linux/drivers/spi/spi-sprd.c
Lanqing Liu 63f5ffc46d
spi: sprd: Fix the error data length in SPI read-only mode
In SPI read-only mode, we will always return the writing length,
which is always the power of "bits_per_word", but the length unit
using by users is byte.

Thus this patch fixes the returning length by getting from
read_bufs() function to get the correct length.

Signed-off-by: Lanqing Liu <lanqing.liu@spreadtrum.com>
Signed-off-by: Baolin Wang <baolin.wang@linaro.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
2019-01-15 14:16:35 +00:00

748 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2018 Spreadtrum Communications Inc.
#include <linux/clk.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/spi/spi.h>
#define SPRD_SPI_TXD 0x0
#define SPRD_SPI_CLKD 0x4
#define SPRD_SPI_CTL0 0x8
#define SPRD_SPI_CTL1 0xc
#define SPRD_SPI_CTL2 0x10
#define SPRD_SPI_CTL3 0x14
#define SPRD_SPI_CTL4 0x18
#define SPRD_SPI_CTL5 0x1c
#define SPRD_SPI_INT_EN 0x20
#define SPRD_SPI_INT_CLR 0x24
#define SPRD_SPI_INT_RAW_STS 0x28
#define SPRD_SPI_INT_MASK_STS 0x2c
#define SPRD_SPI_STS1 0x30
#define SPRD_SPI_STS2 0x34
#define SPRD_SPI_DSP_WAIT 0x38
#define SPRD_SPI_STS3 0x3c
#define SPRD_SPI_CTL6 0x40
#define SPRD_SPI_STS4 0x44
#define SPRD_SPI_FIFO_RST 0x48
#define SPRD_SPI_CTL7 0x4c
#define SPRD_SPI_STS5 0x50
#define SPRD_SPI_CTL8 0x54
#define SPRD_SPI_CTL9 0x58
#define SPRD_SPI_CTL10 0x5c
#define SPRD_SPI_CTL11 0x60
#define SPRD_SPI_CTL12 0x64
#define SPRD_SPI_STS6 0x68
#define SPRD_SPI_STS7 0x6c
#define SPRD_SPI_STS8 0x70
#define SPRD_SPI_STS9 0x74
/* Bits & mask definition for register CTL0 */
#define SPRD_SPI_SCK_REV BIT(13)
#define SPRD_SPI_NG_TX BIT(1)
#define SPRD_SPI_NG_RX BIT(0)
#define SPRD_SPI_CHNL_LEN_MASK GENMASK(4, 0)
#define SPRD_SPI_CSN_MASK GENMASK(11, 8)
#define SPRD_SPI_CS0_VALID BIT(8)
/* Bits & mask definition for register SPI_INT_EN */
#define SPRD_SPI_TX_END_INT_EN BIT(8)
#define SPRD_SPI_RX_END_INT_EN BIT(9)
/* Bits & mask definition for register SPI_INT_RAW_STS */
#define SPRD_SPI_TX_END_RAW BIT(8)
#define SPRD_SPI_RX_END_RAW BIT(9)
/* Bits & mask definition for register SPI_INT_CLR */
#define SPRD_SPI_TX_END_CLR BIT(8)
#define SPRD_SPI_RX_END_CLR BIT(9)
/* Bits & mask definition for register INT_MASK_STS */
#define SPRD_SPI_MASK_RX_END BIT(9)
#define SPRD_SPI_MASK_TX_END BIT(8)
/* Bits & mask definition for register STS2 */
#define SPRD_SPI_TX_BUSY BIT(8)
/* Bits & mask definition for register CTL1 */
#define SPRD_SPI_RX_MODE BIT(12)
#define SPRD_SPI_TX_MODE BIT(13)
#define SPRD_SPI_RTX_MD_MASK GENMASK(13, 12)
/* Bits & mask definition for register CTL2 */
#define SPRD_SPI_DMA_EN BIT(6)
/* Bits & mask definition for register CTL4 */
#define SPRD_SPI_START_RX BIT(9)
#define SPRD_SPI_ONLY_RECV_MASK GENMASK(8, 0)
/* Bits & mask definition for register SPI_INT_CLR */
#define SPRD_SPI_RX_END_INT_CLR BIT(9)
#define SPRD_SPI_TX_END_INT_CLR BIT(8)
/* Bits & mask definition for register SPI_INT_RAW */
#define SPRD_SPI_RX_END_IRQ BIT(9)
#define SPRD_SPI_TX_END_IRQ BIT(8)
/* Bits & mask definition for register CTL12 */
