dd3f40b539
Replace the duplicate ACPI "ROTM" data parsing code with the new shared iio_read_acpi_mount_matrix() helper. Acked-by: Rafael J. Wysocki <rafael@kernel.org> Signed-off-by: Hans de Goede <hdegoede@redhat.com> Link: https://lore.kernel.org/r/20240425125754.76010-4-hdegoede@redhat.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
1867 lines
48 KiB
C
1867 lines
48 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* 3-axis accelerometer driver supporting many Bosch-Sensortec chips
|
|
* Copyright (c) 2014, Intel Corporation.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/pm.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/iio/iio.h>
|
|
#include <linux/iio/sysfs.h>
|
|
#include <linux/iio/buffer.h>
|
|
#include <linux/iio/events.h>
|
|
#include <linux/iio/trigger.h>
|
|
#include <linux/iio/trigger_consumer.h>
|
|
#include <linux/iio/triggered_buffer.h>
|
|
#include <linux/regmap.h>
|
|
#include <linux/regulator/consumer.h>
|
|
|
|
#include "bmc150-accel.h"
|
|
|
|
#define BMC150_ACCEL_DRV_NAME "bmc150_accel"
|
|
#define BMC150_ACCEL_IRQ_NAME "bmc150_accel_event"
|
|
|
|
#define BMC150_ACCEL_REG_CHIP_ID 0x00
|
|
|
|
#define BMC150_ACCEL_REG_INT_STATUS_2 0x0B
|
|
#define BMC150_ACCEL_ANY_MOTION_MASK 0x07
|
|
#define BMC150_ACCEL_ANY_MOTION_BIT_X BIT(0)
|
|
#define BMC150_ACCEL_ANY_MOTION_BIT_Y BIT(1)
|
|
#define BMC150_ACCEL_ANY_MOTION_BIT_Z BIT(2)
|
|
#define BMC150_ACCEL_ANY_MOTION_BIT_SIGN BIT(3)
|
|
|
|
#define BMC150_ACCEL_REG_PMU_LPW 0x11
|
|
#define BMC150_ACCEL_PMU_MODE_MASK 0xE0
|
|
#define BMC150_ACCEL_PMU_MODE_SHIFT 5
|
|
#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK 0x17
|
|
#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT 1
|
|
|
|
#define BMC150_ACCEL_REG_PMU_RANGE 0x0F
|
|
|
|
#define BMC150_ACCEL_DEF_RANGE_2G 0x03
|
|
#define BMC150_ACCEL_DEF_RANGE_4G 0x05
|
|
#define BMC150_ACCEL_DEF_RANGE_8G 0x08
|
|
#define BMC150_ACCEL_DEF_RANGE_16G 0x0C
|
|
|
|
/* Default BW: 125Hz */
|
|
#define BMC150_ACCEL_REG_PMU_BW 0x10
|
|
#define BMC150_ACCEL_DEF_BW 125
|
|
|
|
#define BMC150_ACCEL_REG_RESET 0x14
|
|
#define BMC150_ACCEL_RESET_VAL 0xB6
|
|
|
|
#define BMC150_ACCEL_REG_INT_MAP_0 0x19
|
|
#define BMC150_ACCEL_INT_MAP_0_BIT_INT1_SLOPE BIT(2)
|
|
|
|
#define BMC150_ACCEL_REG_INT_MAP_1 0x1A
|
|
#define BMC150_ACCEL_INT_MAP_1_BIT_INT1_DATA BIT(0)
|
|
#define BMC150_ACCEL_INT_MAP_1_BIT_INT1_FWM BIT(1)
|
|
#define BMC150_ACCEL_INT_MAP_1_BIT_INT1_FFULL BIT(2)
|
|
#define BMC150_ACCEL_INT_MAP_1_BIT_INT2_FFULL BIT(5)
|
|
#define BMC150_ACCEL_INT_MAP_1_BIT_INT2_FWM BIT(6)
|
|
#define BMC150_ACCEL_INT_MAP_1_BIT_INT2_DATA BIT(7)
|
|
|
|
#define BMC150_ACCEL_REG_INT_MAP_2 0x1B
|
|
#define BMC150_ACCEL_INT_MAP_2_BIT_INT2_SLOPE BIT(2)
|
|
|
|
#define BMC150_ACCEL_REG_INT_RST_LATCH 0x21
|
|
#define BMC150_ACCEL_INT_MODE_LATCH_RESET 0x80
|
|
#define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F
|
|
#define BMC150_ACCEL_INT_MODE_NON_LATCH_INT 0x00
|
|
|
|
#define BMC150_ACCEL_REG_INT_EN_0 0x16
|
|
#define BMC150_ACCEL_INT_EN_BIT_SLP_X BIT(0)
|
|
#define BMC150_ACCEL_INT_EN_BIT_SLP_Y BIT(1)
|
|
#define BMC150_ACCEL_INT_EN_BIT_SLP_Z BIT(2)
|
|
|
|
#define BMC150_ACCEL_REG_INT_EN_1 0x17
|
|
#define BMC150_ACCEL_INT_EN_BIT_DATA_EN BIT(4)
|
|
#define BMC150_ACCEL_INT_EN_BIT_FFULL_EN BIT(5)
|
|
#define BMC150_ACCEL_INT_EN_BIT_FWM_EN BIT(6)
|
|
|
|
#define BMC150_ACCEL_REG_INT_OUT_CTRL 0x20
|
|
#define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL BIT(0)
|
|
#define BMC150_ACCEL_INT_OUT_CTRL_INT2_LVL BIT(2)
|
|
|
|
#define BMC150_ACCEL_REG_INT_5 0x27
|
|
#define BMC150_ACCEL_SLOPE_DUR_MASK 0x03
|
|
|
|
#define BMC150_ACCEL_REG_INT_6 0x28
|
|
#define BMC150_ACCEL_SLOPE_THRES_MASK 0xFF
|
|
|
|
/* Slope duration in terms of number of samples */
|
|
#define BMC150_ACCEL_DEF_SLOPE_DURATION 1
|
|
/* in terms of multiples of g's/LSB, based on range */
|
|
#define BMC150_ACCEL_DEF_SLOPE_THRESHOLD 1
|
|
|
|
#define BMC150_ACCEL_REG_XOUT_L 0x02
|
|
|
|
#define BMC150_ACCEL_MAX_STARTUP_TIME_MS 100
|
|
|
|
/* Sleep Duration values */
|
|
#define BMC150_ACCEL_SLEEP_500_MICRO 0x05
|
|
#define BMC150_ACCEL_SLEEP_1_MS 0x06
|
|
#define BMC150_ACCEL_SLEEP_2_MS 0x07
|
|
#define BMC150_ACCEL_SLEEP_4_MS 0x08
|
|
#define BMC150_ACCEL_SLEEP_6_MS 0x09
|
|
#define BMC150_ACCEL_SLEEP_10_MS 0x0A
|
|
#define BMC150_ACCEL_SLEEP_25_MS 0x0B
|
|
#define BMC150_ACCEL_SLEEP_50_MS 0x0C
|
|
#define BMC150_ACCEL_SLEEP_100_MS 0x0D
|
|
#define BMC150_ACCEL_SLEEP_500_MS 0x0E
|
|
#define BMC150_ACCEL_SLEEP_1_SEC 0x0F
|
|
|
|
#define BMC150_ACCEL_REG_TEMP 0x08
|
|
#define BMC150_ACCEL_TEMP_CENTER_VAL 23
|
|
|
|
#define BMC150_ACCEL_AXIS_TO_REG(axis) (BMC150_ACCEL_REG_XOUT_L + (axis * 2))
|
|
#define BMC150_AUTO_SUSPEND_DELAY_MS 2000
|
|
|
|
#define BMC150_ACCEL_REG_FIFO_STATUS 0x0E
|
|
#define BMC150_ACCEL_REG_FIFO_CONFIG0 0x30
|
|
#define BMC150_ACCEL_REG_FIFO_CONFIG1 0x3E
|
|
#define BMC150_ACCEL_REG_FIFO_DATA 0x3F
|
|
#define BMC150_ACCEL_FIFO_LENGTH 32
|
|
|
|
enum bmc150_accel_axis {
|
|
AXIS_X,
|
|
AXIS_Y,
|
|
AXIS_Z,
|
|
AXIS_MAX,
|
|
};
|
|
|
|
enum bmc150_power_modes {
|
|
BMC150_ACCEL_SLEEP_MODE_NORMAL,
|
|
BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
|
|
BMC150_ACCEL_SLEEP_MODE_LPM,
|
|
BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
|
|
};
|
|
|
|
struct bmc150_scale_info {
|
|
int scale;
|
|
u8 reg_range;
|
|
};
|
|
|
|
struct bmc150_accel_chip_info {
|
|
const char *name;
|
|
u8 chip_id;
|
|
const struct iio_chan_spec *channels;
|
|
int num_channels;
|
|
const struct bmc150_scale_info scale_table[4];
|
|
};
|
|
|
|
static const struct {
|
|
int val;
|
|
int val2;
|
|
u8 bw_bits;
|
|
} bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
|
|
{31, 260000, 0x09},
|
|
{62, 500000, 0x0A},
|
|
{125, 0, 0x0B},
|
|
{250, 0, 0x0C},
|
|
{500, 0, 0x0D},
|
|
{1000, 0, 0x0E},
|
|
{2000, 0, 0x0F} };
|
|
|
|
static __maybe_unused const struct {
|
|
int bw_bits;
|
|
int msec;
|
|
} bmc150_accel_sample_upd_time[] = { {0x08, 64},
|
|
{0x09, 32},
|
|
{0x0A, 16},
|
|
{0x0B, 8},
|
|
{0x0C, 4},
|
|
{0x0D, 2},
|
|
{0x0E, 1},
|
|
{0x0F, 1} };
|
|
|
|
static const struct {
|
|
int sleep_dur;
|
|
u8 reg_value;
|
|
} bmc150_accel_sleep_value_table[] = { {0, 0},
|
|
{500, BMC150_ACCEL_SLEEP_500_MICRO},
|
|
{1000, BMC150_ACCEL_SLEEP_1_MS},
|
|
{2000, BMC150_ACCEL_SLEEP_2_MS},
|
|
{4000, BMC150_ACCEL_SLEEP_4_MS},
|
|
{6000, BMC150_ACCEL_SLEEP_6_MS},
|
|
{10000, BMC150_ACCEL_SLEEP_10_MS},
|
|
{25000, BMC150_ACCEL_SLEEP_25_MS},
|
|
{50000, BMC150_ACCEL_SLEEP_50_MS},
|
|
{100000, BMC150_ACCEL_SLEEP_100_MS},
|
|
{500000, BMC150_ACCEL_SLEEP_500_MS},
|
|
{1000000, BMC150_ACCEL_SLEEP_1_SEC} };
|
|
|
|
const struct regmap_config bmc150_regmap_conf = {
|
|
.reg_bits = 8,
|
|
.val_bits = 8,
|
|
.max_register = 0x3f,
|
|
};
|
|
EXPORT_SYMBOL_NS_GPL(bmc150_regmap_conf, IIO_BMC150);
|
|
|
|
static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
|
|
enum bmc150_power_modes mode,
|
|
int dur_us)
|
|
{
|
|
struct device *dev = regmap_get_device(data->regmap);
|
|
int i;
|
|
int ret;
|
|
u8 lpw_bits;
|
|
int dur_val = -1;
|
|
|
|
if (dur_us > 0) {
|
|
for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
|
|
++i) {
|
|
if (bmc150_accel_sleep_value_table[i].sleep_dur ==
|
|
dur_us)
|
|
dur_val =
|
|
bmc150_accel_sleep_value_table[i].reg_value;
|
|
}
|
|
} else {
|
|
dur_val = 0;
|
|
}
|
|
|
|
if (dur_val < 0)
|
|
return -EINVAL;
|
|
|
|
lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
|
|
lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
|
|
|
|
dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
|
|
|
|
ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
|
|
if (ret < 0) {
|
|
dev_err(dev, "Error writing reg_pmu_lpw\n");
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
|
|
int val2)
|
|
{
|
|
int i;
|
|
int ret;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
|
|
if (bmc150_accel_samp_freq_table[i].val == val &&
|
|
bmc150_accel_samp_freq_table[i].val2 == val2) {
|
|
ret = regmap_write(data->regmap,
|
|
BMC150_ACCEL_REG_PMU_BW,
|
|
bmc150_accel_samp_freq_table[i].bw_bits);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
data->bw_bits =
|
|
bmc150_accel_samp_freq_table[i].bw_bits;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
|
|
{
|
|
struct device *dev = regmap_get_device(data->regmap);
|
|
int ret;
|
|
|
|
ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
|
|
data->slope_thres);
|
|
if (ret < 0) {
|
|
dev_err(dev, "Error writing reg_int_6\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
|
|
BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
|
|
if (ret < 0) {
|
|
dev_err(dev, "Error updating reg_int_5\n");
|
|
return ret;
|
|
}
|
|
|
|
dev_dbg(dev, "%x %x\n", data->slope_thres, data->slope_dur);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
|
|
bool state)
|
|
{
|
|
if (state)
|
|
return bmc150_accel_update_slope(t->data);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
|
|
int *val2)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
|
|
if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
|
|
*val = bmc150_accel_samp_freq_table[i].val;
|
|
*val2 = bmc150_accel_samp_freq_table[i].val2;
|
|
return IIO_VAL_INT_PLUS_MICRO;
|
|
}
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
|
|
if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
|
|
return bmc150_accel_sample_upd_time[i].msec;
|
|
}
|
|
|
|
return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
|
|
}
|
|
|
|
static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
|
|
{
|
|
struct device *dev = regmap_get_device(data->regmap);
|
|
int ret;
|
|
|
|
if (on) {
|
|
ret = pm_runtime_resume_and_get(dev);
|
|
} else {
|
|
pm_runtime_mark_last_busy(dev);
|
|
ret = pm_runtime_put_autosuspend(dev);
|
|
}
|
|
|
|
if (ret < 0) {
|
|
dev_err(dev,
|
|
"Failed: %s for %d\n", __func__, on);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_ACPI
|
|
/*
|
|
* Support for getting accelerometer information from BOSC0200 ACPI nodes.
|
|
*
|
|
* There are 2 variants of the BOSC0200 ACPI node. Some 2-in-1s with 360 degree
|
|
* hinges declare 2 I2C ACPI-resources for 2 accelerometers, 1 in the display
|
|
* and 1 in the base of the 2-in-1. On these 2-in-1s the ROMS ACPI object
|
|
* contains the mount-matrix for the sensor in the display and ROMK contains
|
|
* the mount-matrix for the sensor in the base. On devices using a single
|
|
* sensor there is a ROTM ACPI object which contains the mount-matrix.
