linux/drivers/phy/rockchip/phy-rockchip-inno-dsidphy.c
Uwe Kleine-König 497a38322a phy: rockchip: phy-rockchip-inno-dsidphy: Convert to platform remove callback returning void
The .remove() callback for a platform driver returns an int which makes
many driver authors wrongly assume it's possible to do error handling by
returning an error code. However the value returned is (mostly) ignored
and this typically results in resource leaks. To improve here there is a
quest to make the remove callback return void. In the first step of this
quest all drivers are converted to .remove_new() which already returns
void.

Trivially convert this driver from always returning zero in the remove
callback to the void returning variant.

Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Reviewed-by: Heiko Stuebner <heiko@sntech.de>
Link: https://lore.kernel.org/r/20230307115900.2293120-21-u.kleine-koenig@pengutronix.de
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2023-03-20 18:14:57 +05:30

796 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2018 Rockchip Electronics Co. Ltd.
*
* Author: Wyon Bi <bivvy.bi@rock-chips.com>
*/
#include <linux/bits.h>
#include <linux/kernel.h>
#include <linux/clk.h>
#include <linux/iopoll.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/time64.h>
#include <linux/phy/phy.h>
#include <linux/phy/phy-mipi-dphy.h>
#define UPDATE(x, h, l) (((x) << (l)) & GENMASK((h), (l)))
/*
* The offset address[7:0] is distributed two parts, one from the bit7 to bit5
* is the first address, the other from the bit4 to bit0 is the second address.
* when you configure the registers, you must set both of them. The Clock Lane
* and Data Lane use the same registers with the same second address, but the
* first address is different.
*/
#define FIRST_ADDRESS(x) (((x) & 0x7) << 5)
#define SECOND_ADDRESS(x) (((x) & 0x1f) << 0)
#define PHY_REG(first, second) (FIRST_ADDRESS(first) | \
SECOND_ADDRESS(second))
/* Analog Register Part: reg00 */
#define BANDGAP_POWER_MASK BIT(7)
#define BANDGAP_POWER_DOWN BIT(7)
#define BANDGAP_POWER_ON 0
#define LANE_EN_MASK GENMASK(6, 2)
#define LANE_EN_CK BIT(6)
#define LANE_EN_3 BIT(5)
#define LANE_EN_2 BIT(4)
#define LANE_EN_1 BIT(3)
#define LANE_EN_0 BIT(2)
#define POWER_WORK_MASK GENMASK(1, 0)
#define POWER_WORK_ENABLE UPDATE(1, 1, 0)
#define POWER_WORK_DISABLE UPDATE(2, 1, 0)
/* Analog Register Part: reg01 */
#define REG_SYNCRST_MASK BIT(2)
#define REG_SYNCRST_RESET BIT(2)
#define REG_SYNCRST_NORMAL 0
#define REG_LDOPD_MASK BIT(1)
#define REG_LDOPD_POWER_DOWN BIT(1)
#define REG_LDOPD_POWER_ON 0
#define REG_PLLPD_MASK BIT(0)
#define REG_PLLPD_POWER_DOWN BIT(0)
#define REG_PLLPD_POWER_ON 0
/* Analog Register Part: reg03 */
#define REG_FBDIV_HI_MASK BIT(5)
#define REG_FBDIV_HI(x) UPDATE((x >> 8), 5, 5)
#define REG_PREDIV_MASK GENMASK(4, 0)
#define REG_PREDIV(x) UPDATE(x, 4, 0)
/* Analog Register Part: reg04 */
#define REG_FBDIV_LO_MASK GENMASK(7, 0)
#define REG_FBDIV_LO(x) UPDATE(x, 7, 0)
/* Analog Register Part: reg05 */