#define SPRD_SPI_SW_RX_REQ BIT(0)
#define SPRD_SPI_SW_TX_REQ BIT(1)
/* Bits & mask definition for register CTL7 */
#define SPRD_SPI_DATA_LINE2_EN BIT(15)
#define SPRD_SPI_MODE_MASK GENMASK(5, 3)
#define SPRD_SPI_MODE_OFFSET 3
#define SPRD_SPI_3WIRE_MODE 4
#define SPRD_SPI_4WIRE_MODE 0
/* Bits & mask definition for register CTL8 */
#define SPRD_SPI_TX_MAX_LEN_MASK GENMASK(19, 0)
#define SPRD_SPI_TX_LEN_H_MASK GENMASK(3, 0)
#define SPRD_SPI_TX_LEN_H_OFFSET 16
/* Bits & mask definition for register CTL9 */
#define SPRD_SPI_TX_LEN_L_MASK GENMASK(15, 0)
/* Bits & mask definition for register CTL10 */
#define SPRD_SPI_RX_MAX_LEN_MASK GENMASK(19, 0)
#define SPRD_SPI_RX_LEN_H_MASK GENMASK(3, 0)
#define SPRD_SPI_RX_LEN_H_OFFSET 16
/* Bits & mask definition for register CTL11 */
#define SPRD_SPI_RX_LEN_L_MASK GENMASK(15, 0)
/* Default & maximum word delay cycles */
#define SPRD_SPI_MIN_DELAY_CYCLE 14
#define SPRD_SPI_MAX_DELAY_CYCLE 130
#define SPRD_SPI_FIFO_SIZE 32
#define SPRD_SPI_CHIP_CS_NUM 0x4
#define SPRD_SPI_CHNL_LEN 2
#define SPRD_SPI_DEFAULT_SOURCE 26000000
#define SPRD_SPI_MAX_SPEED_HZ 48000000
#define SPRD_SPI_AUTOSUSPEND_DELAY 100
struct sprd_spi {
void __iomem *base;
struct device *dev;
struct clk *clk;
u32 src_clk;
u32 hw_mode;
u32 trans_len;
u32 trans_mode;
u32 word_delay;
u32 hw_speed_hz;
u32 len;
int status;
const void *tx_buf;
void *rx_buf;
int (*read_bufs)(struct sprd_spi *ss, u32 len);
int (*write_bufs)(struct sprd_spi *ss, u32 len);
};
static u32 sprd_spi_transfer_max_timeout(struct sprd_spi *ss,
struct spi_transfer *t)
{
/*
* The time spent on transmission of the full FIFO data is the maximum
* SPI transmission time.
*/
u32 size = t->bits_per_word * SPRD_SPI_FIFO_SIZE;
u32 bit_time_us = DIV_ROUND_UP(USEC_PER_SEC, ss->hw_speed_hz);
u32 total_time_us = size * bit_time_us;
/*
* There is an interval between data and the data in our SPI hardware,
* so the total transmission time need add the interval time.
*/
u32 interval_cycle = SPRD_SPI_FIFO_SIZE * ss->word_delay;
u32 interval_time_us = DIV_ROUND_UP(interval_cycle * USEC_PER_SEC,
ss->src_clk);
return total_time_us + interval_time_us;
}
static int sprd_spi_wait_for_tx_end(struct sprd_spi *ss, struct spi_transfer *t)
{
u32 val, us;
int ret;
us = sprd_spi_transfer_max_timeout(ss, t);
ret = readl_relaxed_poll_timeout(ss->base + SPRD_SPI_INT_RAW_STS, val,
val & SPRD_SPI_TX_END_IRQ, 0, us);
if (ret) {
dev_err(ss->dev, "SPI error, spi send timeout!\n");
return ret;
}
ret = readl_relaxed_poll_timeout(ss->base + SPRD_SPI_STS2, val,
!(val & SPRD_SPI_TX_BUSY), 0, us);
if (ret) {
dev_err(ss->dev, "SPI error, spi busy timeout!\n");
return ret;
}
writel_relaxed(SPRD_SPI_TX_END_INT_CLR, ss->base + SPRD_SPI_INT_CLR);
return 0;
}
static int sprd_spi_wait_for_rx_end(struct sprd_spi *ss, struct spi_transfer *t)
{
u32 val, us;
int ret;
us = sprd_spi_transfer_max_timeout(ss, t);
ret = readl_relaxed_poll_timeout(ss->base + SPRD_SPI_INT_RAW_STS, val,
val & SPRD_SPI_RX_END_IRQ, 0, us);
if (ret) {
dev_err(ss->dev, "SPI error, spi rx timeout!\n");
return ret;
}