|
|
*
|
|
* Here is an incomplete list of devices known to use 1 of these setups:
|
|
*
|
|
* Yoga devices with 2 accelerometers using ROMS + ROMK for the mount-matrices:
|
|
* Lenovo Thinkpad Yoga 11e 3th gen
|
|
* Lenovo Thinkpad Yoga 11e 4th gen
|
|
*
|
|
* Tablets using a single accelerometer using ROTM for the mount-matrix:
|
|
* Chuwi Hi8 Pro (CWI513)
|
|
* Chuwi Vi8 Plus (CWI519)
|
|
* Chuwi Hi13
|
|
* Irbis TW90
|
|
* Jumper EZpad mini 3
|
|
* Onda V80 plus
|
|
* Predia Basic Tablet
|
|
*/
|
|
static bool bmc150_apply_bosc0200_acpi_orientation(struct device *dev,
|
|
struct iio_mount_matrix *orientation)
|
|
{
|
|
struct iio_dev *indio_dev = dev_get_drvdata(dev);
|
|
struct acpi_device *adev = ACPI_COMPANION(dev);
|
|
char *name, *alt_name, *label;
|
|
|
|
if (strcmp(dev_name(dev), "i2c-BOSC0200:base") == 0) {
|
|
alt_name = "ROMK";
|
|
label = "accel-base";
|
|
} else {
|
|
alt_name = "ROMS";
|
|
label = "accel-display";
|
|
}
|
|
|
|
if (acpi_has_method(adev->handle, "ROTM")) {
|
|
name = "ROTM";
|
|
} else if (acpi_has_method(adev->handle, alt_name)) {
|
|
name = alt_name;
|
|
indio_dev->label = label;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
return iio_read_acpi_mount_matrix(dev, orientation, name);
|
|
}
|
|
|
|
static bool bmc150_apply_dual250e_acpi_orientation(struct device *dev,
|
|
struct iio_mount_matrix *orientation)
|
|
{
|
|
struct iio_dev *indio_dev = dev_get_drvdata(dev);
|
|
|
|
if (strcmp(dev_name(dev), "i2c-DUAL250E:base") == 0)
|
|
indio_dev->label = "accel-base";
|
|
else
|
|
indio_dev->label = "accel-display";
|
|
|
|
return false; /* DUAL250E fwnodes have no mount matrix info */
|
|
}
|
|
|
|
static bool bmc150_apply_acpi_orientation(struct device *dev,
|
|
struct iio_mount_matrix *orientation)
|
|
{
|
|
struct acpi_device *adev = ACPI_COMPANION(dev);
|
|
|
|
if (adev && acpi_dev_hid_uid_match(adev, "BOSC0200", NULL))
|
|
return bmc150_apply_bosc0200_acpi_orientation(dev, orientation);
|
|
|
|
if (adev && acpi_dev_hid_uid_match(adev, "DUAL250E", NULL))
|
|
return bmc150_apply_dual250e_acpi_orientation(dev, orientation);
|
|
|
|
return false;
|
|
}
|
|
#else
|
|
static bool bmc150_apply_acpi_orientation(struct device *dev,
|
|
struct iio_mount_matrix *orientation)
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
struct bmc150_accel_interrupt_info {
|
|
u8 map_reg;
|
|
u8 map_bitmask;
|
|
u8 en_reg;
|
|
u8 en_bitmask;
|
|
};
|
|
|
|
static const struct bmc150_accel_interrupt_info
|
|
bmc150_accel_interrupts_int1[BMC150_ACCEL_INTERRUPTS] = {
|
|
{ /* data ready interrupt */
|
|
.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
|
|
.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT1_DATA,
|
|
.en_reg = BMC150_ACCEL_REG_INT_EN_1,
|
|
.en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
|
|
},
|
|
{ /* motion interrupt */
|
|
.map_reg = BMC150_ACCEL_REG_INT_MAP_0,
|
|
.map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_INT1_SLOPE,
|
|
.en_reg = BMC150_ACCEL_REG_INT_EN_0,
|
|
.en_bitmask = BMC150_ACCEL_INT_EN_BIT_SLP_X |
|
|
BMC150_ACCEL_INT_EN_BIT_SLP_Y |
|
|
BMC150_ACCEL_INT_EN_BIT_SLP_Z
|
|
},
|
|
{ /* fifo watermark interrupt */
|
|
.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
|
|
.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT1_FWM,
|
|
.en_reg = BMC150_ACCEL_REG_INT_EN_1,
|
|
.en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
|
|
},
|
|
};
|
|
|
|
static const struct bmc150_accel_interrupt_info
|
|
bmc150_accel_interrupts_int2[BMC150_ACCEL_INTERRUPTS] = {
|
|
{ /* data ready interrupt */
|
|
.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
|
|
.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT2_DATA,
|
|
.en_reg = BMC150_ACCEL_REG_INT_EN_1,
|
|
.en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
|
|
},
|
|
{ /* motion interrupt */
|
|
.map_reg = BMC150_ACCEL_REG_INT_MAP_2,
|
|
.map_bitmask = BMC150_ACCEL_INT_MAP_2_BIT_INT2_SLOPE,
|
|
.en_reg = BMC150_ACCEL_REG_INT_EN_0,
|
|
.en_bitmask = BMC150_ACCEL_INT_EN_BIT_SLP_X |
|
|
BMC150_ACCEL_INT_EN_BIT_SLP_Y |
|
|
BMC150_ACCEL_INT_EN_BIT_SLP_Z
|
|
},
|
|
{ /* fifo watermark interrupt */
|
|
.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
|
|
.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT2_FWM,
|
|
.en_reg = BMC150_ACCEL_REG_INT_EN_1,
|
|
.en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
|
|
},
|
|
};
|
|
|
|
static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
|
|
struct bmc150_accel_data *data, int irq)
|
|
{
|
|
const struct bmc150_accel_interrupt_info *irq_info = NULL;
|
|
struct device *dev = regmap_get_device(data->regmap);
|
|
int i;
|
|
|
|
/*
|
|
* For now we map all interrupts to the same output pin.
|
|
* However, some boards may have just INT2 (and not INT1) connected,
|
|
* so we try to detect which IRQ it is based on the interrupt-names.
|
|
* Without interrupt-names, we assume the irq belongs to INT1.
|
|
*/
|
|
irq_info = bmc150_accel_interrupts_int1;
|
|
if (data->type == BOSCH_BMC156 ||
|
|
irq == of_irq_get_byname(dev->of_node, "INT2"))
|
|
irq_info = bmc150_accel_interrupts_int2;
|
|
|
|
for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
|
|
data->interrupts[i].info = &irq_info[i];
|
|
}
|
|
|
|
static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
|
|
bool state)
|
|
{
|
|
struct device *dev = regmap_get_device(data->regmap);
|
|
struct bmc150_accel_interrupt *intr = &data->interrupts[i];
|
|
const struct bmc150_accel_interrupt_info *info = intr->info;
|
|
int ret;
|
|
|
|
if (state) {
|
|
if (atomic_inc_return(&intr->users) > 1)
|
|
return 0;
|
|
} else {
|
|
if (atomic_dec_return(&intr->users) > 0)
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We will expect the enable and disable to do operation in reverse
|
|
* order. This will happen here anyway, as our resume operation uses
|
|
* sync mode runtime pm calls. The suspend operation will be delayed
|
|
* by autosuspend delay.
|
|
* So the disable operation will still happen in reverse order of
|
|
* enable operation. When runtime pm is disabled the mode is always on,
|
|
* so sequence doesn't matter.
