__btree_node_free(c, b);
|
|
six_unlock_write(&b->c.lock);
|
|
six_unlock_intent(&b->c.lock);
|
|
}
|
|
|
|
static struct btree *__bch2_btree_node_alloc(struct bch_fs *c,
|
|
struct disk_reservation *res,
|
|
struct closure *cl,
|
|
unsigned flags)
|
|
{
|
|
struct write_point *wp;
|
|
struct btree *b;
|
|
__BKEY_PADDED(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp;
|
|
struct open_buckets ob = { .nr = 0 };
|
|
struct bch_devs_list devs_have = (struct bch_devs_list) { 0 };
|
|
unsigned nr_reserve;
|
|
enum alloc_reserve alloc_reserve;
|
|
|
|
if (flags & BTREE_INSERT_USE_RESERVE) {
|
|
nr_reserve = 0;
|
|
alloc_reserve = RESERVE_BTREE_MOVINGGC;
|
|
} else {
|
|
nr_reserve = BTREE_NODE_RESERVE;
|
|
alloc_reserve = RESERVE_BTREE;
|
|
}
|
|
|
|
mutex_lock(&c->btree_reserve_cache_lock);
|
|
if (c->btree_reserve_cache_nr > nr_reserve) {
|
|
struct btree_alloc *a =
|
|
&c->btree_reserve_cache[--c->btree_reserve_cache_nr];
|
|
|
|
ob = a->ob;
|
|
bkey_copy(&tmp.k, &a->k);
|
|
mutex_unlock(&c->btree_reserve_cache_lock);
|
|
goto mem_alloc;
|
|
}
|
|
mutex_unlock(&c->btree_reserve_cache_lock);
|
|
|
|
retry:
|
|
wp = bch2_alloc_sectors_start(c,
|
|
c->opts.metadata_target ?:
|
|
c->opts.foreground_target,
|
|
0,
|
|
writepoint_ptr(&c->btree_write_point),
|
|
&devs_have,
|
|
res->nr_replicas,
|
|
c->opts.metadata_replicas_required,
|
|
alloc_reserve, 0, cl);
|
|
if (IS_ERR(wp))
|
|
return ERR_CAST(wp);
|
|
|
|
if (wp->sectors_free < c->opts.btree_node_size) {
|
|
struct open_bucket *ob;
|
|
unsigned i;
|
|
|
|
open_bucket_for_each(c, &wp->ptrs, ob, i)
|
|
if (ob->sectors_free < c->opts.btree_node_size)
|
|
ob->sectors_free = 0;
|
|
|
|
bch2_alloc_sectors_done(c, wp);
|
|
goto retry;
|
|
}
|
|
|
|
if (c->sb.features & (1ULL << BCH_FEATURE_btree_ptr_v2))
|
|
bkey_btree_ptr_v2_init(&tmp.k);
|
|
else
|
|
bkey_btree_ptr_init(&tmp.k);
|
|
|
|
bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, c->opts.btree_node_size);
|
|
|
|
bch2_open_bucket_get(c, wp, &ob);
|
|
bch2_alloc_sectors_done(c, wp);
|
|
mem_alloc:
|
|
b = bch2_btree_node_mem_alloc(c);
|
|
|
|
/* we hold cannibalize_lock: */
|
|
BUG_ON(IS_ERR(b));
|
|
BUG_ON(b->ob.nr);
|
|
|
|
bkey_copy(&b->key, &tmp.k);
|
|
b->ob = ob;
|
|
|
|
return b;
|
|
}
|
|
|
|
static struct btree *bch2_btree_node_alloc(struct btree_update *as, unsigned level)
|
|
{
|
|
struct bch_fs *c = as->c;
|
|
struct btree *b;
|
|
int ret;
|
|
|
|
BUG_ON(level >= BTREE_MAX_DEPTH);
|
|
BUG_ON(!as->nr_prealloc_nodes);
|
|
|
|
b = as->prealloc_nodes[--as->nr_prealloc_nodes];
|
|
|
|
set_btree_node_accessed(b);
|
|
set_btree_node_dirty(c, b);
|
|
set_btree_node_need_write(b);
|
|
|
|
bch2_bset_init_first(b, &b->data->keys);
|
|
b->c.level = level;
|
|
b->c.btree_id = as->btree_id;
|
|
b->version_ondisk = c->sb.version;
|
|
|
|
memset(&b->nr, 0, sizeof(b->nr));
|
|
b->data->magic = cpu_to_le64(bset_magic(c));
|
|
b->data->flags = 0;
|
|
SET_BTREE_NODE_ID(b->data, as->btree_id);
|
|
SET_BTREE_NODE_LEVEL(b->data, level);
|
|
|
|
if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
|
|
struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key);
|
|
|
|
bp->v.mem_ptr = 0;
|
|
bp->v.seq = b->data->keys.seq;
|
|
bp->v.sectors_written = 0;
|
|
}
|
|
|
|
SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true);
|
|
|
|
bch2_btree_build_aux_trees(b);
|
|
|
|
ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id);
|
|
BUG_ON(ret);
|
|
|
|
trace_btree_node_alloc(c, b);
|
|
return b;
|
|
}
|
|
|
|
static void btree_set_min(struct btree *b, struct bpos pos)
|
|
{
|
|
if (b->key.k.type == KEY_TYPE_btree_ptr_v2)
|
|
bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos;
|
|
b->data->min_key = pos;
|
|
}
|
|
|
|
static void btree_set_max(struct btree *b, struct bpos pos)
|
|
{
|
|
b->key.k.p = pos;
|
|
b->data->max_key = pos;
|
|
}
|
|
|
|
struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *as,
|
|
struct btree *b,
|
|
struct bkey_format format)
|
|
{
|
|
struct btree *n;
|
|
|
|
n = bch2_btree_node_alloc(as, b->c.level);
|
|
|
|
SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1);
|
|
|
|
btree_set_min(n, b->data->min_key);
|
|
btree_set_max(n, b->data->max_key);
|
|
|
|
n->data->format = format;
|
|
btree_node_set_format(n, format);
|
|
|
|
bch2_btree_sort_into(as->c, n, b);
|
|
|
|
btree_node_reset_sib_u64s(n);
|
|
|
|
n->key.k.p = b->key.k.p;
|
|
return n;
|
|
}
|
|
|
|
static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as,
|
|
struct btree *b)
|
|
{
|
|
struct bkey_format new_f = bch2_btree_calc_format(b);
|
|
|
|
/*
|
|
* The keys might expand with the new format - if they wouldn't fit in
|
|
* the btree node anymore, use the old format for now:
|
|
*/
|
|
if (!bch2_btree_node_format_fits(as->c, b, &new_f))
|
|
new_f = b->format;
|
|
|
|
return __bch2_btree_node_alloc_replacement(as, b, new_f);
|
|
}
|
|
|
|
static struct btree *__btree_root_alloc(struct btree_update *as, unsigned level)
|
|
{
|
|
struct btree *b = bch2_btree_node_alloc(as, level);
|
|
|
|
btree_set_min(b, POS_MIN);
|
|
btree_set_max(b, POS_MAX);
|
|
b->data->format = bch2_btree_calc_format(b);
|
|
|
|
btree_node_set_format(b, b->data->format);
|
|
bch2_btree_build_aux_trees(b);
|
|
|
|
bch2_btree_update_add_new_node(as, b);
|
|
six_unlock_write(&b->c.lock);
|
|
|
|
return b;
|
|
}
|
|
|
|
static void bch2_btree_reserve_put(struct btree_update *as)
|
|
{
|
|
struct bch_fs *c = as->c;
|
|
|
|
mutex_lock(&c->btree_reserve_cache_lock);
|
|
|
|
while (as->nr_prealloc_nodes) {
|
|
struct btree *b = as->prealloc_nodes[--as->nr_prealloc_nodes];
|
|
|
|
six_unlock_write(&b->c.lock);
|
|
|
|
if (c->btree_reserve_cache_nr <
|
|
ARRAY_SIZE(c->btree_reserve_cache)) {
|
|
struct btree_alloc *a =
|
|
&c->btree_reserve_cache[c->btree_reserve_cache_nr++];
|
|
|
|
a->ob = b->ob;
|
|
b->ob.nr = 0;
|
|
bkey_copy(&a->k, &b->key);
|
|
} else {
|
|
bch2_open_buckets_put(c, &b->ob);
|
|
}
|
|
|
|
btree_node_lock_type(c, b, SIX_LOCK_write);
|
|
__btree_node_free(c, b);
|
|
six_unlock_write(&b->c.lock);
|
|
|
|
six_unlock_intent(&b->c.lock);
|
|
}
|
|
|
|
mutex_unlock(&c->btree_reserve_cache_lock);
|
|
}
|
|
|
|
static int bch2_btree_reserve_get(struct btree_update *as, unsigned nr_nodes,
|
|
unsigned flags, struct closure *cl)
|
|
{
|
|
struct bch_fs *c = as->c;
|
|
struct btree *b;
|
|
int ret;
|
|
|
|
BUG_ON(nr_nodes > BTREE_RESERVE_MAX);
|
|
|
|
/*
|
|
* Protects reaping from the btree node cache and using the btree node
|
|
* open bucket reserve:
|
|
*/
|
|
ret = bch2_btree_cache_cannibalize_lock(c, cl);
|
|
if (ret)
|
|
return ret;
|
|
|
|
while (as->nr_prealloc_nodes < nr_nodes) {
|
|
b = __bch2_btree_node_alloc(c, &as->disk_res,
|
|
flags & BTREE_INSERT_NOWAIT
|
|