writel_relaxed(SPRD_SPI_RX_END_INT_CLR, ss->base + SPRD_SPI_INT_CLR);
return 0;
}
static void sprd_spi_tx_req(struct sprd_spi *ss)
{
writel_relaxed(SPRD_SPI_SW_TX_REQ, ss->base + SPRD_SPI_CTL12);
}
static void sprd_spi_rx_req(struct sprd_spi *ss)
{
writel_relaxed(SPRD_SPI_SW_RX_REQ, ss->base + SPRD_SPI_CTL12);
}
static void sprd_spi_enter_idle(struct sprd_spi *ss)
{
u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL1);
val &= ~SPRD_SPI_RTX_MD_MASK;
writel_relaxed(val, ss->base + SPRD_SPI_CTL1);
}
static void sprd_spi_set_transfer_bits(struct sprd_spi *ss, u32 bits)
{
u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL0);
/* Set the valid bits for every transaction */
val &= ~(SPRD_SPI_CHNL_LEN_MASK << SPRD_SPI_CHNL_LEN);
val |= bits << SPRD_SPI_CHNL_LEN;
writel_relaxed(val, ss->base + SPRD_SPI_CTL0);
}
static void sprd_spi_set_tx_length(struct sprd_spi *ss, u32 length)
{
u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL8);
length &= SPRD_SPI_TX_MAX_LEN_MASK;
val &= ~SPRD_SPI_TX_LEN_H_MASK;
val |= length >> SPRD_SPI_TX_LEN_H_OFFSET;
writel_relaxed(val, ss->base + SPRD_SPI_CTL8);
val = length & SPRD_SPI_TX_LEN_L_MASK;
writel_relaxed(val, ss->base + SPRD_SPI_CTL9);
}
static void sprd_spi_set_rx_length(struct sprd_spi *ss, u32 length)
{
u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL10);
length &= SPRD_SPI_RX_MAX_LEN_MASK;
val &= ~SPRD_SPI_RX_LEN_H_MASK;
val |= length >> SPRD_SPI_RX_LEN_H_OFFSET;
writel_relaxed(val, ss->base + SPRD_SPI_CTL10);
val = length & SPRD_SPI_RX_LEN_L_MASK;
writel_relaxed(val, ss->base + SPRD_SPI_CTL11);
}
static void sprd_spi_chipselect(struct spi_device *sdev, bool cs)
{
struct spi_controller *sctlr = sdev->controller;
struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
u32 val;
val = readl_relaxed(ss->base + SPRD_SPI_CTL0);
/* The SPI controller will pull down CS pin if cs is 0 */
if (!cs) {
val &= ~SPRD_SPI_CS0_VALID;
writel_relaxed(val, ss->base + SPRD_SPI_CTL0);
} else {
val |= SPRD_SPI_CSN_MASK;
writel_relaxed(val, ss->base + SPRD_SPI_CTL0);
}
}
static int sprd_spi_write_only_receive(struct sprd_spi *ss, u32 len)
{
u32 val;
/* Clear the start receive bit and reset receive data number */
val = readl_relaxed(ss->base + SPRD_SPI_CTL4);
val &= ~(SPRD_SPI_START_RX | SPRD_SPI_ONLY_RECV_MASK);
writel_relaxed(val, ss->base + SPRD_SPI_CTL4);
/* Set the receive data length */
val = readl_relaxed(ss->base + SPRD_SPI_CTL4);
val |= len & SPRD_SPI_ONLY_RECV_MASK;
writel_relaxed(val, ss->base + SPRD_SPI_CTL4);
/* Trigger to receive data */
val = readl_relaxed(ss->base + SPRD_SPI_CTL4);
val |= SPRD_SPI_START_RX;
writel_relaxed(val, ss->base + SPRD_SPI_CTL4);
return len;
}
static int sprd_spi_write_bufs_u8(struct sprd_spi *ss, u32 len)
{
u8 *tx_p = (u8 *)ss->tx_buf;
int i;
for (i = 0; i < len; i++)
writeb_relaxed(tx_p[i], ss->base + SPRD_SPI_TXD);
ss->tx_buf += i;
return i;
}
static int sprd_spi_write_bufs_u16(struct sprd_spi *ss, u32 len)
{
u16 *tx_p = (u16 *)ss->tx_buf;
int i;
for (i = 0; i < len; i++)
writew_relaxed(tx_p[i], ss->base + SPRD_SPI_TXD);
ss->tx_buf += i << 1;