#define SAMPLE_CLOCK_PHASE_MASK GENMASK(6, 4)
#define SAMPLE_CLOCK_PHASE(x) UPDATE(x, 6, 4)
#define CLOCK_LANE_SKEW_PHASE_MASK GENMASK(2, 0)
#define CLOCK_LANE_SKEW_PHASE(x) UPDATE(x, 2, 0)
/* Analog Register Part: reg06 */
#define DATA_LANE_3_SKEW_PHASE_MASK GENMASK(6, 4)
#define DATA_LANE_3_SKEW_PHASE(x) UPDATE(x, 6, 4)
#define DATA_LANE_2_SKEW_PHASE_MASK GENMASK(2, 0)
#define DATA_LANE_2_SKEW_PHASE(x) UPDATE(x, 2, 0)
/* Analog Register Part: reg07 */
#define DATA_LANE_1_SKEW_PHASE_MASK GENMASK(6, 4)
#define DATA_LANE_1_SKEW_PHASE(x) UPDATE(x, 6, 4)
#define DATA_LANE_0_SKEW_PHASE_MASK GENMASK(2, 0)
#define DATA_LANE_0_SKEW_PHASE(x) UPDATE(x, 2, 0)
/* Analog Register Part: reg08 */
#define PLL_POST_DIV_ENABLE_MASK BIT(5)
#define PLL_POST_DIV_ENABLE BIT(5)
#define SAMPLE_CLOCK_DIRECTION_MASK BIT(4)
#define SAMPLE_CLOCK_DIRECTION_REVERSE BIT(4)
#define SAMPLE_CLOCK_DIRECTION_FORWARD 0
#define LOWFRE_EN_MASK BIT(5)
#define PLL_OUTPUT_FREQUENCY_DIV_BY_1 0
#define PLL_OUTPUT_FREQUENCY_DIV_BY_2 1
/* Analog Register Part: reg0b */
#define CLOCK_LANE_VOD_RANGE_SET_MASK GENMASK(3, 0)
#define CLOCK_LANE_VOD_RANGE_SET(x) UPDATE(x, 3, 0)
#define VOD_MIN_RANGE 0x1
#define VOD_MID_RANGE 0x3
#define VOD_BIG_RANGE 0x7
#define VOD_MAX_RANGE 0xf
/* Analog Register Part: reg1E */
#define PLL_MODE_SEL_MASK GENMASK(6, 5)
#define PLL_MODE_SEL_LVDS_MODE 0
#define PLL_MODE_SEL_MIPI_MODE BIT(5)
/* Digital Register Part: reg00 */
#define REG_DIG_RSTN_MASK BIT(0)
#define REG_DIG_RSTN_NORMAL BIT(0)
#define REG_DIG_RSTN_RESET 0
/* Digital Register Part: reg01 */
#define INVERT_TXCLKESC_MASK BIT(1)
#define INVERT_TXCLKESC_ENABLE BIT(1)
#define INVERT_TXCLKESC_DISABLE 0
#define INVERT_TXBYTECLKHS_MASK BIT(0)
#define INVERT_TXBYTECLKHS_ENABLE BIT(0)
#define INVERT_TXBYTECLKHS_DISABLE 0
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg05 */
#define T_LPX_CNT_MASK GENMASK(5, 0)
#define T_LPX_CNT(x) UPDATE(x, 5, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg06 */
#define T_HS_ZERO_CNT_HI_MASK BIT(7)
#define T_HS_ZERO_CNT_HI(x) UPDATE(x, 7, 7)
#define T_HS_PREPARE_CNT_MASK GENMASK(6, 0)
#define T_HS_PREPARE_CNT(x) UPDATE(x, 6, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg07 */
#define T_HS_ZERO_CNT_LO_MASK GENMASK(5, 0)
#define T_HS_ZERO_CNT_LO(x) UPDATE(x, 5, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg08 */
#define T_HS_TRAIL_CNT_MASK GENMASK(6, 0)
#define T_HS_TRAIL_CNT(x) UPDATE(x, 6, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg09 */
#define T_HS_EXIT_CNT_LO_MASK GENMASK(4, 0)
#define T_HS_EXIT_CNT_LO(x) UPDATE(x, 4, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0a */
#define T_CLK_POST_CNT_LO_MASK GENMASK(3, 0)
#define T_CLK_POST_CNT_LO(x) UPDATE(x, 3, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0c */
#define LPDT_TX_PPI_SYNC_MASK BIT(2)
#define LPDT_TX_PPI_SYNC_ENABLE BIT(2)
#define LPDT_TX_PPI_SYNC_DISABLE 0
#define T_WAKEUP_CNT_HI_MASK GENMASK(1, 0)
#define T_WAKEUP_CNT_HI(x) UPDATE(x, 1, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0d */