? NULL : cl, flags);
|
|
if (IS_ERR(b)) {
|
|
ret = PTR_ERR(b);
|
|
goto err_free;
|
|
}
|
|
|
|
ret = bch2_mark_bkey_replicas(c, bkey_i_to_s_c(&b->key));
|
|
if (ret)
|
|
goto err_free;
|
|
|
|
as->prealloc_nodes[as->nr_prealloc_nodes++] = b;
|
|
}
|
|
|
|
bch2_btree_cache_cannibalize_unlock(c);
|
|
return 0;
|
|
err_free:
|
|
bch2_btree_cache_cannibalize_unlock(c);
|
|
trace_btree_reserve_get_fail(c, nr_nodes, cl);
|
|
return ret;
|
|
}
|
|
|
|
/* Asynchronous interior node update machinery */
|
|
|
|
static void bch2_btree_update_free(struct btree_update *as)
|
|
{
|
|
struct bch_fs *c = as->c;
|
|
|
|
if (as->took_gc_lock)
|
|
up_read(&c->gc_lock);
|
|
as->took_gc_lock = false;
|
|
|
|
bch2_journal_preres_put(&c->journal, &as->journal_preres);
|
|
|
|
bch2_journal_pin_drop(&c->journal, &as->journal);
|
|
bch2_journal_pin_flush(&c->journal, &as->journal);
|
|
bch2_disk_reservation_put(c, &as->disk_res);
|
|
bch2_btree_reserve_put(as);
|
|
|
|
mutex_lock(&c->btree_interior_update_lock);
|
|
list_del(&as->unwritten_list);
|
|
list_del(&as->list);
|
|
mutex_unlock(&c->btree_interior_update_lock);
|
|
|
|
closure_debug_destroy(&as->cl);
|
|
mempool_free(as, &c->btree_interior_update_pool);
|
|
|
|
closure_wake_up(&c->btree_interior_update_wait);
|
|
}
|
|
|
|
static void btree_update_will_delete_key(struct btree_update *as,
|
|
struct bkey_i *k)
|
|
{
|
|
BUG_ON(bch2_keylist_u64s(&as->old_keys) + k->k.u64s >
|
|
ARRAY_SIZE(as->_old_keys));
|
|
bch2_keylist_add(&as->old_keys, k);
|
|
}
|
|
|
|
static void btree_update_will_add_key(struct btree_update *as,
|
|
struct bkey_i *k)
|
|
{
|
|
BUG_ON(bch2_keylist_u64s(&as->new_keys) + k->k.u64s >
|
|
ARRAY_SIZE(as->_new_keys));
|
|
bch2_keylist_add(&as->new_keys, k);
|
|
}
|
|
|
|
/*
|
|
* The transactional part of an interior btree node update, where we journal the
|
|
* update we did to the interior node and update alloc info:
|
|
*/
|
|
static int btree_update_nodes_written_trans(struct btree_trans *trans,
|
|
struct btree_update *as)
|
|
{
|
|
struct bkey_i *k;
|
|
int ret;
|
|
|
|
trans->extra_journal_entries = (void *) &as->journal_entries[0];
|
|
trans->extra_journal_entry_u64s = as->journal_u64s;
|
|
trans->journal_pin = &as->journal;
|
|
|
|
for_each_keylist_key(&as->new_keys, k) {
|
|
ret = bch2_trans_mark_key(trans,
|
|
bkey_s_c_null,
|
|
bkey_i_to_s_c(k),
|
|
0, 0, BTREE_TRIGGER_INSERT);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
for_each_keylist_key(&as->old_keys, k) {
|
|
ret = bch2_trans_mark_key(trans,
|
|
bkey_i_to_s_c(k),
|
|
bkey_s_c_null,
|
|
0, 0, BTREE_TRIGGER_OVERWRITE);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void btree_update_nodes_written(struct btree_update *as)
|
|
{
|
|
struct bch_fs *c = as->c;
|
|
struct btree *b = as->b;
|
|
struct btree_trans trans;
|
|
u64 journal_seq = 0;
|
|
unsigned i;
|
|
int ret;
|
|
|
|
/*
|
|
* If we're already in an error state, it might be because a btree node
|
|
* was never written, and we might be trying to free that same btree
|
|
* node here, but it won't have been marked as allocated and we'll see
|
|
* spurious disk usage inconsistencies in the transactional part below
|
|
* if we don't skip it:
|
|
*/
|
|
ret = bch2_journal_error(&c->journal);
|
|
if (ret)
|
|
goto err;
|
|
|
|
BUG_ON(!journal_pin_active(&as->journal));
|
|
|
|
/*
|
|
* We did an update to a parent node where the pointers we added pointed
|
|
* to child nodes that weren't written yet: now, the child nodes have
|
|
* been written so we can write out the update to the interior node.
|
|
*/
|
|
|
|
/*
|
|
* We can't call into journal reclaim here: we'd block on the journal
|
|
* reclaim lock, but we may need to release the open buckets we have
|
|
* pinned in order for other btree updates to make forward progress, and
|
|
* journal reclaim does btree updates when flushing bkey_cached entries,
|
|
* which may require allocations as well.
|
|
*/
|
|
bch2_trans_init(&trans, c, 0, 512);
|
|
ret = __bch2_trans_do(&trans, &as->disk_res, &journal_seq,
|
|
BTREE_INSERT_NOFAIL|
|
|
BTREE_INSERT_NOCHECK_RW|
|
|
BTREE_INSERT_JOURNAL_RECLAIM|
|
|
BTREE_INSERT_JOURNAL_RESERVED,
|
|
btree_update_nodes_written_trans(&trans, as));
|
|
bch2_trans_exit(&trans);
|
|
|
|
bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c,
|
|
"error %i in btree_update_nodes_written()", ret);
|
|
err:
|
|
if (b) {
|
|
/*
|
|
* @b is the node we did the final insert into:
|
|
*
|
|
* On failure to get a journal reservation, we still have to
|
|
* unblock the write and allow most of the write path to happen
|
|
* so that shutdown works, but the i->journal_seq mechanism
|
|
* won't work to prevent the btree write from being visible (we
|
|
* didn't get a journal sequence number) - instead
|
|
* __bch2_btree_node_write() doesn't do the actual write if
|
|
* we're in journal error state:
|
|
*/
|
|
|
|
btree_node_lock_type(c, b, SIX_LOCK_intent);
|
|
btree_node_lock_type(c, b, SIX_LOCK_write);
|
|
mutex_lock(&c->btree_interior_update_lock);
|
|
|
|
list_del(&as->write_blocked_list);
|
|
|
|
/*
|
|
* Node might have been freed, recheck under
|
|
* btree_interior_update_lock:
|
|
*/
|
|
if (as->b == b) {
|
|
struct bset *i = btree_bset_last(b);
|
|
|
|
BUG_ON(!b->c.level);
|
|
BUG_ON(!btree_node_dirty(b));
|
|
|
|
if (!ret) {
|
|
i->journal_seq = cpu_to_le64(
|
|
max(journal_seq,
|
|
le64_to_cpu(i->journal_seq)));
|
|
|
|
bch2_btree_add_journal_pin(c, b, journal_seq);
|
|
} else {
|
|
/*
|
|
* If we didn't get a journal sequence number we
|
|
* can't write this btree node, because recovery
|
|
* won't know to ignore this write:
|
|
*/
|
|
set_btree_node_never_write(b);
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&c->btree_interior_update_lock);
|
|
six_unlock_write(&b->c.lock);
|
|
|
|
btree_node_write_if_need(c, b, SIX_LOCK_intent);
|
|
six_unlock_intent(&b->c.lock);
|
|
}
|
|
|
|
bch2_journal_pin_drop(&c->journal, &as->journal);
|
|
|
|
bch2_journal_preres_put(&c->journal, &as->journal_preres);
|
|
|
|
mutex_lock(&c->btree_interior_update_lock);
|
|
for (i = 0; i < as->nr_new_nodes; i++) {
|
|
b = as->new_nodes[i];
|
|
|
|
BUG_ON(b->will_make_reachable != (unsigned long) as);
|
|
b->will_make_reachable = 0;
|
|
}
|
|
mutex_unlock(&c->btree_interior_update_lock);
|
|
|
|
for (i = 0; i < as->nr_new_nodes; i++) {
|
|
b = as->new_nodes[i];
|
|
|
|
btree_node_lock_type(c, b, SIX_LOCK_read);
|
|
btree_node_write_if_need(c, b, SIX_LOCK_read);
|
|
six_unlock_read(&b->c.lock);
|
|
}
|
|
|
|
for (i = 0; i < as->nr_open_buckets; i++)
|
|
bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]);
|
|
|
|
bch2_btree_update_free(as);
|
|
}
|
|
|
|
static void btree_interior_update_work(struct work_struct *work)
