6280d2356f
In __rb_erase_color(), we often already have pointers to the nodes being rotated and/or know what their colors must be, so we can generate more efficient code than the generic __rb_rotate_left() and __rb_rotate_right() functions. Also when the current node is red or when flipping the sibling's color, the parent is already known so we can use the more efficient rb_set_parent_color() function to set the desired color. Signed-off-by: Michel Lespinasse <walken@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: David Woodhouse <David.Woodhouse@intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Daniel Santos <daniel.santos@pobox.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
602 lines
15 KiB
C
602 lines
15 KiB
C
/*
|
|
Red Black Trees
|
|
(C) 1999 Andrea Arcangeli <andrea@suse.de>
|
|
(C) 2002 David Woodhouse <dwmw2@infradead.org>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
linux/lib/rbtree.c
|
|
*/
|
|
|
|
#include <linux/rbtree.h>
|
|
#include <linux/export.h>
|
|
|
|
/*
|
|
* red-black trees properties: http://en.wikipedia.org/wiki/Rbtree
|
|
*
|
|
* 1) A node is either red or black
|
|
* 2) The root is black
|
|
* 3) All leaves (NULL) are black
|
|
* 4) Both children of every red node are black
|
|
* 5) Every simple path from root to leaves contains the same number
|
|
* of black nodes.
|
|
*
|
|
* 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
|
|
* consecutive red nodes in a path and every red node is therefore followed by
|
|
* a black. So if B is the number of black nodes on every simple path (as per
|
|
* 5), then the longest possible path due to 4 is 2B.
|
|
*
|
|
* We shall indicate color with case, where black nodes are uppercase and red
|
|
* nodes will be lowercase. Unknown color nodes shall be drawn as red within
|
|
* parentheses and have some accompanying text comment.
|
|
*/
|
|
|
|
#define RB_RED 0
|
|
#define RB_BLACK 1
|
|
|
|
#define rb_color(r) ((r)->__rb_parent_color & 1)
|
|
#define rb_is_red(r) (!rb_color(r))
|
|
#define rb_is_black(r) rb_color(r)
|
|
|
|
static inline void rb_set_parent(struct rb_node *rb, struct rb_node *p)
|
|
{
|
|
rb->__rb_parent_color = rb_color(rb) | (unsigned long)p;
|
|
}
|
|
|
|
static inline void rb_set_parent_color(struct rb_node *rb,
|
|
struct rb_node *p, int color)
|
|
{
|
|
rb->__rb_parent_color = (unsigned long)p | color;
|
|
}
|
|
|
|
static inline struct rb_node *rb_red_parent(struct rb_node *red)
|
|
{
|
|
return (struct rb_node *)red->__rb_parent_color;
|
|
}
|
|
|
|
/*
|
|
* Helper function for rotations:
|
|
* - old's parent and color get assigned to new
|
|
* - old gets assigned new as a parent and 'color' as a color.
|
|
*/
|
|
static inline void
|
|
__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
|
|
struct rb_root *root, int color)
|
|
{
|
|
struct rb_node *parent = rb_parent(old);
|
|
new->__rb_parent_color = old->__rb_parent_color;
|
|
rb_set_parent_color(old, new, color);
|
|
if (parent) {
|
|
if (parent->rb_left == old)
|
|
parent->rb_left = new;
|
|
else
|
|
parent->rb_right = new;
|
|
} else
|
|
root->rb_node = new;
|
|
}
|
|
|
|
void rb_insert_color(struct rb_node *node, struct rb_root *root)
|
|
{
|
|
struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
|
|
|
|
while (true) {
|
|
/*
|
|
* Loop invariant: node is red
|
|
*
|
|
* If there is a black parent, we are done.
|
|
* Otherwise, take some corrective action as we don't
|
|
* want a red root or two consecutive red nodes.
|
|
*/
|
|
if (!parent) {
|
|
rb_set_parent_color(node, NULL, RB_BLACK);
|
|
break;
|
|
} else if (rb_is_black(parent))
|
|
break;
|
|
|
|
gparent = rb_red_parent(parent);
|
|
|
|
if (parent == gparent->rb_left) {
|
|
tmp = gparent->rb_right;
|
|
if (tmp && rb_is_red(tmp)) {
|
|
/*
|
|
* Case 1 - color flips
|
|
*
|
|
* G g
|
|
* / \ / \
|
|
* p u --> P U
|
|
* / /
|
|
* n N
|
|
*
|
|
* However, since g's parent might be red, and
|
|
* 4) does not allow this, we need to recurse
|
|
* at g.