#define T_WAKEUP_CNT_LO_MASK GENMASK(7, 0)
#define T_WAKEUP_CNT_LO(x) UPDATE(x, 7, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0e */
#define T_CLK_PRE_CNT_MASK GENMASK(3, 0)
#define T_CLK_PRE_CNT(x) UPDATE(x, 3, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg10 */
#define T_CLK_POST_CNT_HI_MASK GENMASK(7, 6)
#define T_CLK_POST_CNT_HI(x) UPDATE(x, 7, 6)
#define T_TA_GO_CNT_MASK GENMASK(5, 0)
#define T_TA_GO_CNT(x) UPDATE(x, 5, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg11 */
#define T_HS_EXIT_CNT_HI_MASK BIT(6)
#define T_HS_EXIT_CNT_HI(x) UPDATE(x, 6, 6)
#define T_TA_SURE_CNT_MASK GENMASK(5, 0)
#define T_TA_SURE_CNT(x) UPDATE(x, 5, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg12 */
#define T_TA_WAIT_CNT_MASK GENMASK(5, 0)
#define T_TA_WAIT_CNT(x) UPDATE(x, 5, 0)
/* LVDS Register Part: reg00 */
#define LVDS_DIGITAL_INTERNAL_RESET_MASK BIT(2)
#define LVDS_DIGITAL_INTERNAL_RESET_DISABLE BIT(2)
#define LVDS_DIGITAL_INTERNAL_RESET_ENABLE 0
/* LVDS Register Part: reg01 */
#define LVDS_DIGITAL_INTERNAL_ENABLE_MASK BIT(7)
#define LVDS_DIGITAL_INTERNAL_ENABLE BIT(7)
#define LVDS_DIGITAL_INTERNAL_DISABLE 0
/* LVDS Register Part: reg03 */
#define MODE_ENABLE_MASK GENMASK(2, 0)
#define TTL_MODE_ENABLE BIT(2)
#define LVDS_MODE_ENABLE BIT(1)
#define MIPI_MODE_ENABLE BIT(0)
/* LVDS Register Part: reg0b */
#define LVDS_LANE_EN_MASK GENMASK(7, 3)
#define LVDS_DATA_LANE0_EN BIT(7)
#define LVDS_DATA_LANE1_EN BIT(6)
#define LVDS_DATA_LANE2_EN BIT(5)
#define LVDS_DATA_LANE3_EN BIT(4)
#define LVDS_CLK_LANE_EN BIT(3)
#define LVDS_PLL_POWER_MASK BIT(2)
#define LVDS_PLL_POWER_OFF BIT(2)
#define LVDS_PLL_POWER_ON 0
#define LVDS_BANDGAP_POWER_MASK BIT(0)
#define LVDS_BANDGAP_POWER_DOWN BIT(0)
#define LVDS_BANDGAP_POWER_ON 0
#define DSI_PHY_RSTZ 0xa0
#define PHY_ENABLECLK BIT(2)
#define DSI_PHY_STATUS 0xb0
#define PHY_LOCK BIT(0)
enum phy_max_rate {
MAX_1GHZ,
MAX_2_5GHZ,
};
struct inno_video_phy_plat_data {
const struct inno_mipi_dphy_timing *inno_mipi_dphy_timing_table;
const unsigned int num_timings;
enum phy_max_rate max_rate;
};
struct inno_dsidphy {
struct device *dev;
struct clk *ref_clk;
struct clk *pclk_phy;
struct clk *pclk_host;
const struct inno_video_phy_plat_data *pdata;
void __iomem *phy_base;
void __iomem *host_base;
struct reset_control *rst;
enum phy_mode mode;
struct phy_configure_opts_mipi_dphy dphy_cfg;
struct clk *pll_clk;
struct {
struct clk_hw hw;
u8 prediv;
u16 fbdiv;
unsigned long rate;
} pll;
};
enum {
REGISTER_PART_ANALOG,
REGISTER_PART_DIGITAL,
REGISTER_PART_CLOCK_LANE,
REGISTER_PART_DATA0_LANE,
REGISTER_PART_DATA1_LANE,
REGISTER_PART_DATA2_LANE,
REGISTER_PART_DATA3_LANE,
REGISTER_PART_LVDS,
};
struct inno_mipi_dphy_timing {
unsigned long rate;
u8 lpx;
u8 hs_prepare;
u8 clk_lane_hs_zero;
u8 data_lane_hs_zero;
u8 hs_trail;
};
static const
struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table_max_1ghz[] = {
{ 110000000, 0x0, 0x20, 0x16, 0x02, 0x22},
{ 150000000, 0x0, 0x06, 0x16, 0x03, 0x45},
{ 200000000, 0x0, 0x18, 0x17, 0x04, 0x0b},
