linux/drivers/ntb/hw/idt/ntb_hw_idt.c
Serge Semin 6952c6de8a NTB: ntb_hw_idt: Set NTB_TOPO_SWITCH topology
Since Switchtec patch there has been a new topology added to
the NTB API. It's called NTB_TOPO_SWITCH and dedicated for
PCIe switch chips. Even though topo field isn't used within the
IDT driver much, lets set it for the sake of unification.

Signed-off-by: Serge Semin <fancer.lancer@gmail.com>
Signed-off-by: Jon Mason <jdmason@kudzu.us>
2018-01-28 22:17:24 -05:00

2716 lines
85 KiB
C

/*
* This file is provided under a GPLv2 license. When using or
* redistributing this file, you may do so under that license.
*
* GPL LICENSE SUMMARY
*
* Copyright (C) 2016 T-Platforms All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
* Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, one can be found http://www.gnu.org/licenses/.
*
* The full GNU General Public License is included in this distribution in
* the file called "COPYING".
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* IDT PCIe-switch NTB Linux driver
*
* Contact Information:
* Serge Semin <fancer.lancer@gmail.com>, <Sergey.Semin@t-platforms.ru>
*/
#include <linux/stddef.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/bitops.h>
#include <linux/sizes.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/aer.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/debugfs.h>
#include <linux/ntb.h>
#include "ntb_hw_idt.h"
#define NTB_NAME "ntb_hw_idt"
#define NTB_DESC "IDT PCI-E Non-Transparent Bridge Driver"
#define NTB_VER "2.0"
#define NTB_IRQNAME "ntb_irq_idt"
MODULE_DESCRIPTION(NTB_DESC);
MODULE_VERSION(NTB_VER);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("T-platforms");
/*
* NT Endpoint registers table simplifying a loop access to the functionally
* related registers
*/
static const struct idt_ntb_regs ntdata_tbl = {
{ {IDT_NT_BARSETUP0, IDT_NT_BARLIMIT0,
IDT_NT_BARLTBASE0, IDT_NT_BARUTBASE0},
{IDT_NT_BARSETUP1, IDT_NT_BARLIMIT1,
IDT_NT_BARLTBASE1, IDT_NT_BARUTBASE1},
{IDT_NT_BARSETUP2, IDT_NT_BARLIMIT2,
IDT_NT_BARLTBASE2, IDT_NT_BARUTBASE2},
{IDT_NT_BARSETUP3, IDT_NT_BARLIMIT3,
IDT_NT_BARLTBASE3, IDT_NT_BARUTBASE3},
{IDT_NT_BARSETUP4, IDT_NT_BARLIMIT4,
IDT_NT_BARLTBASE4, IDT_NT_BARUTBASE4},
{IDT_NT_BARSETUP5, IDT_NT_BARLIMIT5,
IDT_NT_BARLTBASE5, IDT_NT_BARUTBASE5} },
{ {IDT_NT_INMSG0, IDT_NT_OUTMSG0, IDT_NT_INMSGSRC0},
{IDT_NT_INMSG1, IDT_NT_OUTMSG1, IDT_NT_INMSGSRC1},
{IDT_NT_INMSG2, IDT_NT_OUTMSG2, IDT_NT_INMSGSRC2},
{IDT_NT_INMSG3, IDT_NT_OUTMSG3, IDT_NT_INMSGSRC3} }