|
|
*/
|
|
rb_set_parent_color(tmp, gparent, RB_BLACK);
|
|
rb_set_parent_color(parent, gparent, RB_BLACK);
|
|
node = gparent;
|
|
parent = rb_parent(node);
|
|
rb_set_parent_color(node, parent, RB_RED);
|
|
continue;
|
|
}
|
|
|
|
if (parent->rb_right == node) {
|
|
/*
|
|
* Case 2 - left rotate at parent
|
|
*
|
|
* G G
|
|
* / \ / \
|
|
* p U --> n U
|
|
* \ /
|
|
* n p
|
|
*
|
|
* This still leaves us in violation of 4), the
|
|
* continuation into Case 3 will fix that.
|
|
*/
|
|
parent->rb_right = tmp = node->rb_left;
|
|
node->rb_left = parent;
|
|
if (tmp)
|
|
rb_set_parent_color(tmp, parent,
|
|
RB_BLACK);
|
|
rb_set_parent_color(parent, node, RB_RED);
|
|
parent = node;
|
|
}
|
|
|
|
/*
|
|
* Case 3 - right rotate at gparent
|
|
*
|
|
* G P
|
|
* / \ / \
|
|
* p U --> n g
|
|
* / \
|
|
* n U
|
|
*/
|
|
gparent->rb_left = tmp = parent->rb_right;
|
|
parent->rb_right = gparent;
|
|
if (tmp)
|
|
rb_set_parent_color(tmp, gparent, RB_BLACK);
|
|
__rb_rotate_set_parents(gparent, parent, root, RB_RED);
|
|
break;
|
|
} else {
|
|
tmp = gparent->rb_left;
|
|
if (tmp && rb_is_red(tmp)) {
|
|
/* Case 1 - color flips */
|
|
rb_set_parent_color(tmp, gparent, RB_BLACK);
|
|
rb_set_parent_color(parent, gparent, RB_BLACK);
|
|
node = gparent;
|
|
parent = rb_parent(node);
|
|
rb_set_parent_color(node, parent, RB_RED);
|
|
continue;
|
|
}
|
|
|
|
if (parent->rb_left == node) {
|
|
/* Case 2 - right rotate at parent */
|
|
parent->rb_left = tmp = node->rb_right;
|
|
node->rb_right = parent;
|
|
if (tmp)
|
|
rb_set_parent_color(tmp, parent,
|
|
RB_BLACK);
|
|
rb_set_parent_color(parent, node, RB_RED);
|
|
parent = node;
|
|
}
|
|
|
|
/* Case 3 - left rotate at gparent */
|
|
gparent->rb_right = tmp = parent->rb_left;
|
|
parent->rb_left = gparent;
|
|
if (tmp)
|
|
rb_set_parent_color(tmp, gparent, RB_BLACK);
|
|
__rb_rotate_set_parents(gparent, parent, root, RB_RED);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(rb_insert_color);
|
|
|
|
static void __rb_erase_color(struct rb_node *node, struct rb_node *parent,
|
|
struct rb_root *root)
|
|
{
|
|
struct rb_node *sibling, *tmp1, *tmp2;
|
|
|
|
while (true) {
|
|
/*
|
|
* Loop invariant: all leaf paths going through node have a
|
|
* black node count that is 1 lower than other leaf paths.
|
|
*
|
|
* If node is red, we can flip it to black to adjust.
|
|
* If node is the root, all leaf paths go through it.
|
|
* Otherwise, we need to adjust the tree through color flips
|
|
* and tree rotations as per one of the 4 cases below.
