Linus Torvalds b8edf848e9 ARM: arm-soc: multiplatform conversion patches
Here are more patches in the progression towards multiplatform, sparse
 irq conversions in particular.
 
 Tegra has a handful of cleanups and general groundwork, but is
 not quite there yet on full enablement.
 
 Platforms that are enabled through this branch are VT8500 and Zynq. note
 that i.MX was converted in one of the earlier cleanup branches as
 well (before we started a separate topic for multiplatform). And both
 new platforms for this merge window, sunxi and bcm, were merged with
 multiplatform support enabled.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1.4.11 (GNU/Linux)
 
 iQIcBAABAgAGBQJQySb/AAoJEIwa5zzehBx3Wo4P/0GrpUhB/qwuhgy43MA2I1Dv
 tnyuFvsfW9uRExcw2IwT39GFls98QUM9TwQxPqOTHVf+u0LkYMZ9aDeWJOdj3RvG
 H70Ypj4gZDrzZAFr2TUf8NnYGHd6G2EcMn3261Hjfd7YrswCjsMPvgRns7VOyHCa
 deif3KcLu3+HzxvuzqlVlTuSAagCQbfqqnTQduMRdJPHT3X3sXwl7ABW+qfOoeYC
 rjqIbjdh5dB1d/f7igtgBbXjSTnVz/Mr1+wk4rp9Xr1Wv0IXvIaSKjK2Df8ZuNAk
 aQ6mMy/oDVxlDSrYv0F7lB40/rsZcPqz8+fgYJ2FnvCpIM7z7NeTWD2kQJ2UaQ/s
 VunShloRxF8It6104EVWZDfEA9NvVBcCALSze0NukqiHZRZYGUzxRNQDrncaksC9
 Lm+Z16cUWogsZq7VDCgXYQJeakPQfBDnsx7siMvAbOgvtpSClxuwhdC/czJiix7h
 BcpA+l5xSviUhHvzHhDt9iJxHjbUmo1xLDvaZSgj2OjAj257JcwaNBCk5BjZTCwe
 xZmQu1FjwaGtjLiG6QY0WJRsq1hiFRIb/MaWar/WpfqADFqARoambGFUjOl+P4Mu
 DIM5Z0AS04H+pLuP1QOz/yXxOPEP6Ri36to6XrgzfL/XGet5LW2P59xXxhcWC/OL
 /3IAcQrsAqh4aGMOstW1
 =UJlh
 -----END PGP SIGNATURE-----

Merge tag 'multiplatform' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc

Pull ARM SoC multiplatform conversion patches from Olof Johansson:
 "Here are more patches in the progression towards multiplatform, sparse
  irq conversions in particular.

  Tegra has a handful of cleanups and general groundwork, but is not
  quite there yet on full enablement.

  Platforms that are enabled through this branch are VT8500 and Zynq.
  Note that i.MX was converted in one of the earlier cleanup branches as
  well (before we started a separate topic for multiplatform).  And both
  new platforms for this merge window, sunxi and bcm, were merged with
  multiplatform support enabled."

Fix up conflicts mostly as per Olof.

* tag 'multiplatform' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (29 commits)
  ARM: zynq: Remove all unused mach headers
  ARM: zynq: add support for ARCH_MULTIPLATFORM
  ARM: zynq: make use of debug_ll_io_init()
  ARM: zynq: remove TTC early mapping
  ARM: tegra: move debug-macro.S to include/debug
  ARM: tegra: don't include iomap.h from debug-macro.S
  ARM: tegra: decouple uncompress.h and debug-macro.S
  ARM: tegra: simplify DEBUG_LL UART selection options
  ARM: tegra: select SPARSE_IRQ
  ARM: tegra: enhance timer.c to get IO address from device tree
  ARM: tegra: enhance timer.c to get IRQ info from device tree
  ARM: timer: fix checkpatch warnings
  ARM: tegra: add TWD to device tree
  ARM: tegra: define DT bindings for and instantiate RTC
  ARM: tegra: define DT bindings for and instantiate timer
  clocksource/mtu-nomadik: use apb_pclk
  clk: ux500: Register mtu apb_pclocks
  ARM: plat-nomadik: convert platforms to SPARSE_IRQ
  mfd/db8500-prcmu: use the irq_domain_add_simple()
  mfd/ab8500-core: use irq_domain_add_simple()
  ...
2012-12-13 10:57:16 -08:00