{ 250000000, 0x0, 0x05, 0x17, 0x05, 0x16},
{ 300000000, 0x0, 0x51, 0x18, 0x06, 0x2c},
{ 400000000, 0x0, 0x64, 0x19, 0x07, 0x33},
{ 500000000, 0x0, 0x20, 0x1b, 0x07, 0x4e},
{ 600000000, 0x0, 0x6a, 0x1d, 0x08, 0x3a},
{ 700000000, 0x0, 0x3e, 0x1e, 0x08, 0x6a},
{ 800000000, 0x0, 0x21, 0x1f, 0x09, 0x29},
{1000000000, 0x0, 0x09, 0x20, 0x09, 0x27},
};
static const
struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table_max_2_5ghz[] = {
{ 110000000, 0x02, 0x7f, 0x16, 0x02, 0x02},
{ 150000000, 0x02, 0x7f, 0x16, 0x03, 0x02},
{ 200000000, 0x02, 0x7f, 0x17, 0x04, 0x02},
{ 250000000, 0x02, 0x7f, 0x17, 0x05, 0x04},
{ 300000000, 0x02, 0x7f, 0x18, 0x06, 0x04},
{ 400000000, 0x03, 0x7e, 0x19, 0x07, 0x04},
{ 500000000, 0x03, 0x7c, 0x1b, 0x07, 0x08},
{ 600000000, 0x03, 0x70, 0x1d, 0x08, 0x10},
{ 700000000, 0x05, 0x40, 0x1e, 0x08, 0x30},
{ 800000000, 0x05, 0x02, 0x1f, 0x09, 0x30},
{1000000000, 0x05, 0x08, 0x20, 0x09, 0x30},
{1200000000, 0x06, 0x03, 0x32, 0x14, 0x0f},
{1400000000, 0x09, 0x03, 0x32, 0x14, 0x0f},
{1600000000, 0x0d, 0x42, 0x36, 0x0e, 0x0f},
{1800000000, 0x0e, 0x47, 0x7a, 0x0e, 0x0f},
{2000000000, 0x11, 0x64, 0x7a, 0x0e, 0x0b},
{2200000000, 0x13, 0x64, 0x7e, 0x15, 0x0b},
{2400000000, 0x13, 0x33, 0x7f, 0x15, 0x6a},
{2500000000, 0x15, 0x54, 0x7f, 0x15, 0x6a},
};
static inline struct inno_dsidphy *hw_to_inno(struct clk_hw *hw)
{
return container_of(hw, struct inno_dsidphy, pll.hw);
}
static void phy_update_bits(struct inno_dsidphy *inno,
u8 first, u8 second, u8 mask, u8 val)
{
u32 reg = PHY_REG(first, second) << 2;
unsigned int tmp, orig;
orig = readl(inno->phy_base + reg);
tmp = orig & ~mask;
tmp |= val & mask;
writel(tmp, inno->phy_base + reg);
}
static unsigned long inno_dsidphy_pll_calc_rate(struct inno_dsidphy *inno,
unsigned long rate)
{
unsigned long prate = clk_get_rate(inno->ref_clk);
unsigned long best_freq = 0;
unsigned long fref, fout;
u8 min_prediv, max_prediv;
u8 _prediv, best_prediv = 1;
u16 _fbdiv, best_fbdiv = 1;
u32 min_delta = UINT_MAX;
/*
* The PLL output frequency can be calculated using a simple formula:
* PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2
* PLL_Output_Frequency: it is equal to DDR-Clock-Frequency * 2
*/
fref = prate / 2;
if (rate > 1000000000UL)
fout = 1000000000UL;
else
fout = rate;
/* 5Mhz < Fref / prediv < 40MHz */
min_prediv = DIV_ROUND_UP(fref, 40000000);
max_prediv = fref / 5000000;
for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) {
u64 tmp;
u32 delta;
tmp = (u64)fout * _prediv;
do_div(tmp, fref);
_fbdiv = tmp;
/*
* The possible settings of feedback divider are
* 12, 13, 14, 16, ~ 511
*/
if (_fbdiv == 15)
continue;
if (_fbdiv < 12 || _fbdiv > 511)
continue;
tmp = (u64)_fbdiv * fref;
do_div(tmp, _prediv);
delta = abs(fout - tmp);
if (!delta) {
best_prediv = _prediv;
best_fbdiv = _fbdiv;
best_freq = tmp;
break;
} else if (delta < min_delta) {
best_prediv = _prediv;
best_fbdiv = _fbdiv;
best_freq = tmp;
min_delta = delta;
}
}
if (best_freq) {
inno->pll.prediv = best_prediv;
inno->pll.fbdiv = best_fbdiv;
