Thomas Gleixner 1802d0beec treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 174
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license version 2 as
  published by the free software foundation this program is
  distributed in the hope that it will be useful but without any
  warranty without even the implied warranty of merchantability or
  fitness for a particular purpose see the gnu general public license
  for more details

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 655 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070034.575739538@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-30 11:26:41 -07:00

371 lines
8.4 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2014 MediaTek Inc.
* Author: James Liao <jamesjj.liao@mediatek.com>
*/
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/clkdev.h>
#include <linux/delay.h>
#include "clk-mtk.h"
#define REG_CON0 0
#define REG_CON1 4
#define CON0_BASE_EN BIT(0)
#define CON0_PWR_ON BIT(0)
#define CON0_ISO_EN BIT(1)
#define PCW_CHG_MASK BIT(31)
#define AUDPLL_TUNER_EN BIT(31)
#define POSTDIV_MASK 0x7
/* default 7 bits integer, can be overridden with pcwibits. */
#define INTEGER_BITS 7
/*
* MediaTek PLLs are configured through their pcw value. The pcw value describes
* a divider in the PLL feedback loop which consists of 7 bits for the integer
* part and the remaining bits (if present) for the fractional part. Also they
* have a 3 bit power-of-two post divider.
*/
struct mtk_clk_pll {
struct clk_hw hw;
void __iomem *base_addr;
void __iomem *pd_addr;
void __iomem *pwr_addr;
void __iomem *tuner_addr;
void __iomem *tuner_en_addr;
void __iomem *pcw_addr;
void __iomem *pcw_chg_addr;
const struct mtk_pll_data *data;
};
static inline struct mtk_clk_pll *to_mtk_clk_pll(struct clk_hw *hw)
{
return container_of(hw, struct mtk_clk_pll, hw);
}
static int mtk_pll_is_prepared(struct clk_hw *hw)
{
struct mtk_clk_pll *pll = to_mtk_clk_pll(hw);
return (readl(pll->base_addr + REG_CON0) & CON0_BASE_EN) != 0;
}
static unsigned long __mtk_pll_recalc_rate(struct mtk_clk_pll *pll, u32 fin,
u32 pcw, int postdiv)
{
int pcwbits = pll->data->pcwbits;
int pcwfbits = 0;
int ibits;
u64 vco;
u8 c = 0;
/* The fractional part of the PLL divider. */
ibits = pll->data->pcwibits ? pll->data->pcwibits : INTEGER_BITS;
if (pcwbits > ibits)
pcwfbits = pcwbits - ibits;
vco = (u64)fin * pcw;
if (pcwfbits && (vco & GENMASK(pcwfbits - 1, 0)))
c = 1;
vco >>= pcwfbits;
if (c)
vco++;
return ((unsigned long)vco + postdiv - 1) / postdiv;
}
static void __mtk_pll_tuner_enable(struct mtk_clk_pll *pll)
{
u32 r;
if (pll->tuner_en_addr) {
r = readl(pll->tuner_en_addr) | BIT(pll->data->tuner_en_bit);
writel(r, pll->tuner_en_addr);
} else if (pll->tuner_addr) {
r = readl(pll->tuner_addr) | AUDPLL_TUNER_EN;
writel(r, pll->tuner_addr);
}
}
static void __mtk_pll_tuner_disable(struct mtk_clk_pll *pll)
{
u32 r;
if (pll->tuner_en_addr) {
r = readl(pll->tuner_en_addr) & ~BIT(pll->data->tuner_en_bit);
writel(r, pll->tuner_en_addr);
} else if (pll->tuner_addr) {
r = readl(pll->tuner_addr) & ~AUDPLL_TUNER_EN;
writel(r, pll->tuner_addr);
}
}
static void mtk_pll_set_rate_regs(struct mtk_clk_pll *pll, u32 pcw,
int postdiv)
{
u32 chg, val;
/* disable tuner */
__mtk_pll_tuner_disable(pll);
/* set postdiv */
val = readl(pll->pd_addr);
val &= ~(POSTDIV_MASK << pll->data->pd_shift);
val |= (ffs(postdiv) - 1) << pll->data->pd_shift;
/* postdiv and pcw need to set at the same time if on same register */
if (pll->pd_addr != pll->pcw_addr) {
writel(val, pll->pd_addr);
val = readl(pll->pcw_addr);
}
/* set pcw */
val &= ~GENMASK(pll->data->pcw_shift + pll->data->pcwbits - 1,
pll->data->pcw_shift);
val |= pcw << pll->data->pcw_shift;
writel(val, pll->pcw_addr);
chg = readl(pll->pcw_chg_addr) | PCW_CHG_MASK;
writel(chg, pll->pcw_chg_addr);
if (pll->tuner_addr)
writel(val + 1, pll->tuner_addr);
/* restore tuner_en */
__mtk_pll_tuner_enable(pll);
udelay(20);
}
/*
* mtk_pll_calc_values - calculate good values for a given input frequency.
