linux/rust/kernel/init/macros.rs
Benno Lossin 4af84c6a85 rust: init: update expanded macro explanation
The previous patches changed the internals of the macros resulting in
the example expanded code being outdated. This patch updates the example
and only changes documentation.

Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com>
Signed-off-by: Benno Lossin <benno.lossin@proton.me>
Link: https://lore.kernel.org/r/20230814084602.25699-14-benno.lossin@proton.me
Reviewed-by: Alice Ryhl <aliceryhl@google.com>
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2023-08-21 14:31:49 +02:00

1384 lines
55 KiB
Rust

// SPDX-License-Identifier: Apache-2.0 OR MIT
//! This module provides the macros that actually implement the proc-macros `pin_data` and
//! `pinned_drop`. It also contains `__init_internal` the implementation of the `{try_}{pin_}init!`
//! macros.
//!
//! These macros should never be called directly, since they expect their input to be
//! in a certain format which is internal. If used incorrectly, these macros can lead to UB even in
//! safe code! Use the public facing macros instead.
//!
//! This architecture has been chosen because the kernel does not yet have access to `syn` which
//! would make matters a lot easier for implementing these as proc-macros.
//!
//! # Macro expansion example
//!
//! This section is intended for readers trying to understand the macros in this module and the
//! `pin_init!` macros from `init.rs`.
//!
//! We will look at the following example:
//!
//! ```rust,ignore
//! # use kernel::init::*;
//! # use core::pin::Pin;
//! #[pin_data]
//! #[repr(C)]
//! struct Bar<T> {
//! #[pin]
//! t: T,
//! pub x: usize,
//! }
//!
//! impl<T> Bar<T> {
//! fn new(t: T) -> impl PinInit<Self> {
//! pin_init!(Self { t, x: 0 })
//! }
//! }
//!
//! #[pin_data(PinnedDrop)]
//! struct Foo {
//! a: usize,
//! #[pin]
//! b: Bar<u32>,
//! }
//!
//! #[pinned_drop]
//! impl PinnedDrop for Foo {
//! fn drop(self: Pin<&mut Self>) {
//! pr_info!("{self:p} is getting dropped.");
//! }
//! }
//!
//! let a = 42;
//! let initializer = pin_init!(Foo {
//! a,
//! b <- Bar::new(36),
//! });
//! ```
//!
//! This example includes the most common and important features of the pin-init API.
//!
//! Below you can find individual section about the different macro invocations. Here are some
//! general things we need to take into account when designing macros:
//! - use global paths, similarly to file paths, these start with the separator: `::core::panic!()`
//! this ensures that the correct item is used, since users could define their own `mod core {}`
//! and then their own `panic!` inside to execute arbitrary code inside of our macro.
//! - macro `unsafe` hygiene: we need to ensure that we do not expand arbitrary, user-supplied
//! expressions inside of an `unsafe` block in the macro, because this would allow users to do
//! `unsafe` operations without an associated `unsafe` block.
//!
//! ## `#[pin_data]` on `Bar`
//!
//! This macro is used to specify which fields are structurally pinned and which fields are not. It
//! is placed on the struct definition and allows `#[pin]` to be placed on the fields.
//!
//! Here is the definition of `Bar` from our example:
//!
//! ```rust,ignore
//! # use kernel::init::*;
//! #[pin_data]
//! #[repr(C)]
//! struct Bar<T> {
//! #[pin]
//! t: T,
//! pub x: usize,
//! }
//! ```
//!
//! This expands to the following code:
//!
//! ```rust,ignore
//! // Firstly the normal definition of the struct, attributes are preserved:
//! #[repr(C)]
//! struct Bar<T> {
//! t: T,
//! pub x: usize,
//! }
//! // Then an anonymous constant is defined, this is because we do not want any code to access the
//! // types that we define inside:
//! const _: () = {
//! // We define the pin-data carrying struct, it is a ZST and needs to have the same generics,
//! // since we need to implement access functions for each field and thus need to know its
//! // type.
//! struct __ThePinData<T> {
//! __phantom: ::core::marker::PhantomData<fn(Bar<T>) -> Bar<T>>,
//! }
//! // We implement `Copy` for the pin-data struct, since all functions it defines will take
//! // `self` by value.
//! impl<T> ::core::clone::Clone for __ThePinData<T> {
//! fn clone(&self) -> Self {
//! *self
//! }
//! }
//! impl<T> ::core::marker::Copy for __ThePinData<T> {}
//! // For every field of `Bar`, the pin-data struct will define a function with the same name
//! // and accessor (`pub` or `pub(crate)` etc.). This function will take a pointer to the
//! // field (`slot`) and a `PinInit` or `Init` depending on the projection kind of the field
//! // (if pinning is structural for the field, then `PinInit` otherwise `Init`).
//! #[allow(dead_code)]
//! impl<T> __ThePinData<T> {
//! unsafe fn t<E>(
//! self,
//! slot: *mut T,
//! // Since `t` is `#[pin]`, this is `PinInit`.
//! init: impl ::kernel::init::PinInit<T, E>,
//! ) -> ::core::result::Result<(), E> {
//! unsafe { ::kernel::init::PinInit::__pinned_init(init, slot) }
//! }
//! pub unsafe fn x<E>(
//! self,
//! slot: *mut usize,
//! // Since `x` is not `#[pin]`, this is `Init`.
//! init: impl ::kernel::init::Init<usize, E>,
//! ) -> ::core::result::Result<(), E> {
//! unsafe { ::kernel::init::Init::__init(init, slot) }
//! }
//! }
//! // Implement the internal `HasPinData` trait that associates `Bar` with the pin-data struct
//! // that we constructed above.
//! unsafe impl<T> ::kernel::init::__internal::HasPinData for Bar<T> {
//! type PinData = __ThePinData<T>;
//! unsafe fn __pin_data() -> Self::PinData {
//! __ThePinData {
//! __phantom: ::core::marker::PhantomData,
//! }
//! }
//! }
//! // Implement the internal `PinData` trait that marks the pin-data struct as a pin-data
//! // struct. This is important to ensure that no user can implement a rouge `__pin_data`
//! // function without using `unsafe`.