inno->pll.rate = best_freq;
}
return best_freq;
}
static void inno_dsidphy_mipi_mode_enable(struct inno_dsidphy *inno)
{
struct phy_configure_opts_mipi_dphy *cfg = &inno->dphy_cfg;
const struct inno_mipi_dphy_timing *timings;
u32 t_txbyteclkhs, t_txclkesc;
u32 txbyteclkhs, txclkesc, esc_clk_div;
u32 hs_exit, clk_post, clk_pre, wakeup, lpx, ta_go, ta_sure, ta_wait;
u32 hs_prepare, hs_trail, hs_zero, clk_lane_hs_zero, data_lane_hs_zero;
unsigned int i;
timings = inno->pdata->inno_mipi_dphy_timing_table;
inno_dsidphy_pll_calc_rate(inno, cfg->hs_clk_rate);
/* Select MIPI mode */
phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
MODE_ENABLE_MASK, MIPI_MODE_ENABLE);
/* Configure PLL */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
REG_PREDIV_MASK, REG_PREDIV(inno->pll.prediv));
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
REG_FBDIV_HI_MASK, REG_FBDIV_HI(inno->pll.fbdiv));
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
REG_FBDIV_LO_MASK, REG_FBDIV_LO(inno->pll.fbdiv));
if (inno->pdata->max_rate == MAX_2_5GHZ) {
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
PLL_POST_DIV_ENABLE_MASK, PLL_POST_DIV_ENABLE);
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x0b,
CLOCK_LANE_VOD_RANGE_SET_MASK,
CLOCK_LANE_VOD_RANGE_SET(VOD_MAX_RANGE));
}
/* Enable PLL and LDO */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
REG_LDOPD_MASK | REG_PLLPD_MASK,
REG_LDOPD_POWER_ON | REG_PLLPD_POWER_ON);
/* Reset analog */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
REG_SYNCRST_MASK, REG_SYNCRST_RESET);
udelay(1);
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
REG_SYNCRST_MASK, REG_SYNCRST_NORMAL);
/* Reset digital */
phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
REG_DIG_RSTN_MASK, REG_DIG_RSTN_RESET);
udelay(1);
phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
REG_DIG_RSTN_MASK, REG_DIG_RSTN_NORMAL);
txbyteclkhs = inno->pll.rate / 8;
t_txbyteclkhs = div_u64(PSEC_PER_SEC, txbyteclkhs);
esc_clk_div = DIV_ROUND_UP(txbyteclkhs, 20000000);
txclkesc = txbyteclkhs / esc_clk_div;
t_txclkesc = div_u64(PSEC_PER_SEC, txclkesc);
/*
* The value of counter for HS Ths-exit
* Ths-exit = Tpin_txbyteclkhs * value
*/
hs_exit = DIV_ROUND_UP(cfg->hs_exit, t_txbyteclkhs);
/*
* The value of counter for HS Tclk-post
* Tclk-post = Tpin_txbyteclkhs * value
*/
clk_post = DIV_ROUND_UP(cfg->clk_post, t_txbyteclkhs);
/*
* The value of counter for HS Tclk-pre
* Tclk-pre = Tpin_txbyteclkhs * value
*/
clk_pre = DIV_ROUND_UP(cfg->clk_pre, BITS_PER_BYTE);
/*
* The value of counter for HS Tta-go
* Tta-go for turnaround
* Tta-go = Ttxclkesc * value
*/
ta_go = DIV_ROUND_UP(cfg->ta_go, t_txclkesc);
/*
* The value of counter for HS Tta-sure
* Tta-sure for turnaround
* Tta-sure = Ttxclkesc * value
*/
ta_sure = DIV_ROUND_UP(cfg->ta_sure, t_txclkesc);
/*
* The value of counter for HS Tta-wait
* Tta-wait for turnaround
* Tta-wait = Ttxclkesc * value
*/
ta_wait = DIV_ROUND_UP(cfg->ta_get, t_txclkesc);
for (i = 0; i < inno->pdata->num_timings; i++)