|
|
{
|
|
struct bch_fs *c =
|
|
container_of(work, struct bch_fs, btree_interior_update_work);
|
|
struct btree_update *as;
|
|
|
|
while (1) {
|
|
mutex_lock(&c->btree_interior_update_lock);
|
|
as = list_first_entry_or_null(&c->btree_interior_updates_unwritten,
|
|
struct btree_update, unwritten_list);
|
|
if (as && !as->nodes_written)
|
|
as = NULL;
|
|
mutex_unlock(&c->btree_interior_update_lock);
|
|
|
|
if (!as)
|
|
break;
|
|
|
|
btree_update_nodes_written(as);
|
|
}
|
|
}
|
|
|
|
static void btree_update_set_nodes_written(struct closure *cl)
|
|
{
|
|
struct btree_update *as = container_of(cl, struct btree_update, cl);
|
|
struct bch_fs *c = as->c;
|
|
|
|
mutex_lock(&c->btree_interior_update_lock);
|
|
as->nodes_written = true;
|
|
mutex_unlock(&c->btree_interior_update_lock);
|
|
|
|
queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work);
|
|
}
|
|
|
|
/*
|
|
* We're updating @b with pointers to nodes that haven't finished writing yet:
|
|
* block @b from being written until @as completes
|
|
*/
|
|
static void btree_update_updated_node(struct btree_update *as, struct btree *b)
|
|
{
|
|
struct bch_fs *c = as->c;
|
|
|
|
mutex_lock(&c->btree_interior_update_lock);
|
|
list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
|
|
|
|
BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
|
|
BUG_ON(!btree_node_dirty(b));
|
|
|
|
as->mode = BTREE_INTERIOR_UPDATING_NODE;
|
|
as->b = b;
|
|
list_add(&as->write_blocked_list, &b->write_blocked);
|
|
|
|
mutex_unlock(&c->btree_interior_update_lock);
|
|
}
|
|
|
|
static void btree_update_reparent(struct btree_update *as,
|
|
struct btree_update *child)
|
|
{
|
|
struct bch_fs *c = as->c;
|
|
|
|
lockdep_assert_held(&c->btree_interior_update_lock);
|
|
|
|
child->b = NULL;
|
|
child->mode = BTREE_INTERIOR_UPDATING_AS;
|
|
|
|
bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, NULL);
|
|
}
|
|
|
|
static void btree_update_updated_root(struct btree_update *as, struct btree *b)
|
|
{
|
|
struct bkey_i *insert = &b->key;
|
|
struct bch_fs *c = as->c;
|
|
|
|
BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
|
|
|
|
BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
|
|
ARRAY_SIZE(as->journal_entries));
|
|
|
|
as->journal_u64s +=
|
|
journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
|
|
BCH_JSET_ENTRY_btree_root,
|
|
b->c.btree_id, b->c.level,
|
|
insert, insert->k.u64s);
|
|
|
|
mutex_lock(&c->btree_interior_update_lock);
|
|
list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
|
|
|
|
as->mode = BTREE_INTERIOR_UPDATING_ROOT;
|
|
mutex_unlock(&c->btree_interior_update_lock);
|
|
}
|
|
|
|
/*
|
|
* bch2_btree_update_add_new_node:
|
|
*
|
|
* This causes @as to wait on @b to be written, before it gets to
|
|
* bch2_btree_update_nodes_written
|
|
*
|
|
* Additionally, it sets b->will_make_reachable to prevent any additional writes
|
|
* to @b from happening besides the first until @b is reachable on disk
|
|
*
|
|
* And it adds @b to the list of @as's new nodes, so that we can update sector
|
|
* counts in bch2_btree_update_nodes_written:
|
|
*/
|
|
void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b)
|
|
{
|
|
struct bch_fs *c = as->c;
|
|
|
|
closure_get(&as->cl);
|
|
|
|
mutex_lock(&c->btree_interior_update_lock);
|
|
BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes));
|
|
BUG_ON(b->will_make_reachable);
|
|
|
|
as->new_nodes[as->nr_new_nodes++] = b;
|
|
b->will_make_reachable = 1UL|(unsigned long) as;
|
|
|
|
mutex_unlock(&c->btree_interior_update_lock);
|
|
|
|
btree_update_will_add_key(as, &b->key);
|
|
}
|
|
|
|
/*
|
|
* returns true if @b was a new node
|
|
*/
|
|
static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b)
|
|
{
|
|
struct btree_update *as;
|
|
unsigned long v;
|
|
unsigned i;
|
|
|
|
mutex_lock(&c->btree_interior_update_lock);
|
|
/*
|
|
* When b->will_make_reachable != 0, it owns a ref on as->cl that's
|
|
* dropped when it gets written by bch2_btree_complete_write - the
|
|
* xchg() is for synchronization with bch2_btree_complete_write:
|
|
*/
|
|
v = xchg(&b->will_make_reachable, 0);
|
|
as = (struct btree_update *) (v & ~1UL);
|
|
|
|
if (!as) {
|
|
mutex_unlock(&c->btree_interior_update_lock);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < as->nr_new_nodes; i++)
|
|
if (as->new_nodes[i] == b)
|
|
goto found;
|
|
|
|
BUG();
|
|
found:
|
|
array_remove_item(as->new_nodes, as->nr_new_nodes, i);
|
|
mutex_unlock(&c->btree_interior_update_lock);
|
|
|
|
if (v & 1)
|
|
closure_put(&as->cl);
|
|
}
|
|
|
|
void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b)
|
|
{
|
|
while (b->ob.nr)
|
|
as->open_buckets[as->nr_open_buckets++] =
|
|
b->ob.v[--b->ob.nr];
|
|
}
|
|
|
|
/*
|
|
* @b is being split/rewritten: it may have pointers to not-yet-written btree
|
|
* nodes and thus outstanding btree_updates - redirect @b's
|
|
* btree_updates to point to this btree_update:
|
|
*/
|
|
void bch2_btree_interior_update_will_free_node(struct btree_update *as,
|
|
struct btree *b)
|
|
{
|
|
struct bch_fs *c = as->c;
|
|
struct btree_update *p, *n;
|
|
struct btree_write *w;
|
|
|
|
set_btree_node_dying(b);
|
|
|
|
if (btree_node_fake(b))
|
|
return;
|
|
|
|
mutex_lock(&c->btree_interior_update_lock);
|
|
|
|
/*
|
|
* Does this node have any btree_update operations preventing
|
|
* it from being written?
|
|
*
|
|
* If so, redirect them to point to this btree_update: we can
|
|
* write out our new nodes, but we won't make them visible until those
|
|
* operations complete
|
|
*/
|
|
list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
|
|
list_del_init(&p->write_blocked_list);
|
|
btree_update_reparent(as, p);
|
|
|
|
/*
|
|
* for flush_held_btree_writes() waiting on updates to flush or
|
|
* nodes to be writeable:
|
|
*/
|
|
closure_wake_up(&c->btree_interior_update_wait);
|
|
}
|
|
|
|
clear_btree_node_dirty(c, b);
|
|
clear_btree_node_need_write(b);
|
|
|
|
/*
|
|
* Does this node have unwritten data that has a pin on the journal?
|
|
*
|
|
* If so, transfer that pin to the btree_update operation -
|
|
* note that if we're freeing multiple nodes, we only need to keep the
|
|
* oldest pin of any of the nodes we're freeing. We'll release the pin
|
|
* when the new nodes are persistent and reachable on disk:
|
|
*/
|
|
w = btree_current_write(b);
|
|
bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL);
|
|
bch2_journal_pin_drop(&c->journal, &w->journal);
|
|
|
|
w = btree_prev_write(b);
|
|
bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL);
|
|
bch2_journal_pin_drop(&c->journal, &w->journal);
|
|
|
|
mutex_unlock(&c->btree_interior_update_lock);
|
|
|
|
/*
|
|
* Is this a node that isn't reachable on disk yet?