};
/*
* NT Endpoint ports data table with the corresponding pcie command, link
* status, control and BAR-related registers
*/
static const struct idt_ntb_port portdata_tbl[IDT_MAX_NR_PORTS] = {
/*0*/ { IDT_SW_NTP0_PCIECMDSTS, IDT_SW_NTP0_PCIELCTLSTS,
IDT_SW_NTP0_NTCTL,
IDT_SW_SWPORT0CTL, IDT_SW_SWPORT0STS,
{ {IDT_SW_NTP0_BARSETUP0, IDT_SW_NTP0_BARLIMIT0,
IDT_SW_NTP0_BARLTBASE0, IDT_SW_NTP0_BARUTBASE0},
{IDT_SW_NTP0_BARSETUP1, IDT_SW_NTP0_BARLIMIT1,
IDT_SW_NTP0_BARLTBASE1, IDT_SW_NTP0_BARUTBASE1},
{IDT_SW_NTP0_BARSETUP2, IDT_SW_NTP0_BARLIMIT2,
IDT_SW_NTP0_BARLTBASE2, IDT_SW_NTP0_BARUTBASE2},
{IDT_SW_NTP0_BARSETUP3, IDT_SW_NTP0_BARLIMIT3,
IDT_SW_NTP0_BARLTBASE3, IDT_SW_NTP0_BARUTBASE3},
{IDT_SW_NTP0_BARSETUP4, IDT_SW_NTP0_BARLIMIT4,
IDT_SW_NTP0_BARLTBASE4, IDT_SW_NTP0_BARUTBASE4},
{IDT_SW_NTP0_BARSETUP5, IDT_SW_NTP0_BARLIMIT5,
IDT_SW_NTP0_BARLTBASE5, IDT_SW_NTP0_BARUTBASE5} } },
/*1*/ {0},
/*2*/ { IDT_SW_NTP2_PCIECMDSTS, IDT_SW_NTP2_PCIELCTLSTS,
IDT_SW_NTP2_NTCTL,
IDT_SW_SWPORT2CTL, IDT_SW_SWPORT2STS,
{ {IDT_SW_NTP2_BARSETUP0, IDT_SW_NTP2_BARLIMIT0,
IDT_SW_NTP2_BARLTBASE0, IDT_SW_NTP2_BARUTBASE0},
{IDT_SW_NTP2_BARSETUP1, IDT_SW_NTP2_BARLIMIT1,
IDT_SW_NTP2_BARLTBASE1, IDT_SW_NTP2_BARUTBASE1},
{IDT_SW_NTP2_BARSETUP2, IDT_SW_NTP2_BARLIMIT2,
IDT_SW_NTP2_BARLTBASE2, IDT_SW_NTP2_BARUTBASE2},
{IDT_SW_NTP2_BARSETUP3, IDT_SW_NTP2_BARLIMIT3,
IDT_SW_NTP2_BARLTBASE3, IDT_SW_NTP2_BARUTBASE3},
{IDT_SW_NTP2_BARSETUP4, IDT_SW_NTP2_BARLIMIT4,
IDT_SW_NTP2_BARLTBASE4, IDT_SW_NTP2_BARUTBASE4},
{IDT_SW_NTP2_BARSETUP5, IDT_SW_NTP2_BARLIMIT5,
IDT_SW_NTP2_BARLTBASE5, IDT_SW_NTP2_BARUTBASE5} } },
/*3*/ {0},
/*4*/ { IDT_SW_NTP4_PCIECMDSTS, IDT_SW_NTP4_PCIELCTLSTS,
IDT_SW_NTP4_NTCTL,
IDT_SW_SWPORT4CTL, IDT_SW_SWPORT4STS,
{ {IDT_SW_NTP4_BARSETUP0, IDT_SW_NTP4_BARLIMIT0,
IDT_SW_NTP4_BARLTBASE0, IDT_SW_NTP4_BARUTBASE0},
{IDT_SW_NTP4_BARSETUP1, IDT_SW_NTP4_BARLIMIT1,
IDT_SW_NTP4_BARLTBASE1, IDT_SW_NTP4_BARUTBASE1},
{IDT_SW_NTP4_BARSETUP2, IDT_SW_NTP4_BARLIMIT2,
IDT_SW_NTP4_BARLTBASE2, IDT_SW_NTP4_BARUTBASE2},
{IDT_SW_NTP4_BARSETUP3, IDT_SW_NTP4_BARLIMIT3,
IDT_SW_NTP4_BARLTBASE3, IDT_SW_NTP4_BARUTBASE3},
{IDT_SW_NTP4_BARSETUP4, IDT_SW_NTP4_BARLIMIT4,
IDT_SW_NTP4_BARLTBASE4, IDT_SW_NTP4_BARUTBASE4},
{IDT_SW_NTP4_BARSETUP5, IDT_SW_NTP4_BARLIMIT5,
IDT_SW_NTP4_BARLTBASE5, IDT_SW_NTP4_BARUTBASE5} } },
/*5*/ {0},
/*6*/ { IDT_SW_NTP6_PCIECMDSTS, IDT_SW_NTP6_PCIELCTLSTS,
IDT_SW_NTP6_NTCTL,
IDT_SW_SWPORT6CTL, IDT_SW_SWPORT6STS,
{ {IDT_SW_NTP6_BARSETUP0, IDT_SW_NTP6_BARLIMIT0,