|
|
*/
|
|
ret = bmc150_accel_set_power_state(data, state);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* map the interrupt to the appropriate pins */
|
|
ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
|
|
(state ? info->map_bitmask : 0));
|
|
if (ret < 0) {
|
|
dev_err(dev, "Error updating reg_int_map\n");
|
|
goto out_fix_power_state;
|
|
}
|
|
|
|
/* enable/disable the interrupt */
|
|
ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
|
|
(state ? info->en_bitmask : 0));
|
|
if (ret < 0) {
|
|
dev_err(dev, "Error updating reg_int_en\n");
|
|
goto out_fix_power_state;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_fix_power_state:
|
|
bmc150_accel_set_power_state(data, false);
|
|
return ret;
|
|
}
|
|
|
|
static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
|
|
{
|
|
struct device *dev = regmap_get_device(data->regmap);
|
|
int ret, i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
|
|
if (data->chip_info->scale_table[i].scale == val) {
|
|
ret = regmap_write(data->regmap,
|
|
BMC150_ACCEL_REG_PMU_RANGE,
|
|
data->chip_info->scale_table[i].reg_range);
|
|
if (ret < 0) {
|
|
dev_err(dev, "Error writing pmu_range\n");
|
|
return ret;
|
|
}
|
|
|
|
data->range = data->chip_info->scale_table[i].reg_range;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
|
|
{
|
|
struct device *dev = regmap_get_device(data->regmap);
|
|
int ret;
|
|
unsigned int value;
|
|
|
|
mutex_lock(&data->mutex);
|
|
|
|
ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
|
|
if (ret < 0) {
|
|
dev_err(dev, "Error reading reg_temp\n");
|
|
mutex_unlock(&data->mutex);
|
|
return ret;
|
|
}
|
|
*val = sign_extend32(value, 7);
|
|
|
|
mutex_unlock(&data->mutex);
|
|
|
|
return IIO_VAL_INT;
|
|
}
|
|
|
|
static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
|
|
struct iio_chan_spec const *chan,
|
|
int *val)
|
|
{
|
|
struct device *dev = regmap_get_device(data->regmap);
|
|
int ret;
|
|
int axis = chan->scan_index;
|
|
__le16 raw_val;
|
|
|
|
mutex_lock(&data->mutex);
|
|
ret = bmc150_accel_set_power_state(data, true);
|
|
if (ret < 0) {
|
|
mutex_unlock(&data->mutex);
|
|
return ret;
|
|
}
|
|
|
|
ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
|
|
&raw_val, sizeof(raw_val));
|
|
if (ret < 0) {
|
|
dev_err(dev, "Error reading axis %d\n", axis);
|
|
bmc150_accel_set_power_state(data, false);
|
|
mutex_unlock(&data->mutex);
|
|
return ret;
|
|
}
|
|
*val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
|
|
chan->scan_type.realbits - 1);
|
|
ret = bmc150_accel_set_power_state(data, false);
|
|
mutex_unlock(&data->mutex);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return IIO_VAL_INT;
|
|
}
|
|
|
|
static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
|
|
struct iio_chan_spec const *chan,
|
|
int *val, int *val2, long mask)
|
|
{
|
|
struct bmc150_accel_data *data = iio_priv(indio_dev);
|
|
int ret;
|
|
|
|
switch (mask) {
|
|
case IIO_CHAN_INFO_RAW:
|
|
switch (chan->type) {
|
|
case IIO_TEMP:
|
|
return bmc150_accel_get_temp(data, val);
|
|
case IIO_ACCEL:
|
|
if (iio_buffer_enabled(indio_dev))
|
|
return -EBUSY;
|
|
else
|
|
return bmc150_accel_get_axis(data, chan, val);
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
case IIO_CHAN_INFO_OFFSET:
|
|
if (chan->type == IIO_TEMP) {
|
|
*val = BMC150_ACCEL_TEMP_CENTER_VAL;
|
|
return IIO_VAL_INT;
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
case IIO_CHAN_INFO_SCALE:
|
|
*val = 0;
|
|
switch (chan->type) {
|
|
case IIO_TEMP:
|
|
*val2 = 500000;
|
|
return IIO_VAL_INT_PLUS_MICRO;
|
|
case IIO_ACCEL:
|
|
{
|
|
int i;
|
|
const struct bmc150_scale_info *si;
|
|
int st_size = ARRAY_SIZE(data->chip_info->scale_table);
|
|
|
|
for (i = 0; i < st_size; ++i) {
|
|
si = &data->chip_info->scale_table[i];
|
|
if (si->reg_range == data->range) {
|
|
*val2 = si->scale;
|
|
return IIO_VAL_INT_PLUS_MICRO;
|
|
}
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
case IIO_CHAN_INFO_SAMP_FREQ:
|
|
mutex_lock(&data->mutex);
|
|
ret = bmc150_accel_get_bw(data, val, val2);
|
|
mutex_unlock(&data->mutex);
|
|
return ret;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
|
|
struct iio_chan_spec const *chan,
|
|
int val, int val2, long mask)
|
|
{
|
|
struct bmc150_accel_data *data = iio_priv(indio_dev);
|
|
int ret;
|
|
|
|
switch (mask) {
|
|
case IIO_CHAN_INFO_SAMP_FREQ:
|
|
mutex_lock(&data->mutex);
|
|
ret = bmc150_accel_set_bw(data, val, val2);
|
|
mutex_unlock(&data->mutex);
|
|
break;
|
|
case IIO_CHAN_INFO_SCALE:
|
|
if (val)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&data->mutex);
|
|
ret = bmc150_accel_set_scale(data, val2);
|
|
mutex_unlock(&data->mutex);
|
|
return ret;
|
|
default:
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int bmc150_accel_read_event(struct iio_dev *indio_dev,
|
|
const struct iio_chan_spec *chan,
|
|
enum iio_event_type type,
|
|
enum iio_event_direction dir,
|
|
enum iio_event_info info,
|
|
int *val, int *val2)
|
|
{
|
|
struct bmc150_accel_data *data = iio_priv(indio_dev);
|
|
|
|
*val2 = 0;
|
|
switch (info) {
|
|
case IIO_EV_INFO_VALUE:
|
|
*val = data->slope_thres;
|
|
break;
|
|
case IIO_EV_INFO_PERIOD:
|
|
*val = data->slope_dur;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return IIO_VAL_INT;
|
|
}
|
|
|
|
static int bmc150_accel_write_event(struct iio_dev *indio_dev,
|
|
const struct iio_chan_spec *chan,
|
|
enum iio_event_type type,
|
|
enum iio_event_direction dir,
|
|
enum iio_event_info info,
|
|
int val, int val2)
|
|
{
|
|
struct bmc150_accel_data *data = iio_priv(indio_dev);
|
|
|
|
if (data->ev_enable_state)
|
|
return -EBUSY;
|
|
|
|
switch (info) {
|
|
case IIO_EV_INFO_VALUE:
|
|
data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
|
|
break;
|
|
case IIO_EV_INFO_PERIOD:
|
|
data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
|
|
const struct iio_chan_spec *chan,
|
|
enum iio_event_type type,
|
|
enum iio_event_direction dir)
|
|
{
|
|
struct bmc150_accel_data *data = iio_priv(indio_dev);
|
|
|
|
return data->ev_enable_state;
|
|
}
|
|
|
|
static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
|
|
const struct iio_chan_spec *chan,
|
|
enum iio_event_type type,
|
|
enum iio_event_direction dir,
|
|
int state)
|
|
{
|
|
struct bmc150_accel_data *data = iio_priv(indio_dev);
|
|
int ret;
|
|
|
|
if (state == data->ev_enable_state)
|
|
return 0;
|
|
|
|
mutex_lock(&data->mutex);
|
|
|
|
ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
|
|
state);
|
|
if (ret < 0) {
|
|
mutex_unlock(&data->mutex);
|
|
return ret;
|
|
}
|
|
|
|
data->ev_enable_state = state;
|
|
mutex_unlock(&data->mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
|
|
struct iio_trigger *trig)
|
|
{
|
|
struct bmc150_accel_data *data = iio_priv(indio_dev);
|
|
int i;
|
|
|
|
for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
|
|
if (data->triggers[i].indio_trig == trig)
|
|
return 0;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
|
|
struct bmc150_accel_data *data = iio_priv(indio_dev);
|
|
int wm;
|
|
|
|
mutex_lock(&data->mutex);
|
|
wm = data->watermark;
|
|
mutex_unlock(&data->mutex);
|
|
|
|
return sprintf(buf, "%d\n", wm);
|
|
}
|
|
|
|
static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
|
|
struct bmc150_accel_data *data = iio_priv(indio_dev);
|
|
bool state;
|
|
|
|
mutex_lock(&data->mutex);
|
|
state = data->fifo_mode;
|
|
mutex_unlock(&data->mutex);
|
|
|
|
return sprintf(buf, "%d\n", state);
|
|
}
|
|
|
|
static const struct iio_mount_matrix *
|
|
bmc150_accel_get_mount_matrix(const struct iio_dev *indio_dev,
|
|
const struct iio_chan_spec *chan)
|
|
{
|
|
struct bmc150_accel_data *data = iio_priv(indio_dev);
|
|
|
|
return &data->orientation;
|
|
}
|
|
|
|
static const struct iio_chan_spec_ext_info bmc150_accel_ext_info[] = {
|
|
IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_accel_get_mount_matrix),
|
|
{ }
|
|
};
|
|
|
|
IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_min, "1");
|
|
IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_max,
|
|
__stringify(BMC150_ACCEL_FIFO_LENGTH));
|
|
static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
|
|
bmc150_accel_get_fifo_state, NULL, 0);
|
|
static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
|
|
bmc150_accel_get_fifo_watermark, NULL, 0);
|
|
|
|
static const struct iio_dev_attr *bmc150_accel_fifo_attributes[] = {
|
|
&iio_dev_attr_hwfifo_watermark_min,
|
|
&iio_dev_attr_hwfifo_watermark_max,
|
|
&iio_dev_attr_hwfifo_watermark,
|
|
&iio_dev_attr_hwfifo_enabled,
|
|
NULL,
|
|
};
|
|
|
|
static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
|
|
{
|
|
struct bmc150_accel_data *data = iio_priv(indio_dev);
|
|
|
|
if (val > BMC150_ACCEL_FIFO_LENGTH)
|
|
val = BMC150_ACCEL_FIFO_LENGTH;
|
|
|
|
mutex_lock(&data->mutex);
|
|
data->watermark = val;
|
|
mutex_unlock(&data->mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We must read at least one full frame in one burst, otherwise the rest of the
|
|
* frame data is discarded.