|
|
*
|
|
* Nodes that aren't reachable yet have writes blocked until they're
|
|
* reachable - now that we've cancelled any pending writes and moved
|
|
* things waiting on that write to wait on this update, we can drop this
|
|
* node from the list of nodes that the other update is making
|
|
* reachable, prior to freeing it:
|
|
*/
|
|
btree_update_drop_new_node(c, b);
|
|
|
|
btree_update_will_delete_key(as, &b->key);
|
|
}
|
|
|
|
void bch2_btree_update_done(struct btree_update *as)
|
|
{
|
|
BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE);
|
|
|
|
if (as->took_gc_lock)
|
|
up_read(&as->c->gc_lock);
|
|
as->took_gc_lock = false;
|
|
|
|
bch2_btree_reserve_put(as);
|
|
|
|
continue_at(&as->cl, btree_update_set_nodes_written, system_freezable_wq);
|
|
}
|
|
|
|
struct btree_update *
|
|
bch2_btree_update_start(struct btree_iter *iter, unsigned level,
|
|
unsigned nr_nodes, unsigned flags)
|
|
{
|
|
struct btree_trans *trans = iter->trans;
|
|
struct bch_fs *c = trans->c;
|
|
struct btree_update *as;
|
|
struct closure cl;
|
|
int disk_res_flags = (flags & BTREE_INSERT_NOFAIL)
|
|
? BCH_DISK_RESERVATION_NOFAIL : 0;
|
|
int journal_flags = (flags & BTREE_INSERT_JOURNAL_RESERVED)
|
|
? JOURNAL_RES_GET_RECLAIM : 0;
|
|
int ret = 0;
|
|
|
|
closure_init_stack(&cl);
|
|
retry:
|
|
/*
|
|
* This check isn't necessary for correctness - it's just to potentially
|
|
* prevent us from doing a lot of work that'll end up being wasted:
|
|
*/
|
|
ret = bch2_journal_error(&c->journal);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
/*
|
|
* XXX: figure out how far we might need to split,
|
|
* instead of locking/reserving all the way to the root:
|
|
*/
|
|
if (!bch2_btree_iter_upgrade(iter, U8_MAX)) {
|
|
trace_trans_restart_iter_upgrade(trans->ip);
|
|
return ERR_PTR(-EINTR);
|
|
}
|
|
|
|
if (flags & BTREE_INSERT_GC_LOCK_HELD)
|
|
lockdep_assert_held(&c->gc_lock);
|
|
else if (!down_read_trylock(&c->gc_lock)) {
|
|
if (flags & BTREE_INSERT_NOUNLOCK)
|
|
return ERR_PTR(-EINTR);
|
|
|
|
bch2_trans_unlock(trans);
|
|
down_read(&c->gc_lock);
|
|
if (!bch2_trans_relock(trans)) {
|
|
up_read(&c->gc_lock);
|
|
return ERR_PTR(-EINTR);
|
|
}
|
|
}
|
|
|
|
as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOIO);
|
|
memset(as, 0, sizeof(*as));
|
|
closure_init(&as->cl, NULL);
|
|
as->c = c;
|
|
as->mode = BTREE_INTERIOR_NO_UPDATE;
|
|
as->took_gc_lock = !(flags & BTREE_INSERT_GC_LOCK_HELD);
|
|
as->btree_id = iter->btree_id;
|
|
INIT_LIST_HEAD(&as->list);
|
|
INIT_LIST_HEAD(&as->unwritten_list);
|
|
INIT_LIST_HEAD(&as->write_blocked_list);
|
|
bch2_keylist_init(&as->old_keys, as->_old_keys);
|
|
bch2_keylist_init(&as->new_keys, as->_new_keys);
|
|
bch2_keylist_init(&as->parent_keys, as->inline_keys);
|
|
|
|
ret = bch2_journal_preres_get(&c->journal, &as->journal_preres,
|
|
BTREE_UPDATE_JOURNAL_RES,
|
|
journal_flags|JOURNAL_RES_GET_NONBLOCK);
|
|
if (ret == -EAGAIN) {
|
|
/*
|
|
* this would be cleaner if bch2_journal_preres_get() took a
|
|
* closure argument
|
|
*/
|
|
if (flags & BTREE_INSERT_NOUNLOCK) {
|
|
ret = -EINTR;
|
|
goto err;
|
|
}
|
|
|
|
bch2_trans_unlock(trans);
|
|
|
|
ret = bch2_journal_preres_get(&c->journal, &as->journal_preres,
|
|
BTREE_UPDATE_JOURNAL_RES,
|
|
journal_flags);
|
|
if (ret)
|
|
goto err;
|
|
|
|
if (!bch2_trans_relock(trans)) {
|
|
ret = -EINTR;
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
ret = bch2_disk_reservation_get(c, &as->disk_res,
|
|
nr_nodes * c->opts.btree_node_size,
|
|
c->opts.metadata_replicas,
|
|
disk_res_flags);
|
|
if (ret)
|
|
goto err;
|
|
|
|
ret = bch2_btree_reserve_get(as, nr_nodes, flags,
|
|
!(flags & BTREE_INSERT_NOUNLOCK) ? &cl : NULL);
|
|
if (ret)
|
|
goto err;
|
|
|
|
bch2_journal_pin_add(&c->journal,
|
|
atomic64_read(&c->journal.seq),
|
|
&as->journal, NULL);
|
|
|
|
mutex_lock(&c->btree_interior_update_lock);
|
|
list_add_tail(&as->list, &c->btree_interior_update_list);
|
|
mutex_unlock(&c->btree_interior_update_lock);
|
|
|
|
return as;
|
|
err:
|
|
bch2_btree_update_free(as);
|
|
|
|
if (ret == -EAGAIN) {
|
|
BUG_ON(flags & BTREE_INSERT_NOUNLOCK);
|
|
|
|
bch2_trans_unlock(trans);
|
|
closure_sync(&cl);
|
|
ret = -EINTR;
|
|
}
|
|
|
|
if (ret == -EINTR && bch2_trans_relock(trans))
|
|
goto retry;
|
|
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
/* Btree root updates: */
|
|
|
|
static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b)
|
|
{
|
|
/* Root nodes cannot be reaped */
|
|
mutex_lock(&c->btree_cache.lock);
|
|
list_del_init(&b->list);
|
|
mutex_unlock(&c->btree_cache.lock);
|
|
|
|
if (b->c.level)
|
|
six_lock_pcpu_alloc(&b->c.lock);
|
|
else
|
|
six_lock_pcpu_free(&b->c.lock);
|
|
|
|
mutex_lock(&c->btree_root_lock);
|
|
BUG_ON(btree_node_root(c, b) &&
|
|
(b->c.level < btree_node_root(c, b)->c.level ||
|
|
!btree_node_dying(btree_node_root(c, b))));
|
|
|
|
btree_node_root(c, b) = b;
|
|
mutex_unlock(&c->btree_root_lock);
|
|
|
|
bch2_recalc_btree_reserve(c);
|
|
}
|
|
|
|
/**
|
|
* bch_btree_set_root - update the root in memory and on disk
|
|
*
|
|
* To ensure forward progress, the current task must not be holding any
|
|
* btree node write locks. However, you must hold an intent lock on the
|
|
* old root.
|
|
*
|
|
* Note: This allocates a journal entry but doesn't add any keys to
|
|
* it. All the btree roots are part of every journal write, so there
|
|
* is nothing new to be done. This just guarantees that there is a
|
|
* journal write.
|
|
*/
|
|
static void bch2_btree_set_root(struct btree_update *as, struct btree *b,
|
|
struct btree_iter *iter)
|
|
{
|
|
struct bch_fs *c = as->c;
|
|
struct btree *old;
|
|
|
|
trace_btree_set_root(c, b);
|
|
BUG_ON(!b->written &&
|
|
!test_bit(BCH_FS_HOLD_BTREE_WRITES, &c->flags));
|
|
|
|
old = btree_node_root(c, b);
|
|
|
|
/*
|
|
* Ensure no one is using the old root while we switch to the
|
|
* new root:
|
|
*/
|
|
bch2_btree_node_lock_write(old, iter);
|
|
|
|
bch2_btree_set_root_inmem(c, b);
|
|
|
|
btree_update_updated_root(as, b);
|
|
|
|
/*
|
|
* Unlock old root after new root is visible:
|
|
*
|
|
* The new root isn't persistent, but that's ok: we still have
|
|
* an intent lock on the new root, and any updates that would
|
|
* depend on the new root would have to update the new root.