IDT_SW_NTP6_BARLTBASE0, IDT_SW_NTP6_BARUTBASE0},
{IDT_SW_NTP6_BARSETUP1, IDT_SW_NTP6_BARLIMIT1,
IDT_SW_NTP6_BARLTBASE1, IDT_SW_NTP6_BARUTBASE1},
{IDT_SW_NTP6_BARSETUP2, IDT_SW_NTP6_BARLIMIT2,
IDT_SW_NTP6_BARLTBASE2, IDT_SW_NTP6_BARUTBASE2},
{IDT_SW_NTP6_BARSETUP3, IDT_SW_NTP6_BARLIMIT3,
IDT_SW_NTP6_BARLTBASE3, IDT_SW_NTP6_BARUTBASE3},
{IDT_SW_NTP6_BARSETUP4, IDT_SW_NTP6_BARLIMIT4,
IDT_SW_NTP6_BARLTBASE4, IDT_SW_NTP6_BARUTBASE4},
{IDT_SW_NTP6_BARSETUP5, IDT_SW_NTP6_BARLIMIT5,
IDT_SW_NTP6_BARLTBASE5, IDT_SW_NTP6_BARUTBASE5} } },
/*7*/ {0},
/*8*/ { IDT_SW_NTP8_PCIECMDSTS, IDT_SW_NTP8_PCIELCTLSTS,
IDT_SW_NTP8_NTCTL,
IDT_SW_SWPORT8CTL, IDT_SW_SWPORT8STS,
{ {IDT_SW_NTP8_BARSETUP0, IDT_SW_NTP8_BARLIMIT0,
IDT_SW_NTP8_BARLTBASE0, IDT_SW_NTP8_BARUTBASE0},
{IDT_SW_NTP8_BARSETUP1, IDT_SW_NTP8_BARLIMIT1,
IDT_SW_NTP8_BARLTBASE1, IDT_SW_NTP8_BARUTBASE1},
{IDT_SW_NTP8_BARSETUP2, IDT_SW_NTP8_BARLIMIT2,
IDT_SW_NTP8_BARLTBASE2, IDT_SW_NTP8_BARUTBASE2},
{IDT_SW_NTP8_BARSETUP3, IDT_SW_NTP8_BARLIMIT3,
IDT_SW_NTP8_BARLTBASE3, IDT_SW_NTP8_BARUTBASE3},
{IDT_SW_NTP8_BARSETUP4, IDT_SW_NTP8_BARLIMIT4,
IDT_SW_NTP8_BARLTBASE4, IDT_SW_NTP8_BARUTBASE4},
{IDT_SW_NTP8_BARSETUP5, IDT_SW_NTP8_BARLIMIT5,
IDT_SW_NTP8_BARLTBASE5, IDT_SW_NTP8_BARUTBASE5} } },
/*9*/ {0},
/*10*/ {0},
/*11*/ {0},
/*12*/ { IDT_SW_NTP12_PCIECMDSTS, IDT_SW_NTP12_PCIELCTLSTS,
IDT_SW_NTP12_NTCTL,
IDT_SW_SWPORT12CTL, IDT_SW_SWPORT12STS,
{ {IDT_SW_NTP12_BARSETUP0, IDT_SW_NTP12_BARLIMIT0,
IDT_SW_NTP12_BARLTBASE0, IDT_SW_NTP12_BARUTBASE0},
{IDT_SW_NTP12_BARSETUP1, IDT_SW_NTP12_BARLIMIT1,
IDT_SW_NTP12_BARLTBASE1, IDT_SW_NTP12_BARUTBASE1},
{IDT_SW_NTP12_BARSETUP2, IDT_SW_NTP12_BARLIMIT2,
IDT_SW_NTP12_BARLTBASE2, IDT_SW_NTP12_BARUTBASE2},
{IDT_SW_NTP12_BARSETUP3, IDT_SW_NTP12_BARLIMIT3,
IDT_SW_NTP12_BARLTBASE3, IDT_SW_NTP12_BARUTBASE3},
{IDT_SW_NTP12_BARSETUP4, IDT_SW_NTP12_BARLIMIT4,
IDT_SW_NTP12_BARLTBASE4, IDT_SW_NTP12_BARUTBASE4},
{IDT_SW_NTP12_BARSETUP5, IDT_SW_NTP12_BARLIMIT5,
IDT_SW_NTP12_BARLTBASE5, IDT_SW_NTP12_BARUTBASE5} } },
/*13*/ {0},
/*14*/ {0},
/*15*/ {0},
/*16*/ { IDT_SW_NTP16_PCIECMDSTS, IDT_SW_NTP16_PCIELCTLSTS,
IDT_SW_NTP16_NTCTL,
IDT_SW_SWPORT16CTL, IDT_SW_SWPORT16STS,
{ {IDT_SW_NTP16_BARSETUP0, IDT_SW_NTP16_BARLIMIT0,
IDT_SW_NTP16_BARLTBASE0, IDT_SW_NTP16_BARUTBASE0},
{IDT_SW_NTP16_BARSETUP1, IDT_SW_NTP16_BARLIMIT1,
IDT_SW_NTP16_BARLTBASE1, IDT_SW_NTP16_BARUTBASE1},
{IDT_SW_NTP16_BARSETUP2, IDT_SW_NTP16_BARLIMIT2,
IDT_SW_NTP16_BARLTBASE2, IDT_SW_NTP16_BARUTBASE2},
{IDT_SW_NTP16_BARSETUP3, IDT_SW_NTP16_BARLIMIT3,