|
|
*/
|
|
if (node && rb_is_red(node)) {
|
|
rb_set_parent_color(node, parent, RB_BLACK);
|
|
break;
|
|
} else if (!parent) {
|
|
break;
|
|
} else if (parent->rb_left == node) {
|
|
sibling = parent->rb_right;
|
|
if (rb_is_red(sibling)) {
|
|
/*
|
|
* Case 1 - left rotate at parent
|
|
*
|
|
* P S
|
|
* / \ / \
|
|
* N s --> p Sr
|
|
* / \ / \
|
|
* Sl Sr N Sl
|
|
*/
|
|
parent->rb_right = tmp1 = sibling->rb_left;
|
|
sibling->rb_left = parent;
|
|
rb_set_parent_color(tmp1, parent, RB_BLACK);
|
|
__rb_rotate_set_parents(parent, sibling, root,
|
|
RB_RED);
|
|
sibling = tmp1;
|
|
}
|
|
tmp1 = sibling->rb_right;
|
|
if (!tmp1 || rb_is_black(tmp1)) {
|
|
tmp2 = sibling->rb_left;
|
|
if (!tmp2 || rb_is_black(tmp2)) {
|
|
/*
|
|
* Case 2 - sibling color flip
|
|
* (p could be either color here)
|
|
*
|
|
* (p) (p)
|
|
* / \ / \
|
|
* N S --> N s
|
|
* / \ / \
|
|
* Sl Sr Sl Sr
|
|
*
|
|
* This leaves us violating 5), so
|
|
* recurse at p. If p is red, the
|
|
* recursion will just flip it to black
|
|
* and exit. If coming from Case 1,
|
|
* p is known to be red.
|
|
*/
|
|
rb_set_parent_color(sibling, parent,
|
|
RB_RED);
|
|
node = parent;
|
|
parent = rb_parent(node);
|
|
continue;
|
|
}
|
|
/*
|
|
* Case 3 - right rotate at sibling
|
|
* (p could be either color here)
|
|
*
|
|
* (p) (p)
|
|
* / \ / \
|
|
* N S --> N Sl
|
|
* / \ \
|
|
* sl Sr s
|
|
* \
|
|
* Sr
|
|
*/
|
|
sibling->rb_left = tmp1 = tmp2->rb_right;
|
|
tmp2->rb_right = sibling;
|
|
parent->rb_right = tmp2;
|
|
if (tmp1)
|
|
rb_set_parent_color(tmp1, sibling,
|
|
RB_BLACK);
|
|
tmp1 = sibling;
|
|
sibling = tmp2;
|
|
}
|
|
/*
|
|
* Case 4 - left rotate at parent + color flips
|
|
* (p and sl could be either color here.
|
|
* After rotation, p becomes black, s acquires
|
|
* p's color, and sl keeps its color)
|
|
*
|
|
* (p) (s)
|
|
* / \ / \
|
|
* N S --> P Sr
|
|
* / \ / \
|
|
* (sl) sr N (sl)
|
|
*/
|
|
parent->rb_right = tmp2 = sibling->rb_left;
|
|
sibling->rb_left = parent;
|
|
rb_set_parent_color(tmp1, sibling, RB_BLACK);
|
|
if (tmp2)
|
|
rb_set_parent(tmp2, parent);
|
|
__rb_rotate_set_parents(parent, sibling, root,
|
|
RB_BLACK);
|
|
break;
|
|
} else {
|
|
sibling = parent->rb_left;
|
|
if (rb_is_red(sibling)) {
|
|
/* Case 1 - right rotate at parent */
|
|
parent->rb_left = tmp1 = sibling->rb_right;
|
|
sibling->rb_right = parent;
|
|
rb_set_parent_color(tmp1, parent, RB_BLACK);
|
|
__rb_rotate_set_parents(parent, sibling, root,
|
|
RB_RED);
|
|
sibling = tmp1;
|
|
}
|
|
tmp1 = sibling->rb_left;
|
|
if (!tmp1 || rb_is_black(tmp1)) {
|
|
tmp2 = sibling->rb_right;
|
|
if (!tmp2 || rb_is_black(tmp2)) {
|
|
/* Case 2 - sibling color flip */
|
|
rb_set_parent_color(sibling, parent,
|
|
RB_RED);
|
|
node = parent;
|
|
parent = rb_parent(node);
|
|
continue;
|
|
}
|
|
/* Case 3 - right rotate at sibling */
|
|
sibling->rb_right = tmp1 = tmp2->rb_left;
|
|
tmp2->rb_left = sibling;
|
|
parent->rb_left = tmp2;
|
|
if (tmp1)
|
|
rb_set_parent_color(tmp1, sibling,
|
|
RB_BLACK);
|
|
tmp1 = sibling;
|
|
sibling = tmp2;
|
|
}
|
|
/* Case 4 - left rotate at parent + color flips */
|
|
parent->rb_left = tmp2 = sibling->rb_right;
|
|
sibling->rb_right = parent;
|
|
rb_set_parent_color(tmp1, sibling, RB_BLACK);
|
|
if (tmp2)