//! unsafe impl<T> ::kernel::init::__internal::PinData for __ThePinData<T> {
//! type Datee = Bar<T>;
//! }
//! // Now we only want to implement `Unpin` for `Bar` when every structurally pinned field is
//! // `Unpin`. In other words, whether `Bar` is `Unpin` only depends on structurally pinned
//! // fields (those marked with `#[pin]`). These fields will be listed in this struct, in our
//! // case no such fields exist, hence this is almost empty. The two phantomdata fields exist
//! // for two reasons:
//! // - `__phantom`: every generic must be used, since we cannot really know which generics
//! // are used, we declere all and then use everything here once.
//! // - `__phantom_pin`: uses the `'__pin` lifetime and ensures that this struct is invariant
//! // over it. The lifetime is needed to work around the limitation that trait bounds must
//! // not be trivial, e.g. the user has a `#[pin] PhantomPinned` field -- this is
//! // unconditionally `!Unpin` and results in an error. The lifetime tricks the compiler
//! // into accepting these bounds regardless.
//! #[allow(dead_code)]
//! struct __Unpin<'__pin, T> {
//! __phantom_pin: ::core::marker::PhantomData<fn(&'__pin ()) -> &'__pin ()>,
//! __phantom: ::core::marker::PhantomData<fn(Bar<T>) -> Bar<T>>,
//! // Our only `#[pin]` field is `t`.
//! t: T,
//! }
//! #[doc(hidden)]
//! impl<'__pin, T> ::core::marker::Unpin for Bar<T>
//! where
//! __Unpin<'__pin, T>: ::core::marker::Unpin,
//! {}
//! // Now we need to ensure that `Bar` does not implement `Drop`, since that would give users
//! // access to `&mut self` inside of `drop` even if the struct was pinned. This could lead to
//! // UB with only safe code, so we disallow this by giving a trait implementation error using
//! // a direct impl and a blanket implementation.
//! trait MustNotImplDrop {}
//! // Normally `Drop` bounds do not have the correct semantics, but for this purpose they do
//! // (normally people want to know if a type has any kind of drop glue at all, here we want
//! // to know if it has any kind of custom drop glue, which is exactly what this bound does).
//! #[allow(drop_bounds)]
//! impl<T: ::core::ops::Drop> MustNotImplDrop for T {}
//! impl<T> MustNotImplDrop for Bar<T> {}
//! // Here comes a convenience check, if one implemented `PinnedDrop`, but forgot to add it to
//! // `#[pin_data]`, then this will error with the same mechanic as above, this is not needed
//! // for safety, but a good sanity check, since no normal code calls `PinnedDrop::drop`.
//! #[allow(non_camel_case_types)]
//! trait UselessPinnedDropImpl_you_need_to_specify_PinnedDrop {}
//! impl<
//! T: ::kernel::init::PinnedDrop,
//! > UselessPinnedDropImpl_you_need_to_specify_PinnedDrop for T {}
//! impl<T> UselessPinnedDropImpl_you_need_to_specify_PinnedDrop for Bar<T> {}
//! };
//! ```
//!
//! ## `pin_init!` in `impl Bar`
//!
//! This macro creates an pin-initializer for the given struct. It requires that the struct is
//! annotated by `#[pin_data]`.
//!
//! Here is the impl on `Bar` defining the new function:
//!
//! ```rust,ignore
//! impl<T> Bar<T> {
//! fn new(t: T) -> impl PinInit<Self> {
//! pin_init!(Self { t, x: 0 })
//! }
//! }
//! ```
//!
//! This expands to the following code:
//!
//! ```rust,ignore
//! impl<T> Bar<T> {
//! fn new(t: T) -> impl PinInit<Self> {
//! {
//! // We do not want to allow arbitrary returns, so we declare this type as the `Ok`
//! // return type and shadow it later when we insert the arbitrary user code. That way
//! // there will be no possibility of returning without `unsafe`.
//! struct __InitOk;
//! // Get the data about fields from the supplied type.
//! // - the function is unsafe, hence the unsafe block
//! // - we `use` the `HasPinData` trait in the block, it is only available in that
//! // scope.
//! let data = unsafe {
//! use ::kernel::init::__internal::HasPinData;
//! Self::__pin_data()
//! };
//! // Ensure that `data` really is of type `PinData` and help with type inference:
//! let init = ::kernel::init::__internal::PinData::make_closure::<
//! _,
//! __InitOk,
//! ::core::convert::Infallible,
//! >(data, move |slot| {
//! {
//! // Shadow the structure so it cannot be used to return early. If a user
//! // tries to write `return Ok(__InitOk)`, then they get a type error,
//! // since that will refer to this struct instead of the one defined
//! // above.
//! struct __InitOk;
//! // This is the expansion of `t,`, which is syntactic sugar for `t: t,`.
//! {
//! unsafe { ::core::ptr::write(::core::addr_of_mut!((*slot).t), t) };
//! }
//! // Since initialization could fail later (not in this case, since the
//! // error type is `Infallible`) we will need to drop this field if there
//! // is an error later. This `DropGuard` will drop the field when it gets
//! // dropped and has not yet been forgotten.
//! let t = unsafe {
//! ::pinned_init::__internal::DropGuard::new(::core::addr_of_mut!((*slot).t))
//! };
//! // Expansion of `x: 0,`:
//! // Since this can be an arbitrary expression we cannot place it inside
//! // of the `unsafe` block, so we bind it here.
//! {
//! let x = 0;
//! unsafe { ::core::ptr::write(::core::addr_of_mut!((*slot).x), x) };
//! }
//! // We again create a `DropGuard`.
//! let x = unsafe {
//! ::kernel::init::__internal::DropGuard::new(::core::addr_of_mut!((*slot).x))
//! };
//! // Since initialization has successfully completed, we can now forget
//! // the guards. This is not `mem::forget`, since we only have
//! // `&DropGuard`.
//! ::core::mem::forget(x);
//! ::core::mem::forget(t);
//! // Here we use the type checker to ensure that every field has been
//! // initialized exactly once, since this is `if false` it will never get
//! // executed, but still type-checked.
//! // Additionally we abuse `slot` to automatically infer the correct type
//! // for the struct. This is also another check that every field is
//! // accessible from this scope.
//! #[allow(unreachable_code, clippy::diverging_sub_expression)]
//! let _ = || {
//! unsafe {
//! ::core::ptr::write(
//! slot,
//! Self {
//! // We only care about typecheck finding every field
//! // here, the expression does not matter, just conjure
//! // one using `panic!()`:
//! t: ::core::panic!(),
//! x: ::core::panic!(),
//! },
//! );
//! };
//! };
//! }
//! // We leave the scope above and gain access to the previously shadowed
//! // `__InitOk` that we need to return.