305 lines
9.4 KiB
Plaintext

#
# Hardware Random Number Generator (RNG) configuration
#
config HW_RANDOM
tristate "Hardware Random Number Generator Core support"
default m
---help---
Hardware Random Number Generator Core infrastructure.
To compile this driver as a module, choose M here: the
module will be called rng-core. This provides a device
that's usually called /dev/hw_random, and which exposes one
of possibly several hardware random number generators.
These hardware random number generators do not feed directly
into the kernel's random number generator. That is usually
handled by the "rngd" daemon. Documentation/hw_random.txt
has more information.
If unsure, say Y.
config HW_RANDOM_TIMERIOMEM
tristate "Timer IOMEM HW Random Number Generator support"
depends on HW_RANDOM && HAS_IOMEM
---help---
This driver provides kernel-side support for a generic Random
Number Generator used by reading a 'dumb' iomem address that
is to be read no faster than, for example, once a second;
the default FPGA bitstream on the TS-7800 has such functionality.
To compile this driver as a module, choose M here: the
module will be called timeriomem-rng.
If unsure, say Y.
config HW_RANDOM_INTEL
tristate "Intel HW Random Number Generator support"
depends on HW_RANDOM && (X86 || IA64) && PCI
default HW_RANDOM
---help---
This driver provides kernel-side support for the Random Number
Generator hardware found on Intel i8xx-based motherboards.
To compile this driver as a module, choose M here: the
module will be called intel-rng.
If unsure, say Y.
config HW_RANDOM_AMD
tristate "AMD HW Random Number Generator support"
depends on HW_RANDOM && (X86 || PPC_MAPLE) && PCI
default HW_RANDOM
---help---
This driver provides kernel-side support for the Random Number
Generator hardware found on AMD 76x-based motherboards.
To compile this driver as a module, choose M here: the
module will be called amd-rng.
If unsure, say Y.
config HW_RANDOM_ATMEL
tristate "Atmel Random Number Generator support"
depends on HW_RANDOM && HAVE_CLK
default (HW_RANDOM && ARCH_AT91)
---help---
This driver provides kernel-side support for the Random Number
Generator hardware found on Atmel AT91 devices.
To compile this driver as a module, choose M here: the
module will be called atmel-rng.
If unsure, say Y.
config HW_RANDOM_BCM63XX
tristate "Broadcom BCM63xx Random Number Generator support"
depends on HW_RANDOM && BCM63XX
default HW_RANDOM
---help---
This driver provides kernel-side support for the Random Number
Generator hardware found on the Broadcom BCM63xx SoCs.
To compile this driver as a module, choose M here: the
module will be called bcm63xx-rng
If unusure, say Y.
config HW_RANDOM_GEODE
tristate "AMD Geode HW Random Number Generator support"
depends on HW_RANDOM && X86_32 && PCI
default HW_RANDOM
---help---
This driver provides kernel-side support for the Random Number
Generator hardware found on the AMD Geode LX.
To compile this driver as a module, choose M here: the
module will be called geode-rng.
If unsure, say Y.
config HW_RANDOM_N2RNG
tristate "Niagara2 Random Number Generator support"
depends on HW_RANDOM && SPARC64
default HW_RANDOM
---help---
This driver provides kernel-side support for the Random Number
Generator hardware found on Niagara2 cpus.
To compile this driver as a module, choose M here: the
module will be called n2-rng.
If unsure, say Y.
config HW_RANDOM_VIA
tristate "VIA HW Random Number Generator support"
depends on HW_RANDOM && X86
default HW_RANDOM
---help---
This driver provides kernel-side support for the Random Number
Generator hardware found on VIA based motherboards.
To compile this driver as a module, choose M here: the
module will be called via-rng.
If unsure, say Y.
config HW_RANDOM_IXP4XX
tristate "Intel IXP4xx NPU HW Pseudo-Random Number Generator support"
depends on HW_RANDOM && ARCH_IXP4XX
default HW_RANDOM
---help---
This driver provides kernel-side support for the Pseudo-Random
Number Generator hardware found on the Intel IXP45x/46x NPU.
To compile this driver as a module, choose M here: the
module will be called ixp4xx-rng.
If unsure, say Y.
config HW_RANDOM_OMAP
tristate "OMAP Random Number Generator support"
depends on HW_RANDOM && (ARCH_OMAP16XX || ARCH_OMAP2)
default HW_RANDOM
---help---
This driver provides kernel-side support for the Random Number
Generator hardware found on OMAP16xx and OMAP24xx multimedia
processors.
To compile this driver as a module, choose M here: the
module will be called omap-rng.
If unsure, say Y.
config HW_RANDOM_OCTEON