|
|
*/
|
|
static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
|
|
char *buffer, int samples)
|
|
{
|
|
struct device *dev = regmap_get_device(data->regmap);
|
|
int sample_length = 3 * 2;
|
|
int ret;
|
|
int total_length = samples * sample_length;
|
|
|
|
ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
|
|
buffer, total_length);
|
|
if (ret)
|
|
dev_err(dev,
|
|
"Error transferring data from fifo: %d\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
|
|
unsigned samples, bool irq)
|
|
{
|
|
struct bmc150_accel_data *data = iio_priv(indio_dev);
|
|
struct device *dev = regmap_get_device(data->regmap);
|
|
int ret, i;
|
|
u8 count;
|
|
u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
|
|
int64_t tstamp;
|
|
uint64_t sample_period;
|
|
unsigned int val;
|
|
|
|
ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
|
|
if (ret < 0) {
|
|
dev_err(dev, "Error reading reg_fifo_status\n");
|
|
return ret;
|
|
}
|
|
|
|
count = val & 0x7F;
|
|
|
|
if (!count)
|
|
return 0;
|
|
|
|
/*
|
|
* If we getting called from IRQ handler we know the stored timestamp is
|
|
* fairly accurate for the last stored sample. Otherwise, if we are
|
|
* called as a result of a read operation from userspace and hence
|
|
* before the watermark interrupt was triggered, take a timestamp
|
|
* now. We can fall anywhere in between two samples so the error in this
|
|
* case is at most one sample period.
|
|
*/
|
|
if (!irq) {
|
|
data->old_timestamp = data->timestamp;
|
|
data->timestamp = iio_get_time_ns(indio_dev);
|
|
}
|
|
|
|
/*
|
|
* Approximate timestamps for each of the sample based on the sampling
|
|
* frequency, timestamp for last sample and number of samples.
|
|
*
|
|
* Note that we can't use the current bandwidth settings to compute the
|
|
* sample period because the sample rate varies with the device
|
|
* (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
|
|
* small variation adds when we store a large number of samples and
|
|
* creates significant jitter between the last and first samples in
|
|
* different batches (e.g. 32ms vs 21ms).
|
|
*
|
|
* To avoid this issue we compute the actual sample period ourselves
|
|
* based on the timestamp delta between the last two flush operations.
|
|
*/
|
|
sample_period = (data->timestamp - data->old_timestamp);
|
|
do_div(sample_period, count);
|
|
tstamp = data->timestamp - (count - 1) * sample_period;
|
|
|
|
if (samples && count > samples)
|
|
count = samples;
|
|
|
|
ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Ideally we want the IIO core to handle the demux when running in fifo
|
|
* mode but not when running in triggered buffer mode. Unfortunately
|
|
* this does not seem to be possible, so stick with driver demux for
|
|
* now.
|
|
*/
|
|
for (i = 0; i < count; i++) {
|
|
int j, bit;
|
|
|
|
j = 0;
|
|
for_each_set_bit(bit, indio_dev->active_scan_mask,
|
|
indio_dev->masklength)
|
|
memcpy(&data->scan.channels[j++], &buffer[i * 3 + bit],
|
|
sizeof(data->scan.channels[0]));
|
|
|
|
iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
|
|
tstamp);
|
|
|
|
tstamp += sample_period;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
|
|
{
|
|
struct bmc150_accel_data *data = iio_priv(indio_dev);
|
|
int ret;
|
|
|
|
mutex_lock(&data->mutex);
|
|
ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
|
|
mutex_unlock(&data->mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
|
|
"15.620000 31.260000 62.50000 125 250 500 1000 2000");
|
|
|
|
static struct attribute *bmc150_accel_attributes[] = {
|
|
&iio_const_attr_sampling_frequency_available.dev_attr.attr,
|
|
NULL,
|
|
};
|
|
|
|
static const struct attribute_group bmc150_accel_attrs_group = {
|
|
.attrs = bmc150_accel_attributes,
|
|
};
|
|
|
|
static const struct iio_event_spec bmc150_accel_event = {
|
|
.type = IIO_EV_TYPE_ROC,
|
|
.dir = IIO_EV_DIR_EITHER,
|
|
.mask_separate = BIT(IIO_EV_INFO_VALUE) |
|
|
BIT(IIO_EV_INFO_ENABLE) |
|
|
BIT(IIO_EV_INFO_PERIOD)
|
|
};
|
|
|
|
#define BMC150_ACCEL_CHANNEL(_axis, bits) { \
|
|
.type = IIO_ACCEL, \
|
|
.modified = 1, \
|
|
.channel2 = IIO_MOD_##_axis, \
|
|
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
|
|
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
|
|
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
|
|
.scan_index = AXIS_##_axis, \
|
|
.scan_type = { \
|
|
.sign = 's', \
|
|
.realbits = (bits), \
|
|
.storagebits = 16, \
|
|
.shift = 16 - (bits), \
|
|
.endianness = IIO_LE, \
|
|
}, \
|
|
.ext_info = bmc150_accel_ext_info, \
|
|
.event_spec = &bmc150_accel_event, \
|
|
.num_event_specs = 1 \
|
|
}
|
|
|
|
#define BMC150_ACCEL_CHANNELS(bits) { \
|
|
{ \
|
|
.type = IIO_TEMP, \
|
|
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
|
|
BIT(IIO_CHAN_INFO_SCALE) | \
|
|
BIT(IIO_CHAN_INFO_OFFSET), \
|
|
.scan_index = -1, \
|
|
}, \
|
|
BMC150_ACCEL_CHANNEL(X, bits), \
|
|
BMC150_ACCEL_CHANNEL(Y, bits), \
|
|
BMC150_ACCEL_CHANNEL(Z, bits), \
|
|
IIO_CHAN_SOFT_TIMESTAMP(3), \
|
|
}
|
|
|
|
static const struct iio_chan_spec bma222e_accel_channels[] =
|
|
BMC150_ACCEL_CHANNELS(8);
|
|
static const struct iio_chan_spec bma250e_accel_channels[] =
|
|
BMC150_ACCEL_CHANNELS(10);
|
|
static const struct iio_chan_spec bmc150_accel_channels[] =
|
|
BMC150_ACCEL_CHANNELS(12);
|
|
static const struct iio_chan_spec bma280_accel_channels[] =
|
|
BMC150_ACCEL_CHANNELS(14);
|
|
|
|
/*
|
|
* The range for the Bosch sensors is typically +-2g/4g/8g/16g, distributed
|
|
* over the amount of bits (see above). The scale table can be calculated using
|
|
* (range / 2^bits) * g = (range / 2^bits) * 9.80665 m/s^2
|
|
* e.g. for +-2g and 12 bits: (4 / 2^12) * 9.80665 m/s^2 = 0.0095768... m/s^2
|
|
* Multiply 10^6 and round to get the values listed below.