//! Ok(__InitOk)
//! });
//! // Change the return type from `__InitOk` to `()`.
//! let init = move |
//! slot,
//! | -> ::core::result::Result<(), ::core::convert::Infallible> {
//! init(slot).map(|__InitOk| ())
//! };
//! // Construct the initializer.
//! let init = unsafe {
//! ::kernel::init::pin_init_from_closure::<
//! _,
//! ::core::convert::Infallible,
//! >(init)
//! };
//! init
//! }
//! }
//! }
//! ```
//!
//! ## `#[pin_data]` on `Foo`
//!
//! Since we already took a look at `#[pin_data]` on `Bar`, this section will only explain the
//! differences/new things in the expansion of the `Foo` definition:
//!
//! ```rust,ignore
//! #[pin_data(PinnedDrop)]
//! struct Foo {
//! a: usize,
//! #[pin]
//! b: Bar<u32>,
//! }
//! ```
//!
//! This expands to the following code:
//!
//! ```rust,ignore
//! struct Foo {
//! a: usize,
//! b: Bar<u32>,
//! }
//! const _: () = {
//! struct __ThePinData {
//! __phantom: ::core::marker::PhantomData<fn(Foo) -> Foo>,
//! }
//! impl ::core::clone::Clone for __ThePinData {
//! fn clone(&self) -> Self {
//! *self
//! }
//! }
//! impl ::core::marker::Copy for __ThePinData {}
//! #[allow(dead_code)]
//! impl __ThePinData {
//! unsafe fn b<E>(
//! self,
//! slot: *mut Bar<u32>,
//! init: impl ::kernel::init::PinInit<Bar<u32>, E>,
//! ) -> ::core::result::Result<(), E> {
//! unsafe { ::kernel::init::PinInit::__pinned_init(init, slot) }
//! }
//! unsafe fn a<E>(
//! self,
//! slot: *mut usize,
//! init: impl ::kernel::init::Init<usize, E>,
//! ) -> ::core::result::Result<(), E> {
//! unsafe { ::kernel::init::Init::__init(init, slot) }
//! }
//! }
//! unsafe impl ::kernel::init::__internal::HasPinData for Foo {
//! type PinData = __ThePinData;
//! unsafe fn __pin_data() -> Self::PinData {
//! __ThePinData {
//! __phantom: ::core::marker::PhantomData,
//! }
//! }
//! }
//! unsafe impl ::kernel::init::__internal::PinData for __ThePinData {
//! type Datee = Foo;
//! }
//! #[allow(dead_code)]
//! struct __Unpin<'__pin> {
//! __phantom_pin: ::core::marker::PhantomData<fn(&'__pin ()) -> &'__pin ()>,
//! __phantom: ::core::marker::PhantomData<fn(Foo) -> Foo>,
//! b: Bar<u32>,
//! }
//! #[doc(hidden)]
//! impl<'__pin> ::core::marker::Unpin for Foo
//! where
//! __Unpin<'__pin>: ::core::marker::Unpin,
//! {}
//! // Since we specified `PinnedDrop` as the argument to `#[pin_data]`, we expect `Foo` to
//! // implement `PinnedDrop`. Thus we do not need to prevent `Drop` implementations like
//! // before, instead we implement `Drop` here and delegate to `PinnedDrop`.
//! impl ::core::ops::Drop for Foo {
//! fn drop(&mut self) {
//! // Since we are getting dropped, no one else has a reference to `self` and thus we
//! // can assume that we never move.
//! let pinned = unsafe { ::core::pin::Pin::new_unchecked(self) };
//! // Create the unsafe token that proves that we are inside of a destructor, this
//! // type is only allowed to be created in a destructor.
//! let token = unsafe { ::kernel::init::__internal::OnlyCallFromDrop::new() };
//! ::kernel::init::PinnedDrop::drop(pinned, token);
//! }
//! }
//! };
//! ```
//!
//! ## `#[pinned_drop]` on `impl PinnedDrop for Foo`
//!
//! This macro is used to implement the `PinnedDrop` trait, since that trait is `unsafe` and has an
//! extra parameter that should not be used at all. The macro hides that parameter.
//!
//! Here is the `PinnedDrop` impl for `Foo`:
//!
//! ```rust,ignore
//! #[pinned_drop]
//! impl PinnedDrop for Foo {
//! fn drop(self: Pin<&mut Self>) {
//! pr_info!("{self:p} is getting dropped.");
//! }
//! }
//! ```
//!
//! This expands to the following code:
//!
//! ```rust,ignore
//! // `unsafe`, full path and the token parameter are added, everything else stays the same.
//! unsafe impl ::kernel::init::PinnedDrop for Foo {
//! fn drop(self: Pin<&mut Self>, _: ::kernel::init::__internal::OnlyCallFromDrop) {
//! pr_info!("{self:p} is getting dropped.");
//! }
//! }
//! ```
//!
//! ## `pin_init!` on `Foo`
//!
//! Since we already took a look at `pin_init!` on `Bar`, this section will only show the expansion
//! of `pin_init!` on `Foo`:
//!
//! ```rust,ignore
//! let a = 42;
//! let initializer = pin_init!(Foo {
//! a,
//! b <- Bar::new(36),
//! });
//! ```
//!
//! This expands to the following code:
//!
//! ```rust,ignore
//! let a = 42;
//! let initializer = {
//! struct __InitOk;
//! let data = unsafe {
//! use ::kernel::init::__internal::HasPinData;
//! Foo::__pin_data()
//! };
//! let init = ::kernel::init::__internal::PinData::make_closure::<
//! _,
//! __InitOk,
//! ::core::convert::Infallible,
//! >(data, move |slot| {
//! {
//! struct __InitOk;
//! {
//! unsafe { ::core::ptr::write(::core::addr_of_mut!((*slot).a), a) };
//! }
//! let a = unsafe {
//! ::kernel::init::__internal::DropGuard::new(::core::addr_of_mut!((*slot).a))
//! };
//! let init = Bar::new(36);
//! unsafe { data.b(::core::addr_of_mut!((*slot).b), b)? };
//! let b = unsafe {
//! ::kernel::init::__internal::DropGuard::new(::core::addr_of_mut!((*slot).b))
//! };
//! ::core::mem::forget(b);
//! ::core::mem::forget(a);
//! #[allow(unreachable_code, clippy::diverging_sub_expression)]
//! let _ = || {
//! unsafe {
//! ::core::ptr::write(
//! slot,
//! Foo {
//! a: ::core::panic!(),
//! b: ::core::panic!(),
//! },
//! );
//! };
//! };
//! }
//! Ok(__InitOk)
//! });
//! let init = move |
//! slot,
//! | -> ::core::result::Result<(), ::core::convert::Infallible> {
//! init(slot).map(|__InitOk| ())
//! };
//! let init = unsafe {
//! ::kernel::init::pin_init_from_closure::<_, ::core::convert::Infallible>(init)
//! };
//! init
//! };
//! ```
/// Creates a `unsafe impl<...> PinnedDrop for $type` block.