return i << 1;
}
static int sprd_spi_write_bufs_u32(struct sprd_spi *ss, u32 len)
{
u32 *tx_p = (u32 *)ss->tx_buf;
int i;
for (i = 0; i < len; i++)
writel_relaxed(tx_p[i], ss->base + SPRD_SPI_TXD);
ss->tx_buf += i << 2;
return i << 2;
}
static int sprd_spi_read_bufs_u8(struct sprd_spi *ss, u32 len)
{
u8 *rx_p = (u8 *)ss->rx_buf;
int i;
for (i = 0; i < len; i++)
rx_p[i] = readb_relaxed(ss->base + SPRD_SPI_TXD);
ss->rx_buf += i;
return i;
}
static int sprd_spi_read_bufs_u16(struct sprd_spi *ss, u32 len)
{
u16 *rx_p = (u16 *)ss->rx_buf;
int i;
for (i = 0; i < len; i++)
rx_p[i] = readw_relaxed(ss->base + SPRD_SPI_TXD);
ss->rx_buf += i << 1;
return i << 1;
}
static int sprd_spi_read_bufs_u32(struct sprd_spi *ss, u32 len)
{
u32 *rx_p = (u32 *)ss->rx_buf;
int i;
for (i = 0; i < len; i++)
rx_p[i] = readl_relaxed(ss->base + SPRD_SPI_TXD);
ss->rx_buf += i << 2;
return i << 2;
}
static int sprd_spi_txrx_bufs(struct spi_device *sdev, struct spi_transfer *t)
{
struct sprd_spi *ss = spi_controller_get_devdata(sdev->controller);
u32 trans_len = ss->trans_len, len;
int ret, write_size = 0, read_size = 0;
while (trans_len) {
len = trans_len > SPRD_SPI_FIFO_SIZE ? SPRD_SPI_FIFO_SIZE :
trans_len;
if (ss->trans_mode & SPRD_SPI_TX_MODE) {
sprd_spi_set_tx_length(ss, len);
write_size += ss->write_bufs(ss, len);
/*
* For our 3 wires mode or dual TX line mode, we need
* to request the controller to transfer.
*/
if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL)
sprd_spi_tx_req(ss);
ret = sprd_spi_wait_for_tx_end(ss, t);
} else {
sprd_spi_set_rx_length(ss, len);
/*
* For our 3 wires mode or dual TX line mode, we need
* to request the controller to read.
*/
if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL)
sprd_spi_rx_req(ss);
else
write_size += ss->write_bufs(ss, len);
ret = sprd_spi_wait_for_rx_end(ss, t);
}
if (ret)
goto complete;
if (ss->trans_mode & SPRD_SPI_RX_MODE)
read_size += ss->read_bufs(ss, len);
trans_len -= len;
}
if (ss->trans_mode & SPRD_SPI_TX_MODE)
ret = write_size;
else
ret = read_size;
complete:
sprd_spi_enter_idle(ss);
return ret;
}
static void sprd_spi_set_speed(struct sprd_spi *ss, u32 speed_hz)
{
/*
* From SPI datasheet, the prescale calculation formula:
* prescale = SPI source clock / (2 * SPI_freq) - 1;
*/
u32 clk_div = DIV_ROUND_UP(ss->src_clk, speed_hz << 1) - 1;
/* Save the real hardware speed */
ss->hw_speed_hz = (ss->src_clk >> 1) / (clk_div + 1);
writel_relaxed(clk_div, ss->base + SPRD_SPI_CLKD);
}
static void sprd_spi_init_hw(struct sprd_spi *ss, struct spi_transfer *t)
{
u16 word_delay, interval;
u32 val;
val = readl_relaxed(ss->base + SPRD_SPI_CTL7);
val &= ~(SPRD_SPI_SCK_REV | SPRD_SPI_NG_TX | SPRD_SPI_NG_RX);
/* Set default chip selection, clock phase and clock polarity */
val |= ss->hw_mode & SPI_CPHA ? SPRD_SPI_NG_RX : SPRD_SPI_NG_TX;
val |= ss->hw_mode & SPI_CPOL ? SPRD_SPI_SCK_REV : 0;
writel_relaxed(val, ss->base + SPRD_SPI_CTL0);
/*
* Set the intervals of two SPI frames, and the inteval calculation
* formula as below per datasheet:
* interval time (source clock cycles) = interval * 4 + 10.