|
|
*/
|
|
bch2_btree_node_unlock_write(old, iter);
|
|
}
|
|
|
|
/* Interior node updates: */
|
|
|
|
static void bch2_insert_fixup_btree_ptr(struct btree_update *as, struct btree *b,
|
|
struct btree_iter *iter,
|
|
struct bkey_i *insert,
|
|
struct btree_node_iter *node_iter)
|
|
{
|
|
struct bch_fs *c = as->c;
|
|
struct bkey_packed *k;
|
|
const char *invalid;
|
|
|
|
invalid = bch2_bkey_invalid(c, bkey_i_to_s_c(insert), btree_node_type(b)) ?:
|
|
bch2_bkey_in_btree_node(b, bkey_i_to_s_c(insert));
|
|
if (invalid) {
|
|
char buf[160];
|
|
|
|
bch2_bkey_val_to_text(&PBUF(buf), c, bkey_i_to_s_c(insert));
|
|
bch2_fs_inconsistent(c, "inserting invalid bkey %s: %s", buf, invalid);
|
|
dump_stack();
|
|
}
|
|
|
|
BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
|
|
ARRAY_SIZE(as->journal_entries));
|
|
|
|
as->journal_u64s +=
|
|
journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
|
|
BCH_JSET_ENTRY_btree_keys,
|
|
b->c.btree_id, b->c.level,
|
|
insert, insert->k.u64s);
|
|
|
|
while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) &&
|
|
bkey_iter_pos_cmp(b, k, &insert->k.p) < 0)
|
|
bch2_btree_node_iter_advance(node_iter, b);
|
|
|
|
bch2_btree_bset_insert_key(iter, b, node_iter, insert);
|
|
set_btree_node_dirty(c, b);
|
|
set_btree_node_need_write(b);
|
|
}
|
|
|
|
/*
|
|
* Move keys from n1 (original replacement node, now lower node) to n2 (higher
|
|
* node)
|
|
*/
|
|
static struct btree *__btree_split_node(struct btree_update *as,
|
|
struct btree *n1,
|
|
struct btree_iter *iter)
|
|
{
|
|
struct bkey_format_state s;
|
|
size_t nr_packed = 0, nr_unpacked = 0;
|
|
struct btree *n2;
|
|
struct bset *set1, *set2;
|
|
struct bkey_packed *k, *set2_start, *set2_end, *out, *prev = NULL;
|
|
struct bpos n1_pos;
|
|
|
|
n2 = bch2_btree_node_alloc(as, n1->c.level);
|
|
bch2_btree_update_add_new_node(as, n2);
|
|
|
|
n2->data->max_key = n1->data->max_key;
|
|
n2->data->format = n1->format;
|
|
SET_BTREE_NODE_SEQ(n2->data, BTREE_NODE_SEQ(n1->data));
|
|
n2->key.k.p = n1->key.k.p;
|
|
|
|
set1 = btree_bset_first(n1);
|
|
set2 = btree_bset_first(n2);
|
|
|
|
/*
|
|
* Has to be a linear search because we don't have an auxiliary
|
|
* search tree yet
|
|
*/
|
|
k = set1->start;
|
|
while (1) {
|
|
struct bkey_packed *n = bkey_next(k);
|
|
|
|
if (n == vstruct_last(set1))
|
|
break;
|
|
if (k->_data - set1->_data >= (le16_to_cpu(set1->u64s) * 3) / 5)
|
|
break;
|
|
|
|
if (bkey_packed(k))
|
|
nr_packed++;
|
|
else
|
|
nr_unpacked++;
|
|
|
|
prev = k;
|
|
k = n;
|
|
}
|
|
|
|
BUG_ON(!prev);
|
|
set2_start = k;
|
|
set2_end = vstruct_last(set1);
|
|
|
|
set1->u64s = cpu_to_le16((u64 *) set2_start - set1->_data);
|
|
set_btree_bset_end(n1, n1->set);
|
|
|
|
n1->nr.live_u64s = le16_to_cpu(set1->u64s);
|
|
n1->nr.bset_u64s[0] = le16_to_cpu(set1->u64s);
|
|
n1->nr.packed_keys = nr_packed;
|
|
n1->nr.unpacked_keys = nr_unpacked;
|
|
|
|
n1_pos = bkey_unpack_pos(n1, prev);
|
|
if (as->c->sb.version < bcachefs_metadata_version_snapshot)
|
|
n1_pos.snapshot = U32_MAX;
|
|
|
|
btree_set_max(n1, n1_pos);
|
|
btree_set_min(n2, bpos_successor(n1->key.k.p));
|
|
|
|
bch2_bkey_format_init(&s);
|
|
bch2_bkey_format_add_pos(&s, n2->data->min_key);
|
|
bch2_bkey_format_add_pos(&s, n2->data->max_key);
|
|
|
|
for (k = set2_start; k != set2_end; k = bkey_next(k)) {
|
|
struct bkey uk = bkey_unpack_key(n1, k);
|
|
bch2_bkey_format_add_key(&s, &uk);
|
|
}
|
|
|
|
n2->data->format = bch2_bkey_format_done(&s);
|
|
btree_node_set_format(n2, n2->data->format);
|
|
|
|
out = set2->start;
|
|
memset(&n2->nr, 0, sizeof(n2->nr));
|
|
|
|
for (k = set2_start; k != set2_end; k = bkey_next(k)) {
|
|
BUG_ON(!bch2_bkey_transform(&n2->format, out, bkey_packed(k)
|
|
? &n1->format : &bch2_bkey_format_current, k));
|
|
out->format = KEY_FORMAT_LOCAL_BTREE;
|
|
btree_keys_account_key_add(&n2->nr, 0, out);
|
|
out = bkey_next(out);
|
|
}
|
|
|
|
set2->u64s = cpu_to_le16((u64 *) out - set2->_data);
|
|
set_btree_bset_end(n2, n2->set);
|
|
|
|
BUG_ON(!set1->u64s);
|
|
BUG_ON(!set2->u64s);
|
|
|
|
btree_node_reset_sib_u64s(n1);
|
|
btree_node_reset_sib_u64s(n2);
|
|
|
|
bch2_verify_btree_nr_keys(n1);
|
|
bch2_verify_btree_nr_keys(n2);
|
|
|
|
if (n1->c.level) {
|
|
btree_node_interior_verify(as->c, n1);
|
|
btree_node_interior_verify(as->c, n2);
|
|
}
|
|
|
|
return n2;
|
|
}
|
|
|
|
/*
|
|
* For updates to interior nodes, we've got to do the insert before we split
|
|
* because the stuff we're inserting has to be inserted atomically. Post split,
|
|
* the keys might have to go in different nodes and the split would no longer be
|
|
* atomic.
|
|
*
|
|
* Worse, if the insert is from btree node coalescing, if we do the insert after
|
|
* we do the split (and pick the pivot) - the pivot we pick might be between
|
|
* nodes that were coalesced, and thus in the middle of a child node post
|
|
* coalescing:
|
|
*/
|
|
static void btree_split_insert_keys(struct btree_update *as, struct btree *b,
|
|
struct btree_iter *iter,
|
|
struct keylist *keys)
|
|
{
|
|
struct btree_node_iter node_iter;
|
|
struct bkey_i *k = bch2_keylist_front(keys);
|
|
struct bkey_packed *src, *dst, *n;
|
|
struct bset *i;
|
|
|
|
BUG_ON(btree_node_type(b) != BKEY_TYPE_btree);
|
|
|
|
bch2_btree_node_iter_init(&node_iter, b, &k->k.p);
|
|
|
|
while (!bch2_keylist_empty(keys)) {
|
|
k = bch2_keylist_front(keys);
|
|
|
|
bch2_insert_fixup_btree_ptr(as, b, iter, k, &node_iter);
|
|
bch2_keylist_pop_front(keys);
|
|
}
|
|
|
|
/*
|
|
* We can't tolerate whiteouts here - with whiteouts there can be
|
|
* duplicate keys, and it would be rather bad if we picked a duplicate
|
|
* for the pivot:
|
|
*/
|
|
i = btree_bset_first(b);
|
|
src = dst = i->start;
|
|
while (src != vstruct_last(i)) {
|
|
n = bkey_next(src);
|
|
if (!bkey_deleted(src)) {
|
|
memmove_u64s_down(dst, src, src->u64s);
|
|
dst = bkey_next(dst);
|
|
}
|
|
src = n;
|
|
}
|
|
|
|
/* Also clear out the unwritten whiteouts area: */
|
|
b->whiteout_u64s = 0;
|
|
|
|
i->u64s = cpu_to_le16((u64 *) dst - i->_data);
|
|
set_btree_bset_end(b, b->set);
|
|
|
|
BUG_ON(b->nsets != 1 ||
|
|
b->nr.live_u64s != le16_to_cpu(btree_bset_first(b)->u64s));
|
|
|
|
btree_node_interior_verify(as->c, b);
|
|
}
|
|
|
|
static void btree_split(struct btree_update *as, struct btree *b,
|
|
struct btree_iter *iter, struct keylist *keys,
|
|
unsigned flags)
|
|
{
|
|
struct bch_fs *c = as->c;
|
|
struct btree *parent = btree_node_parent(iter, b);
|
|
struct btree *n1, *n2 = NULL, *n3 = NULL;
|
|
u64 start_time = local_clock();
|
|
|
|
BUG_ON(!parent && (b != btree_node_root(c, b)));
|
|
BUG_ON(!btree_node_intent_locked(iter, btree_node_root(c, b)->c.level));
|
|
|
|
bch2_btree_interior_update_will_free_node(as, b);
|
|
|
|
n1 = bch2_btree_node_alloc_replacement(as, b);