* @pll: The pll
* @pcw: The pcw value (output)
* @postdiv: The post divider (output)
* @freq: The desired target frequency
* @fin: The input frequency
*
*/
static void mtk_pll_calc_values(struct mtk_clk_pll *pll, u32 *pcw, u32 *postdiv,
u32 freq, u32 fin)
{
unsigned long fmin = pll->data->fmin ? pll->data->fmin : (1000 * MHZ);
const struct mtk_pll_div_table *div_table = pll->data->div_table;
u64 _pcw;
int ibits;
u32 val;
if (freq > pll->data->fmax)
freq = pll->data->fmax;
if (div_table) {
if (freq > div_table[0].freq)
freq = div_table[0].freq;
for (val = 0; div_table[val + 1].freq != 0; val++) {
if (freq > div_table[val + 1].freq)
break;
}
*postdiv = 1 << val;
} else {
for (val = 0; val < 5; val++) {
*postdiv = 1 << val;
if ((u64)freq * *postdiv >= fmin)
break;
}
}
/* _pcw = freq * postdiv / fin * 2^pcwfbits */
ibits = pll->data->pcwibits ? pll->data->pcwibits : INTEGER_BITS;
_pcw = ((u64)freq << val) << (pll->data->pcwbits - ibits);
do_div(_pcw, fin);
*pcw = (u32)_pcw;
}
static int mtk_pll_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct mtk_clk_pll *pll = to_mtk_clk_pll(hw);
u32 pcw = 0;
u32 postdiv;
mtk_pll_calc_values(pll, &pcw, &postdiv, rate, parent_rate);
mtk_pll_set_rate_regs(pll, pcw, postdiv);
return 0;
}
static unsigned long mtk_pll_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct mtk_clk_pll *pll = to_mtk_clk_pll(hw);
u32 postdiv;
u32 pcw;
postdiv = (readl(pll->pd_addr) >> pll->data->pd_shift) & POSTDIV_MASK;
postdiv = 1 << postdiv;
pcw = readl(pll->pcw_addr) >> pll->data->pcw_shift;
pcw &= GENMASK(pll->data->pcwbits - 1, 0);
return __mtk_pll_recalc_rate(pll, parent_rate, pcw, postdiv);
}
static long mtk_pll_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct mtk_clk_pll *pll = to_mtk_clk_pll(hw);
u32 pcw = 0;
int postdiv;
mtk_pll_calc_values(pll, &pcw, &postdiv, rate, *prate);
return __mtk_pll_recalc_rate(pll, *prate, pcw, postdiv);
}
static int mtk_pll_prepare(struct clk_hw *hw)
{
struct mtk_clk_pll *pll = to_mtk_clk_pll(hw);
u32 r;
r = readl(pll->pwr_addr) | CON0_PWR_ON;
writel(r, pll->pwr_addr);
udelay(1);
r = readl(pll->pwr_addr) & ~CON0_ISO_EN;
writel(r, pll->pwr_addr);
udelay(1);
r = readl(pll->base_addr + REG_CON0);
r |= pll->data->en_mask;
writel(r, pll->base_addr + REG_CON0);
__mtk_pll_tuner_enable(pll);
udelay(20);
if (pll->data->flags & HAVE_RST_BAR) {
r = readl(pll->base_addr + REG_CON0);