if (inno->pll.rate <= timings[i].rate)
break;
if (i == inno->pdata->num_timings)
--i;
/*
* The value of counter for HS Tlpx Time
* Tlpx = Tpin_txbyteclkhs * (2 + value)
*/
if (inno->pdata->max_rate == MAX_1GHZ) {
lpx = DIV_ROUND_UP(cfg->lpx, t_txbyteclkhs);
if (lpx >= 2)
lpx -= 2;
} else
lpx = timings[i].lpx;
hs_prepare = timings[i].hs_prepare;
hs_trail = timings[i].hs_trail;
clk_lane_hs_zero = timings[i].clk_lane_hs_zero;
data_lane_hs_zero = timings[i].data_lane_hs_zero;
wakeup = 0x3ff;
for (i = REGISTER_PART_CLOCK_LANE; i <= REGISTER_PART_DATA3_LANE; i++) {
if (i == REGISTER_PART_CLOCK_LANE)
hs_zero = clk_lane_hs_zero;
else
hs_zero = data_lane_hs_zero;
phy_update_bits(inno, i, 0x05, T_LPX_CNT_MASK,
T_LPX_CNT(lpx));
phy_update_bits(inno, i, 0x06, T_HS_PREPARE_CNT_MASK,
T_HS_PREPARE_CNT(hs_prepare));
if (inno->pdata->max_rate == MAX_2_5GHZ)
phy_update_bits(inno, i, 0x06, T_HS_ZERO_CNT_HI_MASK,
T_HS_ZERO_CNT_HI(hs_zero >> 6));
phy_update_bits(inno, i, 0x07, T_HS_ZERO_CNT_LO_MASK,
T_HS_ZERO_CNT_LO(hs_zero));
phy_update_bits(inno, i, 0x08, T_HS_TRAIL_CNT_MASK,
T_HS_TRAIL_CNT(hs_trail));
if (inno->pdata->max_rate == MAX_2_5GHZ)
phy_update_bits(inno, i, 0x11, T_HS_EXIT_CNT_HI_MASK,
T_HS_EXIT_CNT_HI(hs_exit >> 5));
phy_update_bits(inno, i, 0x09, T_HS_EXIT_CNT_LO_MASK,
T_HS_EXIT_CNT_LO(hs_exit));
if (inno->pdata->max_rate == MAX_2_5GHZ)
phy_update_bits(inno, i, 0x10, T_CLK_POST_CNT_HI_MASK,
T_CLK_POST_CNT_HI(clk_post >> 4));
phy_update_bits(inno, i, 0x0a, T_CLK_POST_CNT_LO_MASK,
T_CLK_POST_CNT_LO(clk_post));
phy_update_bits(inno, i, 0x0e, T_CLK_PRE_CNT_MASK,
T_CLK_PRE_CNT(clk_pre));
phy_update_bits(inno, i, 0x0c, T_WAKEUP_CNT_HI_MASK,
T_WAKEUP_CNT_HI(wakeup >> 8));
phy_update_bits(inno, i, 0x0d, T_WAKEUP_CNT_LO_MASK,
T_WAKEUP_CNT_LO(wakeup));
phy_update_bits(inno, i, 0x10, T_TA_GO_CNT_MASK,
T_TA_GO_CNT(ta_go));
phy_update_bits(inno, i, 0x11, T_TA_SURE_CNT_MASK,
T_TA_SURE_CNT(ta_sure));
phy_update_bits(inno, i, 0x12, T_TA_WAIT_CNT_MASK,
T_TA_WAIT_CNT(ta_wait));
}
/* Enable all lanes on analog part */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
LANE_EN_MASK, LANE_EN_CK | LANE_EN_3 | LANE_EN_2 |
LANE_EN_1 | LANE_EN_0);
}
static void inno_dsidphy_lvds_mode_enable(struct inno_dsidphy *inno)
{
u8 prediv = 2;
u16 fbdiv = 28;
/* Sample clock reverse direction */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
SAMPLE_CLOCK_DIRECTION_MASK | LOWFRE_EN_MASK,
SAMPLE_CLOCK_DIRECTION_REVERSE |
PLL_OUTPUT_FREQUENCY_DIV_BY_1);
/* Select LVDS mode */
phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
MODE_ENABLE_MASK, LVDS_MODE_ENABLE);
/* Configure PLL */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
REG_PREDIV_MASK, REG_PREDIV(prediv));
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
REG_FBDIV_HI_MASK, REG_FBDIV_HI(fbdiv));
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
REG_FBDIV_LO_MASK, REG_FBDIV_LO(fbdiv));
phy_update_bits(inno, REGISTER_PART_LVDS, 0x08, 0xff, 0xfc);
/* Enable PLL and Bandgap */
phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