|
|
*/
|
|
static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
|
|
{
|
|
.name = "BMA222",
|
|
.chip_id = 0x03,
|
|
.channels = bma222e_accel_channels,
|
|
.num_channels = ARRAY_SIZE(bma222e_accel_channels),
|
|
.scale_table = { {153229, BMC150_ACCEL_DEF_RANGE_2G},
|
|
{306458, BMC150_ACCEL_DEF_RANGE_4G},
|
|
{612916, BMC150_ACCEL_DEF_RANGE_8G},
|
|
{1225831, BMC150_ACCEL_DEF_RANGE_16G} },
|
|
},
|
|
{
|
|
.name = "BMA222E",
|
|
.chip_id = 0xF8,
|
|
.channels = bma222e_accel_channels,
|
|
.num_channels = ARRAY_SIZE(bma222e_accel_channels),
|
|
.scale_table = { {153229, BMC150_ACCEL_DEF_RANGE_2G},
|
|
{306458, BMC150_ACCEL_DEF_RANGE_4G},
|
|
{612916, BMC150_ACCEL_DEF_RANGE_8G},
|
|
{1225831, BMC150_ACCEL_DEF_RANGE_16G} },
|
|
},
|
|
{
|
|
.name = "BMA250E",
|
|
.chip_id = 0xF9,
|
|
.channels = bma250e_accel_channels,
|
|
.num_channels = ARRAY_SIZE(bma250e_accel_channels),
|
|
.scale_table = { {38307, BMC150_ACCEL_DEF_RANGE_2G},
|
|
{76614, BMC150_ACCEL_DEF_RANGE_4G},
|
|
{153229, BMC150_ACCEL_DEF_RANGE_8G},
|
|
{306458, BMC150_ACCEL_DEF_RANGE_16G} },
|
|
},
|
|
{
|
|
.name = "BMA253/BMA254/BMA255/BMC150/BMC156/BMI055",
|
|
.chip_id = 0xFA,
|
|
.channels = bmc150_accel_channels,
|
|
.num_channels = ARRAY_SIZE(bmc150_accel_channels),
|
|
.scale_table = { {9577, BMC150_ACCEL_DEF_RANGE_2G},
|
|
{19154, BMC150_ACCEL_DEF_RANGE_4G},
|
|
{38307, BMC150_ACCEL_DEF_RANGE_8G},
|
|
{76614, BMC150_ACCEL_DEF_RANGE_16G} },
|
|
},
|
|
{
|
|
.name = "BMA280",
|
|
.chip_id = 0xFB,
|
|
.channels = bma280_accel_channels,
|
|
.num_channels = ARRAY_SIZE(bma280_accel_channels),
|
|
.scale_table = { {2394, BMC150_ACCEL_DEF_RANGE_2G},
|
|
{4788, BMC150_ACCEL_DEF_RANGE_4G},
|
|
{9577, BMC150_ACCEL_DEF_RANGE_8G},
|
|
{19154, BMC150_ACCEL_DEF_RANGE_16G} },
|
|
},
|
|
};
|
|
|
|
static const struct iio_info bmc150_accel_info = {
|
|
.attrs = &bmc150_accel_attrs_group,
|
|
.read_raw = bmc150_accel_read_raw,
|
|
.write_raw = bmc150_accel_write_raw,
|
|
.read_event_value = bmc150_accel_read_event,
|
|
.write_event_value = bmc150_accel_write_event,
|
|
.write_event_config = bmc150_accel_write_event_config,
|
|
.read_event_config = bmc150_accel_read_event_config,
|
|
};
|
|
|
|
static const struct iio_info bmc150_accel_info_fifo = {
|
|
.attrs = &bmc150_accel_attrs_group,
|
|
.read_raw = bmc150_accel_read_raw,
|
|
.write_raw = bmc150_accel_write_raw,
|
|
.read_event_value = bmc150_accel_read_event,
|
|
.write_event_value = bmc150_accel_write_event,
|
|
.write_event_config = bmc150_accel_write_event_config,
|
|
.read_event_config = bmc150_accel_read_event_config,
|
|
.validate_trigger = bmc150_accel_validate_trigger,
|
|
.hwfifo_set_watermark = bmc150_accel_set_watermark,
|
|
.hwfifo_flush_to_buffer = bmc150_accel_fifo_flush,
|
|
};
|
|
|
|
static const unsigned long bmc150_accel_scan_masks[] = {
|
|
BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
|
|
0};
|
|
|
|
static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
|
|
{
|
|
struct iio_poll_func *pf = p;
|
|
struct iio_dev *indio_dev = pf->indio_dev;
|
|
struct bmc150_accel_data *data = iio_priv(indio_dev);
|
|
int ret;
|
|
|
|
mutex_lock(&data->mutex);
|
|
ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
|
|
data->buffer, AXIS_MAX * 2);
|
|
mutex_unlock(&data->mutex);
|
|
if (ret < 0)
|
|
goto err_read;
|
|
|
|
iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
|
|
pf->timestamp);
|
|
err_read:
|
|
iio_trigger_notify_done(indio_dev->trig);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void bmc150_accel_trig_reen(struct iio_trigger *trig)
|
|
{
|
|
struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
|
|
struct bmc150_accel_data *data = t->data;
|
|
struct device *dev = regmap_get_device(data->regmap);
|
|
int ret;
|
|
|
|
/* new data interrupts don't need ack */
|
|
if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
|
|
return;
|
|
|
|
mutex_lock(&data->mutex);
|
|
/* clear any latched interrupt */
|
|
ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
|
|
BMC150_ACCEL_INT_MODE_LATCH_INT |
|
|
BMC150_ACCEL_INT_MODE_LATCH_RESET);
|
|
mutex_unlock(&data->mutex);
|
|
if (ret < 0)
|
|
dev_err(dev, "Error writing reg_int_rst_latch\n");
|
|
}
|
|
|
|
static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
|
|
bool state)
|
|
{
|
|
struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
|
|
struct bmc150_accel_data *data = t->data;
|
|
int ret;
|
|
|
|
mutex_lock(&data->mutex);
|
|
|
|
if (t->enabled == state) {
|
|
mutex_unlock(&data->mutex);
|
|
return 0;
|
|
}
|
|
|
|
if (t->setup) {
|
|
ret = t->setup(t, state);
|
|
if (ret < 0) {
|
|
mutex_unlock(&data->mutex);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
ret = bmc150_accel_set_interrupt(data, t->intr, state);
|
|
if (ret < 0) {
|
|
mutex_unlock(&data->mutex);
|
|
return ret;
|
|
}
|
|
|
|
t->enabled = state;
|
|
|
|
mutex_unlock(&data->mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
|
|
.set_trigger_state = bmc150_accel_trigger_set_state,
|
|
.reenable = bmc150_accel_trig_reen,
|
|
};
|
|
|
|
static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
|
|
{
|
|
struct bmc150_accel_data *data = iio_priv(indio_dev);
|
|
struct device *dev = regmap_get_device(data->regmap);
|
|
int dir;
|
|
int ret;
|
|
unsigned int val;
|
|
|
|
ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
|
|
if (ret < 0) {
|
|
dev_err(dev, "Error reading reg_int_status_2\n");
|
|
return ret;
|
|
}
|
|
|
|
if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
|
|
dir = IIO_EV_DIR_FALLING;
|
|
else
|
|
dir = IIO_EV_DIR_RISING;
|
|
|
|
if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
|
|
iio_push_event(indio_dev,
|
|
IIO_MOD_EVENT_CODE(IIO_ACCEL,
|
|
0,
|
|
IIO_MOD_X,
|
|
IIO_EV_TYPE_ROC,
|
|
dir),
|
|
data->timestamp);
|
|
|
|
if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
|
|
iio_push_event(indio_dev,
|
|
IIO_MOD_EVENT_CODE(IIO_ACCEL,
|
|
0,
|
|
IIO_MOD_Y,
|
|
IIO_EV_TYPE_ROC,
|
|
dir),
|
|
data->timestamp);
|
|
|
|
if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
|
|
iio_push_event(indio_dev,
|
|
IIO_MOD_EVENT_CODE(IIO_ACCEL,
|
|
0,
|
|
IIO_MOD_Z,
|
|
IIO_EV_TYPE_ROC,
|
|
dir),
|
|
data->timestamp);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
|
|
{
|
|
struct iio_dev *indio_dev = private;
|
|
struct bmc150_accel_data *data = iio_priv(indio_dev);
|
|
struct device *dev = regmap_get_device(data->regmap);
|
|
bool ack = false;
|
|
int ret;
|
|
|
|
mutex_lock(&data->mutex);
|
|
|
|
if (data->fifo_mode) {
|
|
ret = __bmc150_accel_fifo_flush(indio_dev,
|
|
BMC150_ACCEL_FIFO_LENGTH, true);
|
|
if (ret > 0)
|
|
ack = true;
|
|
}
|
|
|
|
if (data->ev_enable_state) {
|
|
ret = bmc150_accel_handle_roc_event(indio_dev);
|
|
if (ret > 0)
|
|
ack = true;
|
|
}
|
|
|
|
if (ack) {
|
|
ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
|
|
BMC150_ACCEL_INT_MODE_LATCH_INT |
|
|
BMC150_ACCEL_INT_MODE_LATCH_RESET);
|
|
if (ret)
|
|
dev_err(dev, "Error writing reg_int_rst_latch\n");
|
|
|
|
ret = IRQ_HANDLED;
|
|
} else {
|
|
ret = IRQ_NONE;
|
|
}
|
|
|
|
mutex_unlock(&data->mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
|
|
{
|
|
struct iio_dev *indio_dev = private;
|
|
struct bmc150_accel_data *data = iio_priv(indio_dev);
|
|
bool ack = false;
|
|
int i;
|
|
|
|
data->old_timestamp = data->timestamp;
|
|
data->timestamp = iio_get_time_ns(indio_dev);
|
|
|
|
for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
|
|
if (data->triggers[i].enabled) {
|
|
iio_trigger_poll(data->triggers[i].indio_trig);
|
|