|
|
bch2_btree_update_add_new_node(as, n1);
|
|
|
|
if (keys)
|
|
btree_split_insert_keys(as, n1, iter, keys);
|
|
|
|
if (bset_u64s(&n1->set[0]) > BTREE_SPLIT_THRESHOLD(c)) {
|
|
trace_btree_split(c, b);
|
|
|
|
n2 = __btree_split_node(as, n1, iter);
|
|
|
|
bch2_btree_build_aux_trees(n2);
|
|
bch2_btree_build_aux_trees(n1);
|
|
six_unlock_write(&n2->c.lock);
|
|
six_unlock_write(&n1->c.lock);
|
|
|
|
bch2_btree_node_write(c, n2, SIX_LOCK_intent);
|
|
|
|
/*
|
|
* Note that on recursive parent_keys == keys, so we
|
|
* can't start adding new keys to parent_keys before emptying it
|
|
* out (which we did with btree_split_insert_keys() above)
|
|
*/
|
|
bch2_keylist_add(&as->parent_keys, &n1->key);
|
|
bch2_keylist_add(&as->parent_keys, &n2->key);
|
|
|
|
if (!parent) {
|
|
/* Depth increases, make a new root */
|
|
n3 = __btree_root_alloc(as, b->c.level + 1);
|
|
|
|
n3->sib_u64s[0] = U16_MAX;
|
|
n3->sib_u64s[1] = U16_MAX;
|
|
|
|
btree_split_insert_keys(as, n3, iter, &as->parent_keys);
|
|
|
|
bch2_btree_node_write(c, n3, SIX_LOCK_intent);
|
|
}
|
|
} else {
|
|
trace_btree_compact(c, b);
|
|
|
|
bch2_btree_build_aux_trees(n1);
|
|
six_unlock_write(&n1->c.lock);
|
|
|
|
if (parent)
|
|
bch2_keylist_add(&as->parent_keys, &n1->key);
|
|
}
|
|
|
|
bch2_btree_node_write(c, n1, SIX_LOCK_intent);
|
|
|
|
/* New nodes all written, now make them visible: */
|
|
|
|
if (parent) {
|
|
/* Split a non root node */
|
|
bch2_btree_insert_node(as, parent, iter, &as->parent_keys, flags);
|
|
} else if (n3) {
|
|
bch2_btree_set_root(as, n3, iter);
|
|
} else {
|
|
/* Root filled up but didn't need to be split */
|
|
bch2_btree_set_root(as, n1, iter);
|
|
}
|
|
|
|
bch2_btree_update_get_open_buckets(as, n1);
|
|
if (n2)
|
|
bch2_btree_update_get_open_buckets(as, n2);
|
|
if (n3)
|
|
bch2_btree_update_get_open_buckets(as, n3);
|
|
|
|
/* Successful split, update the iterator to point to the new nodes: */
|
|
|
|
six_lock_increment(&b->c.lock, SIX_LOCK_intent);
|
|
bch2_btree_iter_node_drop(iter, b);
|
|
if (n3)
|
|
bch2_btree_iter_node_replace(iter, n3);
|
|
if (n2)
|
|
bch2_btree_iter_node_replace(iter, n2);
|
|
bch2_btree_iter_node_replace(iter, n1);
|
|
|
|
/*
|
|
* The old node must be freed (in memory) _before_ unlocking the new
|
|
* nodes - else another thread could re-acquire a read lock on the old
|
|
* node after another thread has locked and updated the new node, thus
|
|
* seeing stale data:
|
|
*/
|
|
bch2_btree_node_free_inmem(c, b, iter);
|
|
|
|
if (n3)
|
|
six_unlock_intent(&n3->c.lock);
|
|
if (n2)
|
|
six_unlock_intent(&n2->c.lock);
|
|
six_unlock_intent(&n1->c.lock);
|
|
|
|
bch2_btree_trans_verify_locks(iter->trans);
|
|
|
|
bch2_time_stats_update(&c->times[BCH_TIME_btree_node_split],
|
|
start_time);
|
|
}
|
|
|
|
static void
|
|
bch2_btree_insert_keys_interior(struct btree_update *as, struct btree *b,
|
|
struct btree_iter *iter, struct keylist *keys)
|
|
{
|
|
struct btree_iter *linked;
|
|
struct btree_node_iter node_iter;
|
|
struct bkey_i *insert = bch2_keylist_front(keys);
|
|
struct bkey_packed *k;
|
|
|
|
/* Don't screw up @iter's position: */
|
|
node_iter = iter->l[b->c.level].iter;
|
|
|
|
/*
|
|
* btree_split(), btree_gc_coalesce() will insert keys before
|
|
* the iterator's current position - they know the keys go in
|
|
* the node the iterator points to:
|
|
*/
|
|
while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) &&
|
|
(bkey_cmp_left_packed(b, k, &insert->k.p) >= 0))
|
|
;
|
|
|
|
for_each_keylist_key(keys, insert)
|
|
bch2_insert_fixup_btree_ptr(as, b, iter, insert, &node_iter);
|
|
|
|
btree_update_updated_node(as, b);
|
|
|
|
trans_for_each_iter_with_node(iter->trans, b, linked)
|
|
bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b);
|
|
|
|
bch2_btree_trans_verify_iters(iter->trans, b);
|
|
}
|
|
|
|
/**
|
|
* bch_btree_insert_node - insert bkeys into a given btree node
|
|
*
|
|
* @iter: btree iterator
|
|
* @keys: list of keys to insert
|
|
* @hook: insert callback
|
|
* @persistent: if not null, @persistent will wait on journal write
|
|
*
|
|
* Inserts as many keys as it can into a given btree node, splitting it if full.
|
|
* If a split occurred, this function will return early. This can only happen
|
|
* for leaf nodes -- inserts into interior nodes have to be atomic.
|
|
*/
|
|
void bch2_btree_insert_node(struct btree_update *as, struct btree *b,
|
|
struct btree_iter *iter, struct keylist *keys,
|
|
unsigned flags)
|
|
{
|
|
struct bch_fs *c = as->c;
|
|
int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
|
|
int old_live_u64s = b->nr.live_u64s;
|
|
int live_u64s_added, u64s_added;
|
|
|
|
lockdep_assert_held(&c->gc_lock);
|
|
BUG_ON(!btree_node_intent_locked(iter, btree_node_root(c, b)->c.level));
|
|
BUG_ON(!b->c.level);
|
|
BUG_ON(!as || as->b);
|
|
bch2_verify_keylist_sorted(keys);
|
|
|
|
bch2_btree_node_lock_for_insert(c, b, iter);
|
|
|
|
if (!bch2_btree_node_insert_fits(c, b, bch2_keylist_u64s(keys))) {
|
|
bch2_btree_node_unlock_write(b, iter);
|
|
goto split;
|
|
}
|
|
|
|
btree_node_interior_verify(c, b);
|
|
|
|
bch2_btree_insert_keys_interior(as, b, iter, keys);
|
|
|
|
live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
|
|
u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
|
|
|
|
if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
|
|
b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
|
|
if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
|
|
b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
|
|
|
|
if (u64s_added > live_u64s_added &&
|
|
bch2_maybe_compact_whiteouts(c, b))
|
|
bch2_btree_iter_reinit_node(iter, b);
|
|
|
|
bch2_btree_node_unlock_write(b, iter);
|
|
|
|
btree_node_interior_verify(c, b);
|
|
return;
|
|
split:
|
|
btree_split(as, b, iter, keys, flags);
|
|
}
|
|
|
|
int bch2_btree_split_leaf(struct bch_fs *c, struct btree_iter *iter,
|
|
unsigned flags)
|
|
{
|
|
struct btree *b = iter_l(iter)->b;
|
|
struct btree_update *as;
|
|
unsigned l;
|
|
int ret = 0;
|
|
|
|
as = bch2_btree_update_start(iter, iter->level,
|
|
btree_update_reserve_required(c, b), flags);
|
|
if (IS_ERR(as))
|
|
return PTR_ERR(as);
|
|
|
|
btree_split(as, b, iter, NULL, flags);
|
|
bch2_btree_update_done(as);
|
|
|
|
for (l = iter->level + 1; btree_iter_node(iter, l) && !ret; l++)
|
|
ret = bch2_foreground_maybe_merge(c, iter, l, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int __bch2_foreground_maybe_merge(struct bch_fs *c,
|
|
struct btree_iter *iter,
|
|
unsigned level,
|
|
unsigned flags,
|
|
enum btree_node_sibling sib)
|
|
{
|
|
struct btree_trans *trans = iter->trans;
|
|
struct btree_iter *sib_iter = NULL;
|
|
struct btree_update *as;
|
|
struct bkey_format_state new_s;
|
|
struct bkey_format new_f;
|
|
struct bkey_i delete;
|
|