///
/// See [`PinnedDrop`] for more information.
#[doc(hidden)]
#[macro_export]
macro_rules! __pinned_drop {
(
@impl_sig($($impl_sig:tt)*),
@impl_body(
$(#[$($attr:tt)*])*
fn drop($($sig:tt)*) {
$($inner:tt)*
}
),
) => {
unsafe $($impl_sig)* {
// Inherit all attributes and the type/ident tokens for the signature.
$(#[$($attr)*])*
fn drop($($sig)*, _: $crate::init::__internal::OnlyCallFromDrop) {
$($inner)*
}
}
}
}
/// This macro first parses the struct definition such that it separates pinned and not pinned
/// fields. Afterwards it declares the struct and implement the `PinData` trait safely.
#[doc(hidden)]
#[macro_export]
macro_rules! __pin_data {
// Proc-macro entry point, this is supplied by the proc-macro pre-parsing.
(parse_input:
@args($($pinned_drop:ident)?),
@sig(
$(#[$($struct_attr:tt)*])*
$vis:vis struct $name:ident
$(where $($whr:tt)*)?
),
@impl_generics($($impl_generics:tt)*),
@ty_generics($($ty_generics:tt)*),
@body({ $($fields:tt)* }),
) => {
// We now use token munching to iterate through all of the fields. While doing this we
// identify fields marked with `#[pin]`, these fields are the 'pinned fields'. The user
// wants these to be structurally pinned. The rest of the fields are the
// 'not pinned fields'. Additionally we collect all fields, since we need them in the right
// order to declare the struct.
//
// In this call we also put some explaining comments for the parameters.
$crate::__pin_data!(find_pinned_fields:
// Attributes on the struct itself, these will just be propagated to be put onto the
// struct definition.
@struct_attrs($(#[$($struct_attr)*])*),
// The visibility of the struct.
@vis($vis),
// The name of the struct.
@name($name),
// The 'impl generics', the generics that will need to be specified on the struct inside
// of an `impl<$ty_generics>` block.
@impl_generics($($impl_generics)*),
// The 'ty generics', the generics that will need to be specified on the impl blocks.
@ty_generics($($ty_generics)*),
// The where clause of any impl block and the declaration.
@where($($($whr)*)?),
// The remaining fields tokens that need to be processed.
// We add a `,` at the end to ensure correct parsing.
@fields_munch($($fields)* ,),
// The pinned fields.
@pinned(),
// The not pinned fields.
@not_pinned(),
// All fields.
@fields(),
// The accumulator containing all attributes already parsed.
@accum(),
// Contains `yes` or `` to indicate if `#[pin]` was found on the current field.
@is_pinned(),
// The proc-macro argument, this should be `PinnedDrop` or ``.
@pinned_drop($($pinned_drop)?),
);
};
(find_pinned_fields:
@struct_attrs($($struct_attrs:tt)*),
@vis($vis:vis),
@name($name:ident),
@impl_generics($($impl_generics:tt)*),
@ty_generics($($ty_generics:tt)*),
@where($($whr:tt)*),
// We found a PhantomPinned field, this should generally be pinned!
@fields_munch($field:ident : $($($(::)?core::)?marker::)?PhantomPinned, $($rest:tt)*),
@pinned($($pinned:tt)*),
@not_pinned($($not_pinned:tt)*),
@fields($($fields:tt)*),
@accum($($accum:tt)*),
// This field is not pinned.
@is_pinned(),
@pinned_drop($($pinned_drop:ident)?),
) => {
::core::compile_error!(concat!(
"The field `",
stringify!($field),
"` of type `PhantomPinned` only has an effect, if it has the `#[pin]` attribute.",
));
$crate::__pin_data!(find_pinned_fields:
@struct_attrs($($struct_attrs)*),
@vis($vis),
@name($name),
@impl_generics($($impl_generics)*),
@ty_generics($($ty_generics)*),
@where($($whr)*),
@fields_munch($($rest)*),
@pinned($($pinned)* $($accum)* $field: ::core::marker::PhantomPinned,),
@not_pinned($($not_pinned)*),
@fields($($fields)* $($accum)* $field: ::core::marker::PhantomPinned,),
@accum(),
@is_pinned(),
@pinned_drop($($pinned_drop)?),
);
};
(find_pinned_fields:
@struct_attrs($($struct_attrs:tt)*),
@vis($vis:vis),
@name($name:ident),
@impl_generics($($impl_generics:tt)*),
@ty_generics($($ty_generics:tt)*),
@where($($whr:tt)*),
// We reached the field declaration.
@fields_munch($field:ident : $type:ty, $($rest:tt)*),
@pinned($($pinned:tt)*),
@not_pinned($($not_pinned:tt)*),
@fields($($fields:tt)*),
@accum($($accum:tt)*),
// This field is pinned.
@is_pinned(yes),
@pinned_drop($($pinned_drop:ident)?),
) => {
$crate::__pin_data!(find_pinned_fields:
@struct_attrs($($struct_attrs)*),
@vis($vis),
@name($name),
@impl_generics($($impl_generics)*),
@ty_generics($($ty_generics)*),
@where($($whr)*),
@fields_munch($($rest)*),
@pinned($($pinned)* $($accum)* $field: $type,),
@not_pinned($($not_pinned)*),
@fields($($fields)* $($accum)* $field: $type,),
@accum(),
@is_pinned(),
@pinned_drop($($pinned_drop)?),
);
};
(find_pinned_fields:
@struct_attrs($($struct_attrs:tt)*),
@vis($vis:vis),
@name($name:ident),
@impl_generics($($impl_generics:tt)*),
@ty_generics($($ty_generics:tt)*),
@where($($whr:tt)*),
// We reached the field declaration.