*/
word_delay = clamp_t(u16, t->word_delay, SPRD_SPI_MIN_DELAY_CYCLE,
SPRD_SPI_MAX_DELAY_CYCLE);
interval = DIV_ROUND_UP(word_delay - 10, 4);
ss->word_delay = interval * 4 + 10;
writel_relaxed(interval, ss->base + SPRD_SPI_CTL5);
/* Reset SPI fifo */
writel_relaxed(1, ss->base + SPRD_SPI_FIFO_RST);
writel_relaxed(0, ss->base + SPRD_SPI_FIFO_RST);
/* Set SPI work mode */
val = readl_relaxed(ss->base + SPRD_SPI_CTL7);
val &= ~SPRD_SPI_MODE_MASK;
if (ss->hw_mode & SPI_3WIRE)
val |= SPRD_SPI_3WIRE_MODE << SPRD_SPI_MODE_OFFSET;
else
val |= SPRD_SPI_4WIRE_MODE << SPRD_SPI_MODE_OFFSET;
if (ss->hw_mode & SPI_TX_DUAL)
val |= SPRD_SPI_DATA_LINE2_EN;
else
val &= ~SPRD_SPI_DATA_LINE2_EN;
writel_relaxed(val, ss->base + SPRD_SPI_CTL7);
}
static int sprd_spi_setup_transfer(struct spi_device *sdev,
struct spi_transfer *t)
{
struct sprd_spi *ss = spi_controller_get_devdata(sdev->controller);
u8 bits_per_word = t->bits_per_word;
u32 val, mode = 0;
ss->len = t->len;
ss->tx_buf = t->tx_buf;
ss->rx_buf = t->rx_buf;
ss->hw_mode = sdev->mode;
sprd_spi_init_hw(ss, t);
/* Set tansfer speed and valid bits */
sprd_spi_set_speed(ss, t->speed_hz);
sprd_spi_set_transfer_bits(ss, bits_per_word);
if (bits_per_word > 16)
bits_per_word = round_up(bits_per_word, 16);
else
bits_per_word = round_up(bits_per_word, 8);
switch (bits_per_word) {
case 8:
ss->trans_len = t->len;
ss->read_bufs = sprd_spi_read_bufs_u8;
ss->write_bufs = sprd_spi_write_bufs_u8;
break;
case 16:
ss->trans_len = t->len >> 1;
ss->read_bufs = sprd_spi_read_bufs_u16;
ss->write_bufs = sprd_spi_write_bufs_u16;
break;
case 32:
ss->trans_len = t->len >> 2;
ss->read_bufs = sprd_spi_read_bufs_u32;
ss->write_bufs = sprd_spi_write_bufs_u32;
break;
default:
return -EINVAL;
}
/* Set transfer read or write mode */
val = readl_relaxed(ss->base + SPRD_SPI_CTL1);
val &= ~SPRD_SPI_RTX_MD_MASK;
if (t->tx_buf)
mode |= SPRD_SPI_TX_MODE;
if (t->rx_buf)
mode |= SPRD_SPI_RX_MODE;
writel_relaxed(val | mode, ss->base + SPRD_SPI_CTL1);
ss->trans_mode = mode;
/*
* If in only receive mode, we need to trigger the SPI controller to
* receive data automatically.