r |= pll->data->rst_bar_mask;
writel(r, pll->base_addr + REG_CON0);
}
return 0;
}
static void mtk_pll_unprepare(struct clk_hw *hw)
{
struct mtk_clk_pll *pll = to_mtk_clk_pll(hw);
u32 r;
if (pll->data->flags & HAVE_RST_BAR) {
r = readl(pll->base_addr + REG_CON0);
r &= ~pll->data->rst_bar_mask;
writel(r, pll->base_addr + REG_CON0);
}
__mtk_pll_tuner_disable(pll);
r = readl(pll->base_addr + REG_CON0);
r &= ~CON0_BASE_EN;
writel(r, pll->base_addr + REG_CON0);
r = readl(pll->pwr_addr) | CON0_ISO_EN;
writel(r, pll->pwr_addr);
r = readl(pll->pwr_addr) & ~CON0_PWR_ON;
writel(r, pll->pwr_addr);
}
static const struct clk_ops mtk_pll_ops = {
.is_prepared = mtk_pll_is_prepared,
.prepare = mtk_pll_prepare,
.unprepare = mtk_pll_unprepare,
.recalc_rate = mtk_pll_recalc_rate,
.round_rate = mtk_pll_round_rate,
.set_rate = mtk_pll_set_rate,
};
static struct clk *mtk_clk_register_pll(const struct mtk_pll_data *data,
void __iomem *base)
{
struct mtk_clk_pll *pll;
struct clk_init_data init = {};
struct clk *clk;
const char *parent_name = "clk26m";
pll = kzalloc(sizeof(*pll), GFP_KERNEL);
if (!pll)
return ERR_PTR(-ENOMEM);
pll->base_addr = base + data->reg;
pll->pwr_addr = base + data->pwr_reg;
pll->pd_addr = base + data->pd_reg;
pll->pcw_addr = base + data->pcw_reg;
if (data->pcw_chg_reg)
pll->pcw_chg_addr = base + data->pcw_chg_reg;
else
pll->pcw_chg_addr = pll->base_addr + REG_CON1;
if (data->tuner_reg)
pll->tuner_addr = base + data->tuner_reg;
if (data->tuner_en_reg)
pll->tuner_en_addr = base + data->tuner_en_reg;
pll->hw.init = &init;
pll->data = data;
init.name = data->name;
init.flags = (data->flags & PLL_AO) ? CLK_IS_CRITICAL : 0;
init.ops = &mtk_pll_ops;
if (data->parent_name)
init.parent_names = &data->parent_name;
else
init.parent_names = &parent_name;
init.num_parents = 1;
clk = clk_register(NULL, &pll->hw);
if (IS_ERR(clk))
kfree(pll);
return clk;
}
void mtk_clk_register_plls(struct device_node *node,
const struct mtk_pll_data *plls, int num_plls, struct clk_onecell_data *clk_data)
{
void __iomem *base;
int i;
struct clk *clk;
base = of_iomap(node, 0);
if (!base) {
pr_err("%s(): ioremap failed\n", __func__);
return;
}
for (i = 0; i < num_plls; i++) {
const struct mtk_pll_data *pll = &plls[i];
clk = mtk_clk_register_pll(pll, base);
if (IS_ERR(clk)) {
pr_err("Failed to register clk %s: %ld\n",
pll->name, PTR_ERR(clk));
continue;
}
clk_data->clks[pll->id] = clk;
}
}