@fields_munch($field:ident : $type:ty, $($rest:tt)*),
@pinned($($pinned:tt)*),
@not_pinned($($not_pinned:tt)*),
@fields($($fields:tt)*),
@accum($($accum:tt)*),
// This field is not pinned.
@is_pinned(),
@pinned_drop($($pinned_drop:ident)?),
) => {
$crate::__pin_data!(find_pinned_fields:
@struct_attrs($($struct_attrs)*),
@vis($vis),
@name($name),
@impl_generics($($impl_generics)*),
@ty_generics($($ty_generics)*),
@where($($whr)*),
@fields_munch($($rest)*),
@pinned($($pinned)*),
@not_pinned($($not_pinned)* $($accum)* $field: $type,),
@fields($($fields)* $($accum)* $field: $type,),
@accum(),
@is_pinned(),
@pinned_drop($($pinned_drop)?),
);
};
(find_pinned_fields:
@struct_attrs($($struct_attrs:tt)*),
@vis($vis:vis),
@name($name:ident),
@impl_generics($($impl_generics:tt)*),
@ty_generics($($ty_generics:tt)*),
@where($($whr:tt)*),
// We found the `#[pin]` attr.
@fields_munch(#[pin] $($rest:tt)*),
@pinned($($pinned:tt)*),
@not_pinned($($not_pinned:tt)*),
@fields($($fields:tt)*),
@accum($($accum:tt)*),
@is_pinned($($is_pinned:ident)?),
@pinned_drop($($pinned_drop:ident)?),
) => {
$crate::__pin_data!(find_pinned_fields:
@struct_attrs($($struct_attrs)*),
@vis($vis),
@name($name),
@impl_generics($($impl_generics)*),
@ty_generics($($ty_generics)*),
@where($($whr)*),
@fields_munch($($rest)*),
// We do not include `#[pin]` in the list of attributes, since it is not actually an
// attribute that is defined somewhere.
@pinned($($pinned)*),
@not_pinned($($not_pinned)*),
@fields($($fields)*),
@accum($($accum)*),
// Set this to `yes`.
@is_pinned(yes),
@pinned_drop($($pinned_drop)?),
);
};
(find_pinned_fields:
@struct_attrs($($struct_attrs:tt)*),
@vis($vis:vis),
@name($name:ident),
@impl_generics($($impl_generics:tt)*),
@ty_generics($($ty_generics:tt)*),
@where($($whr:tt)*),
// We reached the field declaration with visibility, for simplicity we only munch the
// visibility and put it into `$accum`.
@fields_munch($fvis:vis $field:ident $($rest:tt)*),
@pinned($($pinned:tt)*),
@not_pinned($($not_pinned:tt)*),
@fields($($fields:tt)*),
@accum($($accum:tt)*),
@is_pinned($($is_pinned:ident)?),
@pinned_drop($($pinned_drop:ident)?),
) => {
$crate::__pin_data!(find_pinned_fields:
@struct_attrs($($struct_attrs)*),
@vis($vis),
@name($name),
@impl_generics($($impl_generics)*),
@ty_generics($($ty_generics)*),
@where($($whr)*),
@fields_munch($field $($rest)*),
@pinned($($pinned)*),
@not_pinned($($not_pinned)*),
@fields($($fields)*),
@accum($($accum)* $fvis),
@is_pinned($($is_pinned)?),
@pinned_drop($($pinned_drop)?),
);
};
(find_pinned_fields:
@struct_attrs($($struct_attrs:tt)*),
@vis($vis:vis),
@name($name:ident),
@impl_generics($($impl_generics:tt)*),
@ty_generics($($ty_generics:tt)*),
@where($($whr:tt)*),
// Some other attribute, just put it into `$accum`.
@fields_munch(#[$($attr:tt)*] $($rest:tt)*),
@pinned($($pinned:tt)*),
@not_pinned($($not_pinned:tt)*),
@fields($($fields:tt)*),
@accum($($accum:tt)*),
@is_pinned($($is_pinned:ident)?),
@pinned_drop($($pinned_drop:ident)?),
) => {
$crate::__pin_data!(find_pinned_fields:
@struct_attrs($($struct_attrs)*),
@vis($vis),
@name($name),
@impl_generics($($impl_generics)*),
@ty_generics($($ty_generics)*),
@where($($whr)*),
@fields_munch($($rest)*),
@pinned($($pinned)*),
@not_pinned($($not_pinned)*),
@fields($($fields)*),
@accum($($accum)* #[$($attr)*]),
@is_pinned($($is_pinned)?),
@pinned_drop($($pinned_drop)?),
);
};
(find_pinned_fields:
@struct_attrs($($struct_attrs:tt)*),
@vis($vis:vis),
@name($name:ident),
@impl_generics($($impl_generics:tt)*),
@ty_generics($($ty_generics:tt)*),
@where($($whr:tt)*),
// We reached the end of the fields, plus an optional additional comma, since we added one
// before and the user is also allowed to put a trailing comma.
@fields_munch($(,)?),
@pinned($($pinned:tt)*),
@not_pinned($($not_pinned:tt)*),
@fields($($fields:tt)*),
@accum(),
@is_pinned(),
@pinned_drop($($pinned_drop:ident)?),
) => {
// Declare the struct with all fields in the correct order.
$($struct_attrs)*
$vis struct $name <$($impl_generics)*>
where $($whr)*
{
$($fields)*
}
// We put the rest into this const item, because it then will not be accessible to anything
// outside.
const _: () = {
// We declare this struct which will host all of the projection function for our type.
// it will be invariant over all generic parameters which are inherited from the
// struct.
$vis struct __ThePinData<$($impl_generics)*>
where $($whr)*
{
__phantom: ::core::marker::PhantomData<
fn($name<$($ty_generics)*>) -> $name<$($ty_generics)*>
>,
}
impl<$($impl_generics)*> ::core::clone::Clone for __ThePinData<$($ty_generics)*>
where $($whr)*
{
fn clone(&self) -> Self { *self }
}
impl<$($impl_generics)*> ::core::marker::Copy for __ThePinData<$($ty_generics)*>
where $($whr)*
{}
// Make all projection functions.