IDT_SW_NTP16_BARLTBASE3, IDT_SW_NTP16_BARUTBASE3},
{IDT_SW_NTP16_BARSETUP4, IDT_SW_NTP16_BARLIMIT4,
IDT_SW_NTP16_BARLTBASE4, IDT_SW_NTP16_BARUTBASE4},
{IDT_SW_NTP16_BARSETUP5, IDT_SW_NTP16_BARLIMIT5,
IDT_SW_NTP16_BARLTBASE5, IDT_SW_NTP16_BARUTBASE5} } },
/*17*/ {0},
/*18*/ {0},
/*19*/ {0},
/*20*/ { IDT_SW_NTP20_PCIECMDSTS, IDT_SW_NTP20_PCIELCTLSTS,
IDT_SW_NTP20_NTCTL,
IDT_SW_SWPORT20CTL, IDT_SW_SWPORT20STS,
{ {IDT_SW_NTP20_BARSETUP0, IDT_SW_NTP20_BARLIMIT0,
IDT_SW_NTP20_BARLTBASE0, IDT_SW_NTP20_BARUTBASE0},
{IDT_SW_NTP20_BARSETUP1, IDT_SW_NTP20_BARLIMIT1,
IDT_SW_NTP20_BARLTBASE1, IDT_SW_NTP20_BARUTBASE1},
{IDT_SW_NTP20_BARSETUP2, IDT_SW_NTP20_BARLIMIT2,
IDT_SW_NTP20_BARLTBASE2, IDT_SW_NTP20_BARUTBASE2},
{IDT_SW_NTP20_BARSETUP3, IDT_SW_NTP20_BARLIMIT3,
IDT_SW_NTP20_BARLTBASE3, IDT_SW_NTP20_BARUTBASE3},
{IDT_SW_NTP20_BARSETUP4, IDT_SW_NTP20_BARLIMIT4,
IDT_SW_NTP20_BARLTBASE4, IDT_SW_NTP20_BARUTBASE4},
{IDT_SW_NTP20_BARSETUP5, IDT_SW_NTP20_BARLIMIT5,
IDT_SW_NTP20_BARLTBASE5, IDT_SW_NTP20_BARUTBASE5} } },
/*21*/ {0},
/*22*/ {0},
/*23*/ {0}
};
/*
* IDT PCIe-switch partitions table with the corresponding control, status
* and messages control registers
*/
static const struct idt_ntb_part partdata_tbl[IDT_MAX_NR_PARTS] = {
/*0*/ { IDT_SW_SWPART0CTL, IDT_SW_SWPART0STS,
{IDT_SW_SWP0MSGCTL0, IDT_SW_SWP0MSGCTL1,
IDT_SW_SWP0MSGCTL2, IDT_SW_SWP0MSGCTL3} },
/*1*/ { IDT_SW_SWPART1CTL, IDT_SW_SWPART1STS,
{IDT_SW_SWP1MSGCTL0, IDT_SW_SWP1MSGCTL1,
IDT_SW_SWP1MSGCTL2, IDT_SW_SWP1MSGCTL3} },
/*2*/ { IDT_SW_SWPART2CTL, IDT_SW_SWPART2STS,
{IDT_SW_SWP2MSGCTL0, IDT_SW_SWP2MSGCTL1,
IDT_SW_SWP2MSGCTL2, IDT_SW_SWP2MSGCTL3} },
/*3*/ { IDT_SW_SWPART3CTL, IDT_SW_SWPART3STS,
{IDT_SW_SWP3MSGCTL0, IDT_SW_SWP3MSGCTL1,
IDT_SW_SWP3MSGCTL2, IDT_SW_SWP3MSGCTL3} },
/*4*/ { IDT_SW_SWPART4CTL, IDT_SW_SWPART4STS,
{IDT_SW_SWP4MSGCTL0, IDT_SW_SWP4MSGCTL1,
IDT_SW_SWP4MSGCTL2, IDT_SW_SWP4MSGCTL3} },
/*5*/ { IDT_SW_SWPART5CTL, IDT_SW_SWPART5STS,
{IDT_SW_SWP5MSGCTL0, IDT_SW_SWP5MSGCTL1,
IDT_SW_SWP5MSGCTL2, IDT_SW_SWP5MSGCTL3} },
/*6*/ { IDT_SW_SWPART6CTL, IDT_SW_SWPART6STS,
{IDT_SW_SWP6MSGCTL0, IDT_SW_SWP6MSGCTL1,
IDT_SW_SWP6MSGCTL2, IDT_SW_SWP6MSGCTL3} },
/*7*/ { IDT_SW_SWPART7CTL, IDT_SW_SWPART7STS,
{IDT_SW_SWP7MSGCTL0, IDT_SW_SWP7MSGCTL1,
IDT_SW_SWP7MSGCTL2, IDT_SW_SWP7MSGCTL3} }
};
/*
* DebugFS directory to place the driver debug file
*/
static struct dentry *dbgfs_topdir;
/*=============================================================================