struct btree *b, *m, *n, *prev, *next, *parent;
|
|
struct bpos sib_pos;
|
|
size_t sib_u64s;
|
|
int ret = 0, ret2 = 0;
|
|
|
|
BUG_ON(!btree_node_locked(iter, level));
|
|
retry:
|
|
ret = bch2_btree_iter_traverse(iter);
|
|
if (ret)
|
|
goto err;
|
|
|
|
BUG_ON(!btree_node_locked(iter, level));
|
|
|
|
b = iter->l[level].b;
|
|
|
|
if ((sib == btree_prev_sib && !bpos_cmp(b->data->min_key, POS_MIN)) ||
|
|
(sib == btree_next_sib && !bpos_cmp(b->data->max_key, POS_MAX))) {
|
|
b->sib_u64s[sib] = U16_MAX;
|
|
goto out;
|
|
}
|
|
|
|
sib_pos = sib == btree_prev_sib
|
|
? bpos_predecessor(b->data->min_key)
|
|
: bpos_successor(b->data->max_key);
|
|
|
|
sib_iter = bch2_trans_get_node_iter(trans, iter->btree_id,
|
|
sib_pos, U8_MAX, level,
|
|
BTREE_ITER_INTENT);
|
|
ret = bch2_btree_iter_traverse(sib_iter);
|
|
if (ret)
|
|
goto err;
|
|
|
|
m = sib_iter->l[level].b;
|
|
|
|
if (btree_node_parent(iter, b) !=
|
|
btree_node_parent(sib_iter, m)) {
|
|
b->sib_u64s[sib] = U16_MAX;
|
|
goto out;
|
|
}
|
|
|
|
if (sib == btree_prev_sib) {
|
|
prev = m;
|
|
next = b;
|
|
} else {
|
|
prev = b;
|
|
next = m;
|
|
}
|
|
|
|
BUG_ON(bkey_cmp(bpos_successor(prev->data->max_key), next->data->min_key));
|
|
|
|
bch2_bkey_format_init(&new_s);
|
|
bch2_bkey_format_add_pos(&new_s, prev->data->min_key);
|
|
__bch2_btree_calc_format(&new_s, prev);
|
|
__bch2_btree_calc_format(&new_s, next);
|
|
bch2_bkey_format_add_pos(&new_s, next->data->max_key);
|
|
new_f = bch2_bkey_format_done(&new_s);
|
|
|
|
sib_u64s = btree_node_u64s_with_format(b, &new_f) +
|
|
btree_node_u64s_with_format(m, &new_f);
|
|
|
|
if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
|
|
sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
|
|
sib_u64s /= 2;
|
|
sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
|
|
}
|
|
|
|
sib_u64s = min(sib_u64s, btree_max_u64s(c));
|
|
sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1);
|
|
b->sib_u64s[sib] = sib_u64s;
|
|
|
|
if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold)
|
|
goto out;
|
|
|
|
parent = btree_node_parent(iter, b);
|
|
as = bch2_btree_update_start(iter, level,
|
|
btree_update_reserve_required(c, parent) + 1,
|
|
flags|
|
|
BTREE_INSERT_NOFAIL|
|
|
BTREE_INSERT_USE_RESERVE);
|
|
ret = PTR_ERR_OR_ZERO(as);
|
|
if (ret)
|
|
goto err;
|
|
|
|
trace_btree_merge(c, b);
|
|
|
|
bch2_btree_interior_update_will_free_node(as, b);
|
|
bch2_btree_interior_update_will_free_node(as, m);
|
|
|
|
n = bch2_btree_node_alloc(as, b->c.level);
|
|
bch2_btree_update_add_new_node(as, n);
|
|
|
|
btree_set_min(n, prev->data->min_key);
|
|
btree_set_max(n, next->data->max_key);
|
|
n->data->format = new_f;
|
|
|
|
btree_node_set_format(n, new_f);
|
|
|
|
bch2_btree_sort_into(c, n, prev);
|
|
bch2_btree_sort_into(c, n, next);
|
|
|
|
bch2_btree_build_aux_trees(n);
|
|
six_unlock_write(&n->c.lock);
|
|
|
|
bkey_init(&delete.k);
|
|
delete.k.p = prev->key.k.p;
|
|
bch2_keylist_add(&as->parent_keys, &delete);
|
|
bch2_keylist_add(&as->parent_keys, &n->key);
|
|
|
|
bch2_btree_node_write(c, n, SIX_LOCK_intent);
|
|
|
|
bch2_btree_insert_node(as, parent, iter, &as->parent_keys, flags);
|
|
|
|
bch2_btree_update_get_open_buckets(as, n);
|
|
|
|
six_lock_increment(&b->c.lock, SIX_LOCK_intent);
|
|
six_lock_increment(&m->c.lock, SIX_LOCK_intent);
|
|
bch2_btree_iter_node_drop(iter, b);
|
|
bch2_btree_iter_node_drop(iter, m);
|
|
|
|
bch2_btree_iter_node_replace(iter, n);
|
|
|
|
bch2_btree_trans_verify_iters(trans, n);
|
|
|
|
bch2_btree_node_free_inmem(c, b, iter);
|
|
bch2_btree_node_free_inmem(c, m, iter);
|
|
|
|
six_unlock_intent(&n->c.lock);
|
|
|
|
bch2_btree_update_done(as);
|
|
out:
|
|
bch2_btree_trans_verify_locks(trans);
|
|
bch2_trans_iter_free(trans, sib_iter);
|
|
|
|
/*
|
|
* Don't downgrade locks here: we're called after successful insert,
|
|
* and the caller will downgrade locks after a successful insert
|
|
* anyways (in case e.g. a split was required first)
|
|
*
|
|
* And we're also called when inserting into interior nodes in the
|
|
* split path, and downgrading to read locks in there is potentially
|
|
* confusing:
|
|
*/
|
|
return ret ?: ret2;
|
|
err:
|
|
bch2_trans_iter_put(trans, sib_iter);
|
|
sib_iter = NULL;
|
|
|
|
if (ret == -EINTR && bch2_trans_relock(trans))
|
|
goto retry;
|
|
|
|
if (ret == -EINTR && !(flags & BTREE_INSERT_NOUNLOCK)) {
|
|
ret2 = ret;
|
|
ret = bch2_btree_iter_traverse_all(trans);
|
|
if (!ret)
|
|
goto retry;
|
|
}
|
|
|
|
goto out;
|
|
}
|
|
|
|
/**
|
|
* bch_btree_node_rewrite - Rewrite/move a btree node
|
|
*/
|
|
int bch2_btree_node_rewrite(struct bch_fs *c, struct btree_iter *iter,
|
|
__le64 seq, unsigned flags)
|
|
{
|
|
struct btree *b, *n, *parent;
|
|
struct btree_update *as;
|
|
int ret;
|
|
|
|
flags |= BTREE_INSERT_NOFAIL;
|
|
retry:
|
|
ret = bch2_btree_iter_traverse(iter);
|
|
if (ret)
|
|
goto out;
|
|
|
|
b = bch2_btree_iter_peek_node(iter);
|
|
if (!b || b->data->keys.seq != seq)
|
|
goto out;
|
|
|
|
parent = btree_node_parent(iter, b);
|
|
as = bch2_btree_update_start(iter, b->c.level,
|
|
(parent
|
|
? btree_update_reserve_required(c, parent)
|
|
: 0) + 1,
|
|
flags);
|
|
ret = PTR_ERR_OR_ZERO(as);
|
|
if (ret == -EINTR)
|
|
goto retry;
|
|
if (ret) {
|
|
trace_btree_gc_rewrite_node_fail(c, b);
|
|
goto out;
|
|
}
|
|
|
|
bch2_btree_interior_update_will_free_node(as, b);
|
|
|
|
n = bch2_btree_node_alloc_replacement(as, b);
|
|
bch2_btree_update_add_new_node(as, n);
|
|
|
|
bch2_btree_build_aux_trees(n);
|
|
six_unlock_write(&n->c.lock);
|
|
|
|
trace_btree_gc_rewrite_node(c, b);
|
|
|
|
bch2_btree_node_write(c, n, SIX_LOCK_intent);
|
|
|
|
if (parent) {
|
|
bch2_keylist_add(&as->parent_keys, &n->key);
|
|
bch2_btree_insert_node(as, parent, iter, &as->parent_keys, flags);
|
|
} else {
|
|
bch2_btree_set_root(as, n, iter);
|
|
}
|
|
|
|
bch2_btree_update_get_open_buckets(as, n);
|
|
|
|
six_lock_increment(&b->c.lock, SIX_LOCK_intent);
|
|
bch2_btree_iter_node_drop(iter, b);
|
|
bch2_btree_iter_node_replace(iter, n);
|
|
bch2_btree_node_free_inmem(c, b, iter);
|
|
six_unlock_intent(&n->c.lock);
|
|
|
|
bch2_btree_update_done(as);
|
|
out:
|
|
bch2_btree_iter_downgrade(iter);
|
|
return ret;
|
|
}
|
|
|
|
static void __bch2_btree_node_update_key(struct bch_fs *c,
|
|
struct btree_update *as,
|
|
struct btree_iter *iter,
|
|
struct btree *b, struct btree *new_hash,
|
|
struct bkey_i *new_key)
|
|
{
|
|
struct btree *parent;
|
|
int ret;
|
|
|
|
btree_update_will_delete_key(as, &b->key);
|
|
btree_update_will_add_key(as, new_key);
|
|
|
|
parent = btree_node_parent(iter, b);
|
|
if (parent) {
|
|
if (new_hash) {
|
|
bkey_copy(&new_hash->key, new_key);
|
|
ret = bch2_btree_node_hash_insert(&c->btree_cache,
|
|
new_hash, b->c.level, b->c.btree_id);
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