ack = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (data->ev_enable_state || data->fifo_mode)
|
|
return IRQ_WAKE_THREAD;
|
|
|
|
if (ack)
|
|
return IRQ_HANDLED;
|
|
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
static const struct {
|
|
int intr;
|
|
const char *name;
|
|
int (*setup)(struct bmc150_accel_trigger *t, bool state);
|
|
} bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
|
|
{
|
|
.intr = 0,
|
|
.name = "%s-dev%d",
|
|
},
|
|
{
|
|
.intr = 1,
|
|
.name = "%s-any-motion-dev%d",
|
|
.setup = bmc150_accel_any_motion_setup,
|
|
},
|
|
};
|
|
|
|
static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
|
|
int from)
|
|
{
|
|
int i;
|
|
|
|
for (i = from; i >= 0; i--) {
|
|
if (data->triggers[i].indio_trig) {
|
|
iio_trigger_unregister(data->triggers[i].indio_trig);
|
|
data->triggers[i].indio_trig = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
|
|
struct bmc150_accel_data *data)
|
|
{
|
|
struct device *dev = regmap_get_device(data->regmap);
|
|
int i, ret;
|
|
|
|
for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
|
|
struct bmc150_accel_trigger *t = &data->triggers[i];
|
|
|
|
t->indio_trig = devm_iio_trigger_alloc(dev,
|
|
bmc150_accel_triggers[i].name,
|
|
indio_dev->name,
|
|
iio_device_id(indio_dev));
|
|
if (!t->indio_trig) {
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
|
|
t->indio_trig->ops = &bmc150_accel_trigger_ops;
|
|
t->intr = bmc150_accel_triggers[i].intr;
|
|
t->data = data;
|
|
t->setup = bmc150_accel_triggers[i].setup;
|
|
iio_trigger_set_drvdata(t->indio_trig, t);
|
|
|
|
ret = iio_trigger_register(t->indio_trig);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
if (ret)
|
|
bmc150_accel_unregister_triggers(data, i - 1);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define BMC150_ACCEL_FIFO_MODE_STREAM 0x80
|
|
#define BMC150_ACCEL_FIFO_MODE_FIFO 0x40
|
|
#define BMC150_ACCEL_FIFO_MODE_BYPASS 0x00
|
|
|
|
static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
|
|
{
|
|
struct device *dev = regmap_get_device(data->regmap);
|
|
u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
|
|
int ret;
|
|
|
|
ret = regmap_write(data->regmap, reg, data->fifo_mode);
|
|
if (ret < 0) {
|
|
dev_err(dev, "Error writing reg_fifo_config1\n");
|
|
return ret;
|
|
}
|
|
|
|
if (!data->fifo_mode)
|
|
return 0;
|
|
|
|
ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
|
|
data->watermark);
|
|
if (ret < 0)
|
|
dev_err(dev, "Error writing reg_fifo_config0\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
|
|
{
|
|
struct bmc150_accel_data *data = iio_priv(indio_dev);
|
|
|
|
return bmc150_accel_set_power_state(data, true);
|
|
}
|
|
|
|
static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
|
|
{
|
|
struct bmc150_accel_data *data = iio_priv(indio_dev);
|
|
int ret = 0;
|
|
|
|
if (iio_device_get_current_mode(indio_dev) == INDIO_BUFFER_TRIGGERED)
|
|
return 0;
|
|
|
|
mutex_lock(&data->mutex);
|
|
|
|
if (!data->watermark)
|
|
goto out;
|
|
|
|
ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
|
|
true);
|
|
if (ret)
|
|
goto out;
|
|
|
|
data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
|
|
|
|
ret = bmc150_accel_fifo_set_mode(data);
|
|
if (ret) {
|
|
data->fifo_mode = 0;
|
|
bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
|
|
false);
|
|
}
|
|
|
|
out:
|
|
mutex_unlock(&data->mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
|
|
{
|
|
struct bmc150_accel_data *data = iio_priv(indio_dev);
|
|
|
|
if (iio_device_get_current_mode(indio_dev) == INDIO_BUFFER_TRIGGERED)
|
|
return 0;
|
|
|
|
mutex_lock(&data->mutex);
|
|
|
|
if (!data->fifo_mode)
|
|
goto out;
|
|
|
|
bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
|
|
__bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
|
|
data->fifo_mode = 0;
|
|
bmc150_accel_fifo_set_mode(data);
|
|
|
|
out:
|
|
mutex_unlock(&data->mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
|
|
{
|
|
struct bmc150_accel_data *data = iio_priv(indio_dev);
|
|
|
|
return bmc150_accel_set_power_state(data, false);
|
|
}
|
|
|
|
static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
|
|
.preenable = bmc150_accel_buffer_preenable,
|
|
.postenable = bmc150_accel_buffer_postenable,
|
|
.predisable = bmc150_accel_buffer_predisable,
|
|
.postdisable = bmc150_accel_buffer_postdisable,
|
|
};
|
|
|
|
static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
|
|
{
|
|
struct device *dev = regmap_get_device(data->regmap);
|
|
int ret, i;
|
|
unsigned int val;
|
|
|
|
/*
|
|
* Reset chip to get it in a known good state. A delay of 1.8ms after
|
|
* reset is required according to the data sheets of supported chips.
|
|
*/
|
|
regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
|
|
BMC150_ACCEL_RESET_VAL);
|
|
usleep_range(1800, 2500);
|
|
|
|
ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
|
|
if (ret < 0) {
|
|
dev_err(dev, "Error: Reading chip id\n");
|
|
return ret;
|
|
}
|
|
|
|
dev_dbg(dev, "Chip Id %x\n", val);
|
|
for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
|
|
if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
|
|
data->chip_info = &bmc150_accel_chip_info_tbl[i];
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!data->chip_info) {
|
|
dev_err(dev, "Invalid chip %x\n", val);
|
|
return -ENODEV;
|
|
}
|
|
|
|
ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Set Bandwidth */
|
|
ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Set Default Range */
|
|
ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
|
|
BMC150_ACCEL_DEF_RANGE_4G);
|
|
if (ret < 0) {
|
|
dev_err(dev, "Error writing reg_pmu_range\n");
|
|
return ret;
|
|
}
|
|
|
|
data->range = BMC150_ACCEL_DEF_RANGE_4G;
|
|
|
|
/* Set default slope duration and thresholds */
|
|
data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
|
|
data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
|
|
ret = bmc150_accel_update_slope(data);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Set default as latched interrupts */
|
|
ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
|
|
BMC150_ACCEL_INT_MODE_LATCH_INT |
|
|
BMC150_ACCEL_INT_MODE_LATCH_RESET);
|
|
if (ret < 0) {
|
|
dev_err(dev, "Error writing reg_int_rst_latch\n");
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
|
|
enum bmc150_type type, const char *name,
|
|
bool block_supported)
|
|
{
|
|
const struct iio_dev_attr **fifo_attrs;
|
|
struct bmc150_accel_data *data;
|
|
struct iio_dev *indio_dev;
|
|
int ret;
|
|
|
|
indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
|
|
if (!indio_dev)
|
|
return -ENOMEM;
|
|
|
|
data = iio_priv(indio_dev);
|
|
dev_set_drvdata(dev, indio_dev);
|
|
|
|
data->regmap = regmap;
|
|
data->type = type;
|
|
|
|
if (!bmc150_apply_acpi_orientation(dev, &data->orientation)) {
|
|
ret = iio_read_mount_matrix(dev, &data->orientation);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* VDD is the analog and digital domain voltage supply
|
|
* VDDIO is the digital I/O voltage supply
|
|
*/
|
|
data->regulators[0].supply = "vdd";
|
|
data->regulators[1].supply = "vddio";
|
|
ret = devm_regulator_bulk_get(dev,
|
|
ARRAY_SIZE(data->regulators),
|
|
data->regulators);
|
|
if (ret)
|
|
return dev_err_probe(dev, ret, "failed to get regulators\n");
|
|
|
|
ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators),
|
|
data->regulators);
|
|
if (ret) {
|
|
dev_err(dev, "failed to enable regulators: %d\n", ret);
|
|
return ret;
|
|
}
|
|
/*
|
|
* 2ms or 3ms power-on time according to datasheets, let's better
|
|
* be safe than sorry and set this delay to 5ms.