* 1. IDT PCIe-switch registers IO-functions
*
* Beside ordinary configuration space registers IDT PCIe-switch expose
* global configuration registers, which are used to determine state of other
* device ports as well as being notified of some switch-related events.
* Additionally all the configuration space registers of all the IDT
* PCIe-switch functions are mapped to the Global Address space, so each
* function can determine a configuration of any other PCI-function.
* Functions declared in this chapter are created to encapsulate access
* to configuration and global registers, so the driver code just need to
* provide IDT NTB hardware descriptor and a register address.
*=============================================================================
*/
/*
* idt_nt_write() - PCI configuration space registers write method
* @ndev: IDT NTB hardware driver descriptor
* @reg: Register to write data to
* @data: Value to write to the register
*
* IDT PCIe-switch registers are all Little endian.
*/
static void idt_nt_write(struct idt_ntb_dev *ndev,
const unsigned int reg, const u32 data)
{
/*
* It's obvious bug to request a register exceeding the maximum possible
* value as well as to have it unaligned.
*/
if (WARN_ON(reg > IDT_REG_PCI_MAX || !IS_ALIGNED(reg, IDT_REG_ALIGN)))
return;
/* Just write the value to the specified register */
iowrite32(data, ndev->cfgspc + (ptrdiff_t)reg);
}
/*
* idt_nt_read() - PCI configuration space registers read method
* @ndev: IDT NTB hardware driver descriptor
* @reg: Register to write data to
*
* IDT PCIe-switch Global configuration registers are all Little endian.
*
* Return: register value
*/
static u32 idt_nt_read(struct idt_ntb_dev *ndev, const unsigned int reg)
{
/*
* It's obvious bug to request a register exceeding the maximum possible
* value as well as to have it unaligned.
*/
if (WARN_ON(reg > IDT_REG_PCI_MAX || !IS_ALIGNED(reg, IDT_REG_ALIGN)))
return ~0;
/* Just read the value from the specified register */
return ioread32(ndev->cfgspc + (ptrdiff_t)reg);
}
/*
* idt_sw_write() - Global registers write method
* @ndev: IDT NTB hardware driver descriptor
* @reg: Register to write data to
* @data: Value to write to the register
*
* IDT PCIe-switch Global configuration registers are all Little endian.
*/
static void idt_sw_write(struct idt_ntb_dev *ndev,
const unsigned int reg, const u32 data)
{
unsigned long irqflags;
/*
* It's obvious bug to request a register exceeding the maximum possible
* value as well as to have it unaligned.