*/
if (ss->trans_mode == SPRD_SPI_RX_MODE)
ss->write_bufs = sprd_spi_write_only_receive;
return 0;
}
static int sprd_spi_transfer_one(struct spi_controller *sctlr,
struct spi_device *sdev,
struct spi_transfer *t)
{
int ret;
ret = sprd_spi_setup_transfer(sdev, t);
if (ret)
goto setup_err;
ret = sprd_spi_txrx_bufs(sdev, t);
if (ret == t->len)
ret = 0;
else if (ret >= 0)
ret = -EREMOTEIO;
setup_err:
spi_finalize_current_transfer(sctlr);
return ret;
}
static int sprd_spi_clk_init(struct platform_device *pdev, struct sprd_spi *ss)
{
struct clk *clk_spi, *clk_parent;
clk_spi = devm_clk_get(&pdev->dev, "spi");
if (IS_ERR(clk_spi)) {
dev_warn(&pdev->dev, "can't get the spi clock\n");
clk_spi = NULL;
}
clk_parent = devm_clk_get(&pdev->dev, "source");
if (IS_ERR(clk_parent)) {
dev_warn(&pdev->dev, "can't get the source clock\n");
clk_parent = NULL;
}
ss->clk = devm_clk_get(&pdev->dev, "enable");
if (IS_ERR(ss->clk)) {
dev_err(&pdev->dev, "can't get the enable clock\n");
return PTR_ERR(ss->clk);
}
if (!clk_set_parent(clk_spi, clk_parent))
ss->src_clk = clk_get_rate(clk_spi);
else
ss->src_clk = SPRD_SPI_DEFAULT_SOURCE;
return 0;
}
static int sprd_spi_probe(struct platform_device *pdev)
{
struct spi_controller *sctlr;
struct resource *res;
struct sprd_spi *ss;
int ret;
pdev->id = of_alias_get_id(pdev->dev.of_node, "spi");
sctlr = spi_alloc_master(&pdev->dev, sizeof(*ss));
if (!sctlr)
return -ENOMEM;
ss = spi_controller_get_devdata(sctlr);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
ss->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(ss->base)) {
ret = PTR_ERR(ss->base);
goto free_controller;
}
ss->dev = &pdev->dev;
sctlr->dev.of_node = pdev->dev.of_node;
sctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_3WIRE | SPI_TX_DUAL;
sctlr->bus_num = pdev->id;
sctlr->set_cs = sprd_spi_chipselect;
sctlr->transfer_one = sprd_spi_transfer_one;
sctlr->auto_runtime_pm = true;
sctlr->max_speed_hz = min_t(u32, ss->src_clk >> 1,
SPRD_SPI_MAX_SPEED_HZ);
platform_set_drvdata(pdev, sctlr);
ret = sprd_spi_clk_init(pdev, ss);
if (ret)
goto free_controller;
ret = clk_prepare_enable(ss->clk);
if (ret)
goto free_controller;
ret = pm_runtime_set_active(&pdev->dev);
if (ret < 0)
goto disable_clk;
pm_runtime_set_autosuspend_delay(&pdev->dev,
SPRD_SPI_AUTOSUSPEND_DELAY);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_enable(&pdev->dev);
ret = pm_runtime_get_sync(&pdev->dev);
if (ret < 0) {
dev_err(&pdev->dev, "failed to resume SPI controller\n");
goto err_rpm_put;
}
ret = devm_spi_register_controller(&pdev->dev, sctlr);
if (ret)
goto err_rpm_put;
pm_runtime_mark_last_busy(&pdev->dev);
pm_runtime_put_autosuspend(&pdev->dev);
return 0;
err_rpm_put:
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_disable(&pdev->dev);
disable_clk:
clk_disable_unprepare(ss->clk);
free_controller:
spi_controller_put(sctlr);
return ret;
}
static int sprd_spi_remove(struct platform_device *pdev)
{
struct spi_controller *sctlr = platform_get_drvdata(pdev);
struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
int ret;
ret = pm_runtime_get_sync(ss->dev);
if (ret < 0) {
dev_err(ss->dev, "failed to resume SPI controller\n");
return ret;
}
clk_disable_unprepare(ss->clk);
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return 0;
}
static int __maybe_unused sprd_spi_runtime_suspend(struct device *dev)
{
struct spi_controller *sctlr = dev_get_drvdata(dev);
struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
clk_disable_unprepare(ss->clk);
return 0;
}
static int __maybe_unused sprd_spi_runtime_resume(struct device *dev)
{
struct spi_controller *sctlr = dev_get_drvdata(dev);
struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
int ret;
ret = clk_prepare_enable(ss->clk);
if (ret)
return ret;
return 0;
}
static const struct dev_pm_ops sprd_spi_pm_ops = {
SET_RUNTIME_PM_OPS(sprd_spi_runtime_suspend,
sprd_spi_runtime_resume, NULL)
};
static const struct of_device_id sprd_spi_of_match[] = {
{ .compatible = "sprd,sc9860-spi", },
{ /* sentinel */ }
};
static struct platform_driver sprd_spi_driver = {
.driver = {
.name = "sprd-spi",
.of_match_table = sprd_spi_of_match,
.pm = &sprd_spi_pm_ops,
},
.probe = sprd_spi_probe,
.remove = sprd_spi_remove,
};
module_platform_driver(sprd_spi_driver);
MODULE_DESCRIPTION("Spreadtrum SPI Controller driver");
MODULE_AUTHOR("Lanqing Liu <lanqing.liu@spreadtrum.com>");
MODULE_LICENSE("GPL v2");