|
|
rb_set_parent(tmp2, parent);
|
|
__rb_rotate_set_parents(parent, sibling, root,
|
|
RB_BLACK);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void rb_erase(struct rb_node *node, struct rb_root *root)
|
|
{
|
|
struct rb_node *child, *parent;
|
|
int color;
|
|
|
|
if (!node->rb_left)
|
|
child = node->rb_right;
|
|
else if (!node->rb_right)
|
|
child = node->rb_left;
|
|
else
|
|
{
|
|
struct rb_node *old = node, *left;
|
|
|
|
node = node->rb_right;
|
|
while ((left = node->rb_left) != NULL)
|
|
node = left;
|
|
|
|
if (rb_parent(old)) {
|
|
if (rb_parent(old)->rb_left == old)
|
|
rb_parent(old)->rb_left = node;
|
|
else
|
|
rb_parent(old)->rb_right = node;
|
|
} else
|
|
root->rb_node = node;
|
|
|
|
child = node->rb_right;
|
|
parent = rb_parent(node);
|
|
color = rb_color(node);
|
|
|
|
if (parent == old) {
|
|
parent = node;
|
|
} else {
|
|
if (child)
|
|
rb_set_parent(child, parent);
|
|
parent->rb_left = child;
|
|
|
|
node->rb_right = old->rb_right;
|
|
rb_set_parent(old->rb_right, node);
|
|
}
|
|
|
|
node->__rb_parent_color = old->__rb_parent_color;
|
|
node->rb_left = old->rb_left;
|
|
rb_set_parent(old->rb_left, node);
|
|
|
|
goto color;
|
|
}
|
|
|
|
parent = rb_parent(node);
|
|
color = rb_color(node);
|
|
|
|
if (child)
|
|
rb_set_parent(child, parent);
|
|
if (parent)
|
|
{
|
|
if (parent->rb_left == node)
|
|
parent->rb_left = child;
|
|
else
|
|
parent->rb_right = child;
|
|
}
|
|
else
|
|
root->rb_node = child;
|
|
|
|
color:
|
|
if (color == RB_BLACK)
|
|
__rb_erase_color(child, parent, root);
|
|
}
|
|
EXPORT_SYMBOL(rb_erase);
|
|
|
|
static void rb_augment_path(struct rb_node *node, rb_augment_f func, void *data)
|
|
{
|
|
struct rb_node *parent;
|
|
|
|
up:
|
|
func(node, data);
|
|
parent = rb_parent(node);
|
|
if (!parent)
|
|
return;
|
|
|
|
if (node == parent->rb_left && parent->rb_right)
|
|
func(parent->rb_right, data);
|
|
else if (parent->rb_left)
|
|
func(parent->rb_left, data);
|
|
|
|
node = parent;
|
|
goto up;
|
|
}
|
|
|
|
/*
|
|
* after inserting @node into the tree, update the tree to account for
|
|
* both the new entry and any damage done by rebalance
|
|
*/
|
|
void rb_augment_insert(struct rb_node *node, rb_augment_f func, void *data)
|
|
{
|
|
if (node->rb_left)
|
|
node = node->rb_left;
|
|
else if (node->rb_right)
|
|
node = node->rb_right;
|
|
|
|
rb_augment_path(node, func, data);
|
|
}
|
|
EXPORT_SYMBOL(rb_augment_insert);
|
|
|
|
/*
|
|
* before removing the node, find the deepest node on the rebalance path
|
|
* that will still be there after @node gets removed
|
|
*/
|
|
struct rb_node *rb_augment_erase_begin(struct rb_node *node)
|
|
{
|
|
struct rb_node *deepest;
|
|
|
|
if (!node->rb_right && !node->rb_left)
|
|
deepest = rb_parent(node);
|
|
else if (!node->rb_right)
|
|
deepest = node->rb_left;
|
|
else if (!node->rb_left)
|
|
deepest = node->rb_right;
|
|
else {
|
|
deepest = rb_next(node);
|
|
if (deepest->rb_right)
|
|
deepest = deepest->rb_right;
|
|
else if (rb_parent(deepest) != node)
|
|
deepest = rb_parent(deepest);
|
|
}
|
|
|
|
return deepest;
|
|
}
|
|
EXPORT_SYMBOL(rb_augment_erase_begin);
|
|
|
|
/*
|
|
* after removal, update the tree to account for the removed entry
|
|
* and any rebalance damage.