*/
if (WARN_ON(reg > IDT_REG_SW_MAX || !IS_ALIGNED(reg, IDT_REG_ALIGN)))
return;
/* Lock GASA registers operations */
spin_lock_irqsave(&ndev->gasa_lock, irqflags);
/* Set the global register address */
iowrite32((u32)reg, ndev->cfgspc + (ptrdiff_t)IDT_NT_GASAADDR);
/* Put the new value of the register */
iowrite32(data, ndev->cfgspc + (ptrdiff_t)IDT_NT_GASADATA);
/* Make sure the PCIe transactions are executed */
mmiowb();
/* Unlock GASA registers operations */
spin_unlock_irqrestore(&ndev->gasa_lock, irqflags);
}
/*
* idt_sw_read() - Global registers read method
* @ndev: IDT NTB hardware driver descriptor
* @reg: Register to write data to
*
* IDT PCIe-switch Global configuration registers are all Little endian.
*
* Return: register value
*/
static u32 idt_sw_read(struct idt_ntb_dev *ndev, const unsigned int reg)
{
unsigned long irqflags;
u32 data;
/*
* It's obvious bug to request a register exceeding the maximum possible
* value as well as to have it unaligned.
*/
if (WARN_ON(reg > IDT_REG_SW_MAX || !IS_ALIGNED(reg, IDT_REG_ALIGN)))
return ~0;
/* Lock GASA registers operations */
spin_lock_irqsave(&ndev->gasa_lock, irqflags);
/* Set the global register address */
iowrite32((u32)reg, ndev->cfgspc + (ptrdiff_t)IDT_NT_GASAADDR);
/* Get the data of the register (read ops acts as MMIO barrier) */
data = ioread32(ndev->cfgspc + (ptrdiff_t)IDT_NT_GASADATA);
/* Unlock GASA registers operations */
spin_unlock_irqrestore(&ndev->gasa_lock, irqflags);
return data;
}
/*
* idt_reg_set_bits() - set bits of a passed register
* @ndev: IDT NTB hardware driver descriptor
* @reg: Register to change bits of
* @reg_lock: Register access spin lock
* @valid_mask: Mask of valid bits
* @set_bits: Bitmask to set
*
* Helper method to check whether a passed bitfield is valid and set
* corresponding bits of a register.
*
* WARNING! Make sure the passed register isn't accessed over plane
* idt_nt_write() method (read method is ok to be used concurrently).
*
* Return: zero on success, negative error on invalid bitmask.
*/
static inline int idt_reg_set_bits(struct idt_ntb_dev *ndev, unsigned int reg,
spinlock_t *reg_lock,
u64 valid_mask, u64 set_bits)
{
unsigned long irqflags;
u32 data;
if (set_bits & ~(u64)valid_mask)
return -EINVAL;
/* Lock access to the register unless the change is written back */
spin_lock_irqsave(reg_lock, irqflags);
data = idt_nt_read(ndev, reg) | (u32)set_bits;
idt_nt_write(ndev, reg, data);
/* Unlock the register */
spin_unlock_irqrestore(reg_lock, irqflags);
return 0;
}
/*
* idt_reg_clear_bits() - clear bits of a passed register
* @ndev: IDT NTB hardware driver descriptor
* @reg: Register to change bits of
* @reg_lock: Register access spin lock
* @set_bits: Bitmask to clear
*
* Helper method to check whether a passed bitfield is valid and clear
* corresponding bits of a register.
*
* NOTE! Invalid bits are always considered cleared so it's not an error
* to clear them over.
*
* WARNING! Make sure the passed register isn't accessed over plane
* idt_nt_write() method (read method is ok to use concurrently).
*/
static inline void idt_reg_clear_bits(struct idt_ntb_dev *ndev,
unsigned int reg, spinlock_t *reg_lock,
u64 clear_bits)
{
unsigned long irqflags;
u32 data;
/* Lock access to the register unless the change is written back */
spin_lock_irqsave(reg_lock, irqflags);
data = idt_nt_read(ndev, reg) & ~(u32)clear_bits;
idt_nt_write(ndev, reg, data);
/* Unlock the register */
spin_unlock_irqrestore(reg_lock, irqflags);
}
/*===========================================================================
* 2. Ports operations
*
* IDT PCIe-switches can have from 3 up to 8 ports with possible
* NT-functions enabled. So all the possible ports need to be scanned looking
* for NTB activated. NTB API will have enumerated only the ports with NTB.