$crate::__pin_data!(make_pin_data:
@pin_data(__ThePinData),
@impl_generics($($impl_generics)*),
@ty_generics($($ty_generics)*),
@where($($whr)*),
@pinned($($pinned)*),
@not_pinned($($not_pinned)*),
);
// SAFETY: We have added the correct projection functions above to `__ThePinData` and
// we also use the least restrictive generics possible.
unsafe impl<$($impl_generics)*>
$crate::init::__internal::HasPinData for $name<$($ty_generics)*>
where $($whr)*
{
type PinData = __ThePinData<$($ty_generics)*>;
unsafe fn __pin_data() -> Self::PinData {
__ThePinData { __phantom: ::core::marker::PhantomData }
}
}
unsafe impl<$($impl_generics)*>
$crate::init::__internal::PinData for __ThePinData<$($ty_generics)*>
where $($whr)*
{
type Datee = $name<$($ty_generics)*>;
}
// This struct will be used for the unpin analysis. Since only structurally pinned
// fields are relevant whether the struct should implement `Unpin`.
#[allow(dead_code)]
struct __Unpin <'__pin, $($impl_generics)*>
where $($whr)*
{
__phantom_pin: ::core::marker::PhantomData<fn(&'__pin ()) -> &'__pin ()>,
__phantom: ::core::marker::PhantomData<
fn($name<$($ty_generics)*>) -> $name<$($ty_generics)*>
>,
// Only the pinned fields.
$($pinned)*
}
#[doc(hidden)]
impl<'__pin, $($impl_generics)*> ::core::marker::Unpin for $name<$($ty_generics)*>
where
__Unpin<'__pin, $($ty_generics)*>: ::core::marker::Unpin,
$($whr)*
{}
// We need to disallow normal `Drop` implementation, the exact behavior depends on
// whether `PinnedDrop` was specified as the parameter.
$crate::__pin_data!(drop_prevention:
@name($name),
@impl_generics($($impl_generics)*),
@ty_generics($($ty_generics)*),
@where($($whr)*),
@pinned_drop($($pinned_drop)?),
);
};
};
// When no `PinnedDrop` was specified, then we have to prevent implementing drop.
(drop_prevention:
@name($name:ident),
@impl_generics($($impl_generics:tt)*),
@ty_generics($($ty_generics:tt)*),
@where($($whr:tt)*),
@pinned_drop(),
) => {
// We prevent this by creating a trait that will be implemented for all types implementing
// `Drop`. Additionally we will implement this trait for the struct leading to a conflict,
// if it also implements `Drop`
trait MustNotImplDrop {}
#[allow(drop_bounds)]
impl<T: ::core::ops::Drop> MustNotImplDrop for T {}
impl<$($impl_generics)*> MustNotImplDrop for $name<$($ty_generics)*>
where $($whr)* {}
// We also take care to prevent users from writing a useless `PinnedDrop` implementation.
// They might implement `PinnedDrop` correctly for the struct, but forget to give
// `PinnedDrop` as the parameter to `#[pin_data]`.
#[allow(non_camel_case_types)]
trait UselessPinnedDropImpl_you_need_to_specify_PinnedDrop {}
impl<T: $crate::init::PinnedDrop>
UselessPinnedDropImpl_you_need_to_specify_PinnedDrop for T {}
impl<$($impl_generics)*>
UselessPinnedDropImpl_you_need_to_specify_PinnedDrop for $name<$($ty_generics)*>
where $($whr)* {}
};
// When `PinnedDrop` was specified we just implement `Drop` and delegate.
(drop_prevention:
@name($name:ident),
@impl_generics($($impl_generics:tt)*),
@ty_generics($($ty_generics:tt)*),
@where($($whr:tt)*),
@pinned_drop(PinnedDrop),
) => {
impl<$($impl_generics)*> ::core::ops::Drop for $name<$($ty_generics)*>
where $($whr)*
{
fn drop(&mut self) {
// SAFETY: Since this is a destructor, `self` will not move after this function
// terminates, since it is inaccessible.
let pinned = unsafe { ::core::pin::Pin::new_unchecked(self) };
// SAFETY: Since this is a drop function, we can create this token to call the
// pinned destructor of this type.
let token = unsafe { $crate::init::__internal::OnlyCallFromDrop::new() };
$crate::init::PinnedDrop::drop(pinned, token);
}
}
};
// If some other parameter was specified, we emit a readable error.
(drop_prevention:
@name($name:ident),
@impl_generics($($impl_generics:tt)*),
@ty_generics($($ty_generics:tt)*),
@where($($whr:tt)*),
@pinned_drop($($rest:tt)*),
) => {
compile_error!(
"Wrong parameters to `#[pin_data]`, expected nothing or `PinnedDrop`, got '{}'.",
stringify!($($rest)*),
);
};
(make_pin_data:
@pin_data($pin_data:ident),
@impl_generics($($impl_generics:tt)*),
@ty_generics($($ty_generics:tt)*),
@where($($whr:tt)*),
@pinned($($(#[$($p_attr:tt)*])* $pvis:vis $p_field:ident : $p_type:ty),* $(,)?),
@not_pinned($($(#[$($attr:tt)*])* $fvis:vis $field:ident : $type:ty),* $(,)?),
) => {
// For every field, we create a projection function according to its projection type. If a
// field is structurally pinned, then it must be initialized via `PinInit`, if it is not
// structurally pinned, then it can be initialized via `Init`.
//
// The functions are `unsafe` to prevent accidentally calling them.
#[allow(dead_code)]
impl<$($impl_generics)*> $pin_data<$($ty_generics)*>
where $($whr)*
{
$(
$(#[$($p_attr)*])*
$pvis unsafe fn $p_field<E>(
self,
slot: *mut $p_type,
init: impl $crate::init::PinInit<$p_type, E>,
) -> ::core::result::Result<(), E> {
unsafe { $crate::init::PinInit::__pinned_init(init, slot) }
}
)*
$(
$(#[$($attr)*])*
$fvis unsafe fn $field<E>(
self,
slot: *mut $type,
init: impl $crate::init::Init<$type, E>,
) -> ::core::result::Result<(), E> {
unsafe { $crate::init::Init::__init(init, slot) }
}
)*
}
};
}
/// The internal init macro. Do not call manually!
///
/// This is called by the `{try_}{pin_}init!` macros with various inputs.
///
/// This macro has multiple internal call configurations, these are always the very first ident:
/// - nothing: this is the base case and called by the `{try_}{pin_}init!` macros.
/// - `with_update_parsed`: when the `..Zeroable::zeroed()` syntax has been handled.
/// - `init_slot`: recursively creates the code that initializes all fields in `slot`.