LVDS_PLL_POWER_ON | LVDS_BANDGAP_POWER_ON);
msleep(20);
/* Select PLL mode */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x1e,
PLL_MODE_SEL_MASK, PLL_MODE_SEL_LVDS_MODE);
/* Reset LVDS digital logic */
phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
LVDS_DIGITAL_INTERNAL_RESET_MASK,
LVDS_DIGITAL_INTERNAL_RESET_ENABLE);
udelay(1);
phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
LVDS_DIGITAL_INTERNAL_RESET_MASK,
LVDS_DIGITAL_INTERNAL_RESET_DISABLE);
/* Enable LVDS digital logic */
phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
LVDS_DIGITAL_INTERNAL_ENABLE);
/* Enable LVDS analog driver */
phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
LVDS_LANE_EN_MASK, LVDS_CLK_LANE_EN |
LVDS_DATA_LANE0_EN | LVDS_DATA_LANE1_EN |
LVDS_DATA_LANE2_EN | LVDS_DATA_LANE3_EN);
}
static int inno_dsidphy_power_on(struct phy *phy)
{
struct inno_dsidphy *inno = phy_get_drvdata(phy);
clk_prepare_enable(inno->pclk_phy);
clk_prepare_enable(inno->ref_clk);
pm_runtime_get_sync(inno->dev);
/* Bandgap power on */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
BANDGAP_POWER_MASK, BANDGAP_POWER_ON);
/* Enable power work */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
POWER_WORK_MASK, POWER_WORK_ENABLE);
switch (inno->mode) {
case PHY_MODE_MIPI_DPHY:
inno_dsidphy_mipi_mode_enable(inno);
break;
case PHY_MODE_LVDS:
inno_dsidphy_lvds_mode_enable(inno);
break;
default:
return -EINVAL;
}
return 0;
}
static int inno_dsidphy_power_off(struct phy *phy)
{
struct inno_dsidphy *inno = phy_get_drvdata(phy);
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, 0);
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
REG_LDOPD_MASK | REG_PLLPD_MASK,
REG_LDOPD_POWER_DOWN | REG_PLLPD_POWER_DOWN);
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
POWER_WORK_MASK, POWER_WORK_DISABLE);
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
BANDGAP_POWER_MASK, BANDGAP_POWER_DOWN);
phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, LVDS_LANE_EN_MASK, 0);
phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
LVDS_DIGITAL_INTERNAL_DISABLE);
phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
LVDS_PLL_POWER_OFF | LVDS_BANDGAP_POWER_DOWN);
pm_runtime_put(inno->dev);
clk_disable_unprepare(inno->ref_clk);
clk_disable_unprepare(inno->pclk_phy);
return 0;
}
static int inno_dsidphy_set_mode(struct phy *phy, enum phy_mode mode,
int submode)
{
struct inno_dsidphy *inno = phy_get_drvdata(phy);
switch (mode) {
case PHY_MODE_MIPI_DPHY:
case PHY_MODE_LVDS:
inno->mode = mode;
break;
default:
return -EINVAL;
}
return 0;
}
static int inno_dsidphy_configure(struct phy *phy,
union phy_configure_opts *opts)
{
struct inno_dsidphy *inno = phy_get_drvdata(phy);
int ret;
if (inno->mode != PHY_MODE_MIPI_DPHY)
return -EINVAL;
ret = phy_mipi_dphy_config_validate(&opts->mipi_dphy);
if (ret)
return ret;
memcpy(&inno->dphy_cfg, &opts->mipi_dphy, sizeof(inno->dphy_cfg));
return 0;
}
static const struct phy_ops inno_dsidphy_ops = {
.configure = inno_dsidphy_configure,