|
|
*/
|
|
void rb_augment_erase_end(struct rb_node *node, rb_augment_f func, void *data)
|
|
{
|
|
if (node)
|
|
rb_augment_path(node, func, data);
|
|
}
|
|
EXPORT_SYMBOL(rb_augment_erase_end);
|
|
|
|
/*
|
|
* This function returns the first node (in sort order) of the tree.
|
|
*/
|
|
struct rb_node *rb_first(const struct rb_root *root)
|
|
{
|
|
struct rb_node *n;
|
|
|
|
n = root->rb_node;
|
|
if (!n)
|
|
return NULL;
|
|
while (n->rb_left)
|
|
n = n->rb_left;
|
|
return n;
|
|
}
|
|
EXPORT_SYMBOL(rb_first);
|
|
|
|
struct rb_node *rb_last(const struct rb_root *root)
|
|
{
|
|
struct rb_node *n;
|
|
|
|
n = root->rb_node;
|
|
if (!n)
|
|
return NULL;
|
|
while (n->rb_right)
|
|
n = n->rb_right;
|
|
return n;
|
|
}
|
|
EXPORT_SYMBOL(rb_last);
|
|
|
|
struct rb_node *rb_next(const struct rb_node *node)
|
|
{
|
|
struct rb_node *parent;
|
|
|
|
if (RB_EMPTY_NODE(node))
|
|
return NULL;
|
|
|
|
/* If we have a right-hand child, go down and then left as far
|
|
as we can. */
|
|
if (node->rb_right) {
|
|
node = node->rb_right;
|
|
while (node->rb_left)
|
|
node=node->rb_left;
|
|
return (struct rb_node *)node;
|
|
}
|
|
|
|
/* No right-hand children. Everything down and left is
|
|
smaller than us, so any 'next' node must be in the general
|
|
direction of our parent. Go up the tree; any time the
|
|
ancestor is a right-hand child of its parent, keep going
|
|
up. First time it's a left-hand child of its parent, said
|
|
parent is our 'next' node. */
|
|
while ((parent = rb_parent(node)) && node == parent->rb_right)
|
|
node = parent;
|
|
|
|
return parent;
|
|
}
|
|
EXPORT_SYMBOL(rb_next);
|
|
|
|
struct rb_node *rb_prev(const struct rb_node *node)
|
|
{
|
|
struct rb_node *parent;
|
|
|
|
if (RB_EMPTY_NODE(node))
|
|
return NULL;
|
|
|
|
/* If we have a left-hand child, go down and then right as far
|
|
as we can. */
|
|
if (node->rb_left) {
|
|
node = node->rb_left;
|
|
while (node->rb_right)
|
|
node=node->rb_right;
|
|
return (struct rb_node *)node;
|
|
}
|
|
|
|
/* No left-hand children. Go up till we find an ancestor which
|
|
is a right-hand child of its parent */
|
|
while ((parent = rb_parent(node)) && node == parent->rb_left)
|
|
node = parent;
|
|
|
|
return parent;
|
|
}
|
|
EXPORT_SYMBOL(rb_prev);
|
|
|
|
void rb_replace_node(struct rb_node *victim, struct rb_node *new,
|
|
struct rb_root *root)
|
|
{
|
|
struct rb_node *parent = rb_parent(victim);
|
|
|
|
/* Set the surrounding nodes to point to the replacement */
|
|
if (parent) {
|
|
if (victim == parent->rb_left)
|
|
parent->rb_left = new;
|
|
else
|
|
parent->rb_right = new;
|
|
} else {
|
|
root->rb_node = new;
|
|
}
|
|
if (victim->rb_left)
|
|
rb_set_parent(victim->rb_left, new);
|
|
if (victim->rb_right)
|
|
rb_set_parent(victim->rb_right, new);
|
|
|
|
/* Copy the pointers/colour from the victim to the replacement */
|
|
*new = *victim;
|
|
}
|
|
EXPORT_SYMBOL(rb_replace_node);
|