/// - `make_initializer`: recursively create the struct initializer that guarantees that every
/// field has been initialized exactly once.
#[doc(hidden)]
#[macro_export]
macro_rules! __init_internal {
(
@this($($this:ident)?),
@typ($t:path),
@fields($($fields:tt)*),
@error($err:ty),
// Either `PinData` or `InitData`, `$use_data` should only be present in the `PinData`
// case.
@data($data:ident, $($use_data:ident)?),
// `HasPinData` or `HasInitData`.
@has_data($has_data:ident, $get_data:ident),
// `pin_init_from_closure` or `init_from_closure`.
@construct_closure($construct_closure:ident),
@munch_fields(),
) => {
$crate::__init_internal!(with_update_parsed:
@this($($this)?),
@typ($t),
@fields($($fields)*),
@error($err),
@data($data, $($use_data)?),
@has_data($has_data, $get_data),
@construct_closure($construct_closure),
@zeroed(), // Nothing means default behavior.
)
};
(
@this($($this:ident)?),
@typ($t:path),
@fields($($fields:tt)*),
@error($err:ty),
// Either `PinData` or `InitData`, `$use_data` should only be present in the `PinData`
// case.
@data($data:ident, $($use_data:ident)?),
// `HasPinData` or `HasInitData`.
@has_data($has_data:ident, $get_data:ident),
// `pin_init_from_closure` or `init_from_closure`.
@construct_closure($construct_closure:ident),
@munch_fields(..Zeroable::zeroed()),
) => {
$crate::__init_internal!(with_update_parsed:
@this($($this)?),
@typ($t),
@fields($($fields)*),
@error($err),
@data($data, $($use_data)?),
@has_data($has_data, $get_data),
@construct_closure($construct_closure),
@zeroed(()), // `()` means zero all fields not mentioned.
)
};
(
@this($($this:ident)?),
@typ($t:path),
@fields($($fields:tt)*),
@error($err:ty),
// Either `PinData` or `InitData`, `$use_data` should only be present in the `PinData`
// case.
@data($data:ident, $($use_data:ident)?),
// `HasPinData` or `HasInitData`.
@has_data($has_data:ident, $get_data:ident),
// `pin_init_from_closure` or `init_from_closure`.
@construct_closure($construct_closure:ident),
@munch_fields($ignore:tt $($rest:tt)*),
) => {
$crate::__init_internal!(
@this($($this)?),
@typ($t),
@fields($($fields)*),
@error($err),
@data($data, $($use_data)?),
@has_data($has_data, $get_data),
@construct_closure($construct_closure),
@munch_fields($($rest)*),
)
};
(with_update_parsed:
@this($($this:ident)?),
@typ($t:path),
@fields($($fields:tt)*),
@error($err:ty),
// Either `PinData` or `InitData`, `$use_data` should only be present in the `PinData`
// case.
@data($data:ident, $($use_data:ident)?),
// `HasPinData` or `HasInitData`.
@has_data($has_data:ident, $get_data:ident),
// `pin_init_from_closure` or `init_from_closure`.
@construct_closure($construct_closure:ident),
@zeroed($($init_zeroed:expr)?),
) => {{
// We do not want to allow arbitrary returns, so we declare this type as the `Ok` return
// type and shadow it later when we insert the arbitrary user code. That way there will be
// no possibility of returning without `unsafe`.
struct __InitOk;
// Get the data about fields from the supplied type.
let data = unsafe {
use $crate::init::__internal::$has_data;
// Here we abuse `paste!` to retokenize `$t`. Declarative macros have some internal
// information that is associated to already parsed fragments, so a path fragment
// cannot be used in this position. Doing the retokenization results in valid rust
// code.
::kernel::macros::paste!($t::$get_data())
};
// Ensure that `data` really is of type `$data` and help with type inference:
let init = $crate::init::__internal::$data::make_closure::<_, __InitOk, $err>(
data,
move |slot| {
{
// Shadow the structure so it cannot be used to return early.
struct __InitOk;
// If `$init_zeroed` is present we should zero the slot now and not emit an
// error when fields are missing (since they will be zeroed). We also have to
// check that the type actually implements `Zeroable`.
$({
fn assert_zeroable<T: $crate::init::Zeroable>(_: *mut T) {}
// Ensure that the struct is indeed `Zeroable`.
assert_zeroable(slot);
// SAFETY: The type implements `Zeroable` by the check above.
unsafe { ::core::ptr::write_bytes(slot, 0, 1) };
$init_zeroed // This will be `()` if set.
})?
// Create the `this` so it can be referenced by the user inside of the
// expressions creating the individual fields.
$(let $this = unsafe { ::core::ptr::NonNull::new_unchecked(slot) };)?
// Initialize every field.
$crate::__init_internal!(init_slot($($use_data)?):
@data(data),
@slot(slot),
@guards(),
@munch_fields($($fields)*,),
);
// We use unreachable code to ensure that all fields have been mentioned exactly
// once, this struct initializer will still be type-checked and complain with a
// very natural error message if a field is forgotten/mentioned more than once.
#[allow(unreachable_code, clippy::diverging_sub_expression)]
let _ = || {
$crate::__init_internal!(make_initializer:
@slot(slot),
@type_name($t),
@munch_fields($($fields)*,),
@acc(),
);
};
}
Ok(__InitOk)
}
);
let init = move |slot| -> ::core::result::Result<(), $err> {
init(slot).map(|__InitOk| ())
};
let init = unsafe { $crate::init::$construct_closure::<_, $err>(init) };
init
}};
(init_slot($($use_data:ident)?):
@data($data:ident),
@slot($slot:ident),
@guards($($guards:ident,)*),
@munch_fields($(..Zeroable::zeroed())? $(,)?),
) => {
// Endpoint of munching, no fields are left. If execution reaches this point, all fields
// have been initialized. Therefore we can now dismiss the guards by forgetting them.
$(::core::mem::forget($guards);)*
};
(init_slot($use_data:ident): // `use_data` is present, so we use the `data` to init fields.
@data($data:ident),
@slot($slot:ident),
@guards($($guards:ident,)*),
// In-place initialization syntax.
@munch_fields($field:ident <- $val:expr, $($rest:tt)*),
) => {
let init = $val;
// Call the initializer.
//
// SAFETY: `slot` is valid, because we are inside of an initializer closure, we
// return when an error/panic occurs.