.set_mode = inno_dsidphy_set_mode,
.power_on = inno_dsidphy_power_on,
.power_off = inno_dsidphy_power_off,
.owner = THIS_MODULE,
};
static const struct inno_video_phy_plat_data max_1ghz_video_phy_plat_data = {
.inno_mipi_dphy_timing_table = inno_mipi_dphy_timing_table_max_1ghz,
.num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table_max_1ghz),
.max_rate = MAX_1GHZ,
};
static const struct inno_video_phy_plat_data max_2_5ghz_video_phy_plat_data = {
.inno_mipi_dphy_timing_table = inno_mipi_dphy_timing_table_max_2_5ghz,
.num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table_max_2_5ghz),
.max_rate = MAX_2_5GHZ,
};
static int inno_dsidphy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct inno_dsidphy *inno;
struct phy_provider *phy_provider;
struct phy *phy;
int ret;
inno = devm_kzalloc(dev, sizeof(*inno), GFP_KERNEL);
if (!inno)
return -ENOMEM;
inno->dev = dev;
inno->pdata = of_device_get_match_data(inno->dev);
platform_set_drvdata(pdev, inno);
inno->phy_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(inno->phy_base))
return PTR_ERR(inno->phy_base);
inno->ref_clk = devm_clk_get(dev, "ref");
if (IS_ERR(inno->ref_clk)) {
ret = PTR_ERR(inno->ref_clk);
dev_err(dev, "failed to get ref clock: %d\n", ret);
return ret;
}
inno->pclk_phy = devm_clk_get(dev, "pclk");
if (IS_ERR(inno->pclk_phy)) {
ret = PTR_ERR(inno->pclk_phy);
dev_err(dev, "failed to get phy pclk: %d\n", ret);
return ret;
}
inno->rst = devm_reset_control_get(dev, "apb");
if (IS_ERR(inno->rst)) {
ret = PTR_ERR(inno->rst);
dev_err(dev, "failed to get system reset control: %d\n", ret);
return ret;
}
phy = devm_phy_create(dev, NULL, &inno_dsidphy_ops);
if (IS_ERR(phy)) {
ret = PTR_ERR(phy);
dev_err(dev, "failed to create phy: %d\n", ret);
return ret;
}
phy_set_drvdata(phy, inno);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (IS_ERR(phy_provider)) {
ret = PTR_ERR(phy_provider);
dev_err(dev, "failed to register phy provider: %d\n", ret);
return ret;
}
pm_runtime_enable(dev);
return 0;
}
static void inno_dsidphy_remove(struct platform_device *pdev)
{
struct inno_dsidphy *inno = platform_get_drvdata(pdev);
pm_runtime_disable(inno->dev);
}
static const struct of_device_id inno_dsidphy_of_match[] = {
{
.compatible = "rockchip,px30-dsi-dphy",
.data = &max_1ghz_video_phy_plat_data,
}, {
.compatible = "rockchip,rk3128-dsi-dphy",
.data = &max_1ghz_video_phy_plat_data,
}, {
.compatible = "rockchip,rk3368-dsi-dphy",
.data = &max_1ghz_video_phy_plat_data,
}, {
.compatible = "rockchip,rk3568-dsi-dphy",
.data = &max_2_5ghz_video_phy_plat_data,
},
{}
};
MODULE_DEVICE_TABLE(of, inno_dsidphy_of_match);
static struct platform_driver inno_dsidphy_driver = {
.driver = {
.name = "inno-dsidphy",
.of_match_table = of_match_ptr(inno_dsidphy_of_match),
},
.probe = inno_dsidphy_probe,
.remove_new = inno_dsidphy_remove,
};
module_platform_driver(inno_dsidphy_driver);
MODULE_AUTHOR("Wyon Bi <bivvy.bi@rock-chips.com>");
MODULE_DESCRIPTION("Innosilicon MIPI/LVDS/TTL Video Combo PHY driver");
MODULE_LICENSE("GPL v2");