tristate "Octeon Random Number Generator support"
depends on HW_RANDOM && CPU_CAVIUM_OCTEON
default HW_RANDOM
---help---
This driver provides kernel-side support for the Random Number
Generator hardware found on Octeon processors.
To compile this driver as a module, choose M here: the
module will be called octeon-rng.
If unsure, say Y.
config HW_RANDOM_PASEMI
tristate "PA Semi HW Random Number Generator support"
depends on HW_RANDOM && PPC_PASEMI
default HW_RANDOM
---help---
This driver provides kernel-side support for the Random Number
Generator hardware found on PA Semi PWRficient SoCs.
To compile this driver as a module, choose M here: the
module will be called pasemi-rng.
If unsure, say Y.
config HW_RANDOM_VIRTIO
tristate "VirtIO Random Number Generator support"
depends on HW_RANDOM && VIRTIO
---help---
This driver provides kernel-side support for the virtual Random Number
Generator hardware.
To compile this driver as a module, choose M here: the
module will be called virtio-rng. If unsure, say N.
config HW_RANDOM_TX4939
tristate "TX4939 Random Number Generator support"
depends on HW_RANDOM && SOC_TX4939
default HW_RANDOM
---help---
This driver provides kernel-side support for the Random Number
Generator hardware found on TX4939 SoC.
To compile this driver as a module, choose M here: the
module will be called tx4939-rng.
If unsure, say Y.
config HW_RANDOM_MXC_RNGA
tristate "Freescale i.MX RNGA Random Number Generator"
depends on HW_RANDOM && ARCH_HAS_RNGA
---help---
This driver provides kernel-side support for the Random Number
Generator hardware found on Freescale i.MX processors.
To compile this driver as a module, choose M here: the
module will be called mxc-rnga.
If unsure, say Y.
config HW_RANDOM_NOMADIK
tristate "ST-Ericsson Nomadik Random Number Generator support"
depends on HW_RANDOM && ARCH_NOMADIK
---help---
This driver provides kernel-side support for the Random Number
Generator hardware found on ST-Ericsson SoCs (8815 and 8500).
To compile this driver as a module, choose M here: the
module will be called nomadik-rng.
If unsure, say Y.
config HW_RANDOM_PICOXCELL
tristate "Picochip picoXcell true random number generator support"
depends on HW_RANDOM && ARCH_PICOXCELL && PICOXCELL_PC3X3
---help---
This driver provides kernel-side support for the Random Number
Generator hardware found on Picochip PC3x3 and later devices.
To compile this driver as a module, choose M here: the
module will be called picoxcell-rng.
If unsure, say Y.
config HW_RANDOM_PPC4XX
tristate "PowerPC 4xx generic true random number generator support"
depends on HW_RANDOM && PPC && 4xx
---help---
This driver provides the kernel-side support for the TRNG hardware
found in the security function of some PowerPC 4xx SoCs.
To compile this driver as a module, choose M here: the
module will be called ppc4xx-rng.
If unsure, say N.
config UML_RANDOM
depends on UML
tristate "Hardware random number generator"
help
This option enables UML's "hardware" random number generator. It
attaches itself to the host's /dev/random, supplying as much entropy
as the host has, rather than the small amount the UML gets from its
own drivers. It registers itself as a standard hardware random number
generator, major 10, minor 183, and the canonical device name is
/dev/hwrng.
The way to make use of this is to install the rng-tools package
(check your distro, or download from
http://sourceforge.net/projects/gkernel/). rngd periodically reads
/dev/hwrng and injects the entropy into /dev/random.
config HW_RANDOM_PSERIES
tristate "pSeries HW Random Number Generator support"
depends on HW_RANDOM && PPC64 && IBMVIO
default HW_RANDOM
---help---
This driver provides kernel-side support for the Random Number
Generator hardware found on POWER7+ machines and above
To compile this driver as a module, choose M here: the
module will be called pseries-rng.
If unsure, say Y.
config HW_RANDOM_EXYNOS
tristate "EXYNOS HW random number generator support"
depends on HW_RANDOM && HAS_IOMEM && HAVE_CLK
---help---
This driver provides kernel-side support for the Random Number
Generator hardware found on EXYNOS SOCs.
To compile this driver as a module, choose M here: the
module will be called exynos-rng.
If unsure, say Y.
config HW_RANDOM_TPM
tristate "TPM HW Random Number Generator support"
depends on HW_RANDOM && TCG_TPM
default HW_RANDOM
---help---
This driver provides kernel-side support for the Random Number
Generator in the Trusted Platform Module
To compile this driver as a module, choose M here: the
module will be called tpm-rng.
If unsure, say Y.