// We also use the `data` to require the correct trait (`Init` or `PinInit`) for `$field`.
unsafe { $data.$field(::core::ptr::addr_of_mut!((*$slot).$field), init)? };
// Create the drop guard:
//
// We rely on macro hygiene to make it impossible for users to access this local variable.
// We use `paste!` to create new hygiene for `$field`.
::kernel::macros::paste! {
// SAFETY: We forget the guard later when initialization has succeeded.
let [<$field>] = unsafe {
$crate::init::__internal::DropGuard::new(::core::ptr::addr_of_mut!((*$slot).$field))
};
$crate::__init_internal!(init_slot($use_data):
@data($data),
@slot($slot),
@guards([<$field>], $($guards,)*),
@munch_fields($($rest)*),
);
}
};
(init_slot(): // No `use_data`, so we use `Init::__init` directly.
@data($data:ident),
@slot($slot:ident),
@guards($($guards:ident,)*),
// In-place initialization syntax.
@munch_fields($field:ident <- $val:expr, $($rest:tt)*),
) => {
let init = $val;
// Call the initializer.
//
// SAFETY: `slot` is valid, because we are inside of an initializer closure, we
// return when an error/panic occurs.
unsafe { $crate::init::Init::__init(init, ::core::ptr::addr_of_mut!((*$slot).$field))? };
// Create the drop guard:
//
// We rely on macro hygiene to make it impossible for users to access this local variable.
// We use `paste!` to create new hygiene for `$field`.
::kernel::macros::paste! {
// SAFETY: We forget the guard later when initialization has succeeded.
let [<$field>] = unsafe {
$crate::init::__internal::DropGuard::new(::core::ptr::addr_of_mut!((*$slot).$field))
};
$crate::__init_internal!(init_slot():
@data($data),
@slot($slot),
@guards([<$field>], $($guards,)*),
@munch_fields($($rest)*),
);
}
};
(init_slot($($use_data:ident)?):
@data($data:ident),
@slot($slot:ident),
@guards($($guards:ident,)*),
// Init by-value.
@munch_fields($field:ident $(: $val:expr)?, $($rest:tt)*),
) => {
{
$(let $field = $val;)?
// Initialize the field.
//
// SAFETY: The memory at `slot` is uninitialized.
unsafe { ::core::ptr::write(::core::ptr::addr_of_mut!((*$slot).$field), $field) };
}
// Create the drop guard:
//
// We rely on macro hygiene to make it impossible for users to access this local variable.
// We use `paste!` to create new hygiene for `$field`.
::kernel::macros::paste! {
// SAFETY: We forget the guard later when initialization has succeeded.
let [<$field>] = unsafe {
$crate::init::__internal::DropGuard::new(::core::ptr::addr_of_mut!((*$slot).$field))
};
$crate::__init_internal!(init_slot($($use_data)?):
@data($data),
@slot($slot),
@guards([<$field>], $($guards,)*),
@munch_fields($($rest)*),
);
}
};
(make_initializer:
@slot($slot:ident),
@type_name($t:path),
@munch_fields(..Zeroable::zeroed() $(,)?),
@acc($($acc:tt)*),
) => {
// Endpoint, nothing more to munch, create the initializer. Since the users specified
// `..Zeroable::zeroed()`, the slot will already have been zeroed and all field that have
// not been overwritten are thus zero and initialized. We still check that all fields are
// actually accessible by using the struct update syntax ourselves.
// We are inside of a closure that is never executed and thus we can abuse `slot` to
// get the correct type inference here:
#[allow(unused_assignments)]
unsafe {
let mut zeroed = ::core::mem::zeroed();
// We have to use type inference here to make zeroed have the correct type. This does
// not get executed, so it has no effect.
::core::ptr::write($slot, zeroed);
zeroed = ::core::mem::zeroed();
// Here we abuse `paste!` to retokenize `$t`. Declarative macros have some internal
// information that is associated to already parsed fragments, so a path fragment
// cannot be used in this position. Doing the retokenization results in valid rust
// code.
::kernel::macros::paste!(
::core::ptr::write($slot, $t {
$($acc)*
..zeroed
});
);
}
};
(make_initializer:
@slot($slot:ident),
@type_name($t:path),
@munch_fields($(,)?),
@acc($($acc:tt)*),
) => {
// Endpoint, nothing more to munch, create the initializer.
// Since we are in the closure that is never called, this will never get executed.
// We abuse `slot` to get the correct type inference here:
unsafe {
// Here we abuse `paste!` to retokenize `$t`. Declarative macros have some internal
// information that is associated to already parsed fragments, so a path fragment
// cannot be used in this position. Doing the retokenization results in valid rust
// code.
::kernel::macros::paste!(
::core::ptr::write($slot, $t {
$($acc)*
});
);
}
};
(make_initializer:
@slot($slot:ident),
@type_name($t:path),
@munch_fields($field:ident <- $val:expr, $($rest:tt)*),
@acc($($acc:tt)*),
) => {
$crate::__init_internal!(make_initializer:
@slot($slot),
@type_name($t),
@munch_fields($($rest)*),
@acc($($acc)* $field: ::core::panic!(),),
);
};
(make_initializer:
@slot($slot:ident),
@type_name($t:path),
@munch_fields($field:ident $(: $val:expr)?, $($rest:tt)*),
@acc($($acc:tt)*),
) => {
$crate::__init_internal!(make_initializer:
@slot($slot),
@type_name($t),
@munch_fields($($rest)*),
@acc($($acc)* $field: ::core::panic!(),),
);
};
}
#[doc(hidden)]
#[macro_export]
macro_rules! __derive_zeroable {
(parse_input:
@sig(
$(#[$($struct_attr:tt)*])*
$vis:vis struct $name:ident
$(where $($whr:tt)*)?
),
@impl_generics($($impl_generics:tt)*),
@ty_generics($($ty_generics:tt)*),
@body({
$(
$(#[$($field_attr:tt)*])*
$field:ident : $field_ty:ty
),* $(,)?
}),
) => {
// SAFETY: Every field type implements `Zeroable` and padding bytes may be zero.
#[automatically_derived]
unsafe impl<$($impl_generics)*> $crate::init::Zeroable for $name<$($ty_generics)*>
where
$($($whr)*)?
{}
const _: () = {
fn assert_zeroable<T: ?::core::marker::Sized + $crate::init::Zeroable>() {}
fn ensure_zeroable<$($impl_generics)*>()
where $($($whr)*)?
{
$(assert_zeroable::<$field_ty>();)*
}
};
};
}