|
|
*/
|
|
msleep(5);
|
|
|
|
ret = bmc150_accel_chip_init(data);
|
|
if (ret < 0)
|
|
goto err_disable_regulators;
|
|
|
|
mutex_init(&data->mutex);
|
|
|
|
indio_dev->channels = data->chip_info->channels;
|
|
indio_dev->num_channels = data->chip_info->num_channels;
|
|
indio_dev->name = name ? name : data->chip_info->name;
|
|
indio_dev->available_scan_masks = bmc150_accel_scan_masks;
|
|
indio_dev->modes = INDIO_DIRECT_MODE;
|
|
indio_dev->info = &bmc150_accel_info;
|
|
|
|
if (block_supported) {
|
|
indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
|
|
indio_dev->info = &bmc150_accel_info_fifo;
|
|
fifo_attrs = bmc150_accel_fifo_attributes;
|
|
} else {
|
|
fifo_attrs = NULL;
|
|
}
|
|
|
|
ret = iio_triggered_buffer_setup_ext(indio_dev,
|
|
&iio_pollfunc_store_time,
|
|
bmc150_accel_trigger_handler,
|
|
IIO_BUFFER_DIRECTION_IN,
|
|
&bmc150_accel_buffer_ops,
|
|
fifo_attrs);
|
|
if (ret < 0) {
|
|
dev_err(dev, "Failed: iio triggered buffer setup\n");
|
|
goto err_disable_regulators;
|
|
}
|
|
|
|
if (irq > 0) {
|
|
ret = devm_request_threaded_irq(dev, irq,
|
|
bmc150_accel_irq_handler,
|
|
bmc150_accel_irq_thread_handler,
|
|
IRQF_TRIGGER_RISING,
|
|
BMC150_ACCEL_IRQ_NAME,
|
|
indio_dev);
|
|
if (ret)
|
|
goto err_buffer_cleanup;
|
|
|
|
/*
|
|
* Set latched mode interrupt. While certain interrupts are
|
|
* non-latched regardless of this settings (e.g. new data) we
|
|
* want to use latch mode when we can to prevent interrupt
|
|
* flooding.
|
|
*/
|
|
ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
|
|
BMC150_ACCEL_INT_MODE_LATCH_RESET);
|
|
if (ret < 0) {
|
|
dev_err(dev, "Error writing reg_int_rst_latch\n");
|
|
goto err_buffer_cleanup;
|
|
}
|
|
|
|
bmc150_accel_interrupts_setup(indio_dev, data, irq);
|
|
|
|
ret = bmc150_accel_triggers_setup(indio_dev, data);
|
|
if (ret)
|
|
goto err_buffer_cleanup;
|
|
}
|
|
|
|
ret = pm_runtime_set_active(dev);
|
|
if (ret)
|
|
goto err_trigger_unregister;
|
|
|
|
pm_runtime_enable(dev);
|
|
pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
|
|
pm_runtime_use_autosuspend(dev);
|
|
|
|
ret = iio_device_register(indio_dev);
|
|
if (ret < 0) {
|
|
dev_err(dev, "Unable to register iio device\n");
|
|
goto err_pm_cleanup;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_pm_cleanup:
|
|
pm_runtime_dont_use_autosuspend(dev);
|
|
pm_runtime_disable(dev);
|
|
err_trigger_unregister:
|
|
bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
|
|
err_buffer_cleanup:
|
|
iio_triggered_buffer_cleanup(indio_dev);
|
|
err_disable_regulators:
|
|
regulator_bulk_disable(ARRAY_SIZE(data->regulators),
|
|
data->regulators);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_NS_GPL(bmc150_accel_core_probe, IIO_BMC150);
|
|
|
|
void bmc150_accel_core_remove(struct device *dev)
|
|
{
|
|
struct iio_dev *indio_dev = dev_get_drvdata(dev);
|
|
struct bmc150_accel_data *data = iio_priv(indio_dev);
|
|
|
|
iio_device_unregister(indio_dev);
|
|
|
|
pm_runtime_disable(dev);
|
|
pm_runtime_set_suspended(dev);
|
|
|
|
bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
|
|
|
|
iio_triggered_buffer_cleanup(indio_dev);
|
|
|
|
mutex_lock(&data->mutex);
|
|
bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
|
|
mutex_unlock(&data->mutex);
|
|
|
|
regulator_bulk_disable(ARRAY_SIZE(data->regulators),
|
|
data->regulators);
|
|
}
|
|
EXPORT_SYMBOL_NS_GPL(bmc150_accel_core_remove, IIO_BMC150);
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int bmc150_accel_suspend(struct device *dev)
|
|
{
|
|
struct iio_dev *indio_dev = dev_get_drvdata(dev);
|
|
struct bmc150_accel_data *data = iio_priv(indio_dev);
|
|
|
|
mutex_lock(&data->mutex);
|
|
bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
|
|
mutex_unlock(&data->mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bmc150_accel_resume(struct device *dev)
|
|
{
|
|
struct iio_dev *indio_dev = dev_get_drvdata(dev);
|
|
struct bmc150_accel_data *data = iio_priv(indio_dev);
|
|
|
|
mutex_lock(&data->mutex);
|
|
bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
|
|
bmc150_accel_fifo_set_mode(data);
|
|
mutex_unlock(&data->mutex);
|
|
|
|
if (data->resume_callback)
|
|
data->resume_callback(dev);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_PM
|
|
static int bmc150_accel_runtime_suspend(struct device *dev)
|
|
{
|
|
struct iio_dev *indio_dev = dev_get_drvdata(dev);
|
|
struct bmc150_accel_data *data = iio_priv(indio_dev);
|
|
int ret;
|
|
|
|
ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
|
|
if (ret < 0)
|
|
return -EAGAIN;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bmc150_accel_runtime_resume(struct device *dev)
|
|
{
|
|
struct iio_dev *indio_dev = dev_get_drvdata(dev);
|
|
struct bmc150_accel_data *data = iio_priv(indio_dev);
|
|
int ret;
|
|
int sleep_val;
|
|
|
|
ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
|
|
if (ret < 0)
|
|
return ret;
|
|
ret = bmc150_accel_fifo_set_mode(data);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
sleep_val = bmc150_accel_get_startup_times(data);
|
|
if (sleep_val < 20)
|
|
usleep_range(sleep_val * 1000, 20000);
|
|
else
|
|
msleep_interruptible(sleep_val);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
const struct dev_pm_ops bmc150_accel_pm_ops = {
|
|
SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
|
|
SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
|
|
bmc150_accel_runtime_resume, NULL)
|
|
};
|
|
EXPORT_SYMBOL_NS_GPL(bmc150_accel_pm_ops, IIO_BMC150);
|
|
|
|
MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_DESCRIPTION("BMC150 accelerometer driver");
|