bch2_keylist_add(&as->parent_keys, new_key);
|
|
bch2_btree_insert_node(as, parent, iter, &as->parent_keys, 0);
|
|
|
|
if (new_hash) {
|
|
mutex_lock(&c->btree_cache.lock);
|
|
bch2_btree_node_hash_remove(&c->btree_cache, new_hash);
|
|
|
|
bch2_btree_node_hash_remove(&c->btree_cache, b);
|
|
|
|
bkey_copy(&b->key, new_key);
|
|
ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
|
|
BUG_ON(ret);
|
|
mutex_unlock(&c->btree_cache.lock);
|
|
} else {
|
|
bkey_copy(&b->key, new_key);
|
|
}
|
|
} else {
|
|
BUG_ON(btree_node_root(c, b) != b);
|
|
|
|
bch2_btree_node_lock_write(b, iter);
|
|
bkey_copy(&b->key, new_key);
|
|
|
|
if (btree_ptr_hash_val(&b->key) != b->hash_val) {
|
|
mutex_lock(&c->btree_cache.lock);
|
|
bch2_btree_node_hash_remove(&c->btree_cache, b);
|
|
|
|
ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
|
|
BUG_ON(ret);
|
|
mutex_unlock(&c->btree_cache.lock);
|
|
}
|
|
|
|
btree_update_updated_root(as, b);
|
|
bch2_btree_node_unlock_write(b, iter);
|
|
}
|
|
|
|
bch2_btree_update_done(as);
|
|
}
|
|
|
|
int bch2_btree_node_update_key(struct bch_fs *c, struct btree_iter *iter,
|
|
struct btree *b,
|
|
struct bkey_i *new_key)
|
|
{
|
|
struct btree *parent = btree_node_parent(iter, b);
|
|
struct btree_update *as = NULL;
|
|
struct btree *new_hash = NULL;
|
|
struct closure cl;
|
|
int ret = 0;
|
|
|
|
closure_init_stack(&cl);
|
|
|
|
/*
|
|
* check btree_ptr_hash_val() after @b is locked by
|
|
* btree_iter_traverse():
|
|
*/
|
|
if (btree_ptr_hash_val(new_key) != b->hash_val) {
|
|
ret = bch2_btree_cache_cannibalize_lock(c, &cl);
|
|
if (ret) {
|
|
bch2_trans_unlock(iter->trans);
|
|
closure_sync(&cl);
|
|
if (!bch2_trans_relock(iter->trans))
|
|
return -EINTR;
|
|
}
|
|
|
|
new_hash = bch2_btree_node_mem_alloc(c);
|
|
}
|
|
|
|
as = bch2_btree_update_start(iter, b->c.level,
|
|
parent ? btree_update_reserve_required(c, parent) : 0,
|
|
BTREE_INSERT_NOFAIL);
|
|
if (IS_ERR(as)) {
|
|
ret = PTR_ERR(as);
|
|
goto err;
|
|
}
|
|
|
|
__bch2_btree_node_update_key(c, as, iter, b, new_hash, new_key);
|
|
|
|
bch2_btree_iter_downgrade(iter);
|
|
err:
|
|
if (new_hash) {
|
|
mutex_lock(&c->btree_cache.lock);
|
|
list_move(&new_hash->list, &c->btree_cache.freeable);
|
|
mutex_unlock(&c->btree_cache.lock);
|
|
|
|
six_unlock_write(&new_hash->c.lock);
|
|
six_unlock_intent(&new_hash->c.lock);
|
|
}
|
|
closure_sync(&cl);
|
|
bch2_btree_cache_cannibalize_unlock(c);
|
|
return ret;
|
|
}
|
|
|
|
/* Init code: */
|
|
|
|
/*
|
|
* Only for filesystem bringup, when first reading the btree roots or allocating
|
|
* btree roots when initializing a new filesystem:
|
|
*/
|
|
void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b)
|
|
{
|
|
BUG_ON(btree_node_root(c, b));
|
|
|
|
bch2_btree_set_root_inmem(c, b);
|
|
}
|
|
|
|
void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id)
|
|
{
|
|
struct closure cl;
|
|
struct btree *b;
|
|
int ret;
|
|
|
|
closure_init_stack(&cl);
|
|
|
|
do {
|
|
ret = bch2_btree_cache_cannibalize_lock(c, &cl);
|
|
closure_sync(&cl);
|
|
} while (ret);
|
|
|
|
b = bch2_btree_node_mem_alloc(c);
|
|
bch2_btree_cache_cannibalize_unlock(c);
|
|
|
|
set_btree_node_fake(b);
|
|
set_btree_node_need_rewrite(b);
|
|
b->c.level = 0;
|
|
b->c.btree_id = id;
|
|
|
|
bkey_btree_ptr_init(&b->key);
|
|
b->key.k.p = POS_MAX;
|
|
*((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id;
|
|
|
|
bch2_bset_init_first(b, &b->data->keys);
|
|
bch2_btree_build_aux_trees(b);
|
|
|
|
b->data->flags = 0;
|
|
btree_set_min(b, POS_MIN);
|
|
btree_set_max(b, POS_MAX);
|
|
b->data->format = bch2_btree_calc_format(b);
|
|
btree_node_set_format(b, b->data->format);
|
|
|
|
ret = bch2_btree_node_hash_insert(&c->btree_cache, b,
|
|
b->c.level, b->c.btree_id);
|
|
BUG_ON(ret);
|
|
|
|
bch2_btree_set_root_inmem(c, b);
|
|
|
|
six_unlock_write(&b->c.lock);
|
|
six_unlock_intent(&b->c.lock);
|
|
}
|
|
|
|
void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c)
|
|
{
|
|
struct btree_update *as;
|
|
|
|
mutex_lock(&c->btree_interior_update_lock);
|
|
list_for_each_entry(as, &c->btree_interior_update_list, list)
|
|
pr_buf(out, "%p m %u w %u r %u j %llu\n",
|
|
as,
|
|
as->mode,
|
|
as->nodes_written,
|
|
atomic_read(&as->cl.remaining) & CLOSURE_REMAINING_MASK,
|
|
as->journal.seq);
|
|
mutex_unlock(&c->btree_interior_update_lock);
|
|
}
|
|
|
|
size_t bch2_btree_interior_updates_nr_pending(struct bch_fs *c)
|
|
{
|
|
size_t ret = 0;
|
|
struct list_head *i;
|
|
|
|
mutex_lock(&c->btree_interior_update_lock);
|
|
list_for_each(i, &c->btree_interior_update_list)
|
|
ret++;
|
|
mutex_unlock(&c->btree_interior_update_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void bch2_journal_entries_to_btree_roots(struct bch_fs *c, struct jset *jset)
|
|
{
|
|
struct btree_root *r;
|
|
struct jset_entry *entry;
|
|
|
|
mutex_lock(&c->btree_root_lock);
|
|
|
|
vstruct_for_each(jset, entry)
|
|
if (entry->type == BCH_JSET_ENTRY_btree_root) {
|
|
r = &c->btree_roots[entry->btree_id];
|
|
r->level = entry->level;
|
|
r->alive = true;
|
|
bkey_copy(&r->key, &entry->start[0]);
|
|
}
|
|
|
|
mutex_unlock(&c->btree_root_lock);
|
|
}
|
|
|
|
struct jset_entry *
|
|
bch2_btree_roots_to_journal_entries(struct bch_fs *c,
|
|
struct jset_entry *start,
|
|
struct jset_entry *end)
|
|
{
|
|
struct jset_entry *entry;
|
|
unsigned long have = 0;
|
|
unsigned i;
|
|
|
|
for (entry = start; entry < end; entry = vstruct_next(entry))
|
|
if (entry->type == BCH_JSET_ENTRY_btree_root)
|
|
__set_bit(entry->btree_id, &have);
|
|
|
|
mutex_lock(&c->btree_root_lock);
|
|
|
|
for (i = 0; i < BTREE_ID_NR; i++)
|
|
if (c->btree_roots[i].alive && !test_bit(i, &have)) {
|
|
journal_entry_set(end,
|
|
BCH_JSET_ENTRY_btree_root,
|
|
i, c->btree_roots[i].level,
|
|
&c->btree_roots[i].key,
|
|
c->btree_roots[i].key.u64s);
|
|
end = vstruct_next(end);
|
|
}
|
|
|
|
mutex_unlock(&c->btree_root_lock);
|
|
|
|
return end;
|
|
}
|
|
|
|
void bch2_fs_btree_interior_update_exit(struct bch_fs *c)
|
|
{
|
|
if (c->btree_interior_update_worker)
|
|
destroy_workqueue(c->btree_interior_update_worker);
|
|
mempool_exit(&c->btree_interior_update_pool);
|
|
}
|
|
|
|
int bch2_fs_btree_interior_update_init(struct bch_fs *c)
|
|
{
|
|
mutex_init(&c->btree_reserve_cache_lock);
|
|
INIT_LIST_HEAD(&c->btree_interior_update_list);
|
|
INIT_LIST_HEAD(&c->btree_interior_updates_unwritten);
|
|
mutex_init(&c->btree_interior_update_lock);
|
|
INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work);
|
|
|
|
c->btree_interior_update_worker =
|
|
alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
|
|
if (!c->btree_interior_update_worker)
|
|
return -ENOMEM;
|
|
|
|
return mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
|
|
sizeof(struct btree_update));
|
|
}
|