*===========================================================================
*/
/*
* idt_scan_ports() - scan IDT PCIe-switch ports collecting info in the tables
* @ndev: Pointer to the PCI device descriptor
*
* Return: zero on success, otherwise a negative error number.
*/
static int idt_scan_ports(struct idt_ntb_dev *ndev)
{
unsigned char pidx, port, part;
u32 data, portsts, partsts;
/* Retrieve the local port number */
data = idt_nt_read(ndev, IDT_NT_PCIELCAP);
ndev->port = GET_FIELD(PCIELCAP_PORTNUM, data);
/* Retrieve the local partition number */
portsts = idt_sw_read(ndev, portdata_tbl[ndev->port].sts);
ndev->part = GET_FIELD(SWPORTxSTS_SWPART, portsts);
/* Initialize port/partition -> index tables with invalid values */
memset(ndev->port_idx_map, -EINVAL, sizeof(ndev->port_idx_map));
memset(ndev->part_idx_map, -EINVAL, sizeof(ndev->part_idx_map));
/*
* Walk over all the possible ports checking whether any of them has
* NT-function activated
*/
ndev->peer_cnt = 0;
for (pidx = 0; pidx < ndev->swcfg->port_cnt; pidx++) {
port = ndev->swcfg->ports[pidx];
/* Skip local port */
if (port == ndev->port)
continue;
/* Read the port status register to get it partition */
portsts = idt_sw_read(ndev, portdata_tbl[port].sts);
part = GET_FIELD(SWPORTxSTS_SWPART, portsts);
/* Retrieve the partition status */
partsts = idt_sw_read(ndev, partdata_tbl[part].sts);
/* Check if partition state is active and port has NTB */
if (IS_FLD_SET(SWPARTxSTS_STATE, partsts, ACT) &&
(IS_FLD_SET(SWPORTxSTS_MODE, portsts, NT) ||
IS_FLD_SET(SWPORTxSTS_MODE, portsts, USNT) ||
IS_FLD_SET(SWPORTxSTS_MODE, portsts, USNTDMA) ||
IS_FLD_SET(SWPORTxSTS_MODE, portsts, NTDMA))) {
/* Save the port and partition numbers */
ndev->peers[ndev->peer_cnt].port = port;
ndev->peers[ndev->peer_cnt].part = part;
/* Fill in the port/partition -> index tables */
ndev->port_idx_map[port] = ndev->peer_cnt;
ndev->part_idx_map[part] = ndev->peer_cnt;
ndev->peer_cnt++;
}
}
dev_dbg(&ndev->ntb.pdev->dev, "Local port: %hhu, num of peers: %hhu\n",
ndev->port, ndev->peer_cnt);
/* It's useless to have this driver loaded if there is no any peer */
if (ndev->peer_cnt == 0) {
dev_warn(&ndev->ntb.pdev->dev, "No active peer found\n");
return -ENODEV;
}
return 0;
}
/*
* idt_ntb_port_number() - get the local port number
* @ntb: NTB device context.
*
* Return: the local port number
*/
static int idt_ntb_port_number(struct ntb_dev *ntb)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
return ndev->port;
}
/*
* idt_ntb_peer_port_count() - get the number of peer ports
* @ntb: NTB device context.
*
* Return the count of detected peer NT-functions.
*
* Return: number of peer ports
*/
static int idt_ntb_peer_port_count(struct ntb_dev *ntb)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
return ndev->peer_cnt;
}
/*
* idt_ntb_peer_port_number() - get peer port by given index
* @ntb: NTB device context.
* @pidx: Peer port index.
*
* Return: peer port or negative error
*/
static int idt_ntb_peer_port_number(struct ntb_dev *ntb, int pidx)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
if (pidx < 0 || ndev->peer_cnt <= pidx)
return -EINVAL;
/* Return the detected NT-function port number */
return ndev->peers[pidx].port;
}
/*
* idt_ntb_peer_port_idx() - get peer port index by given port number
* @ntb: NTB device context.
* @port: Peer port number.
*
* Internal port -> index table is pre-initialized with -EINVAL values,
* so we just need to return it value
*
* Return: peer NT-function port index or negative error
*/
static int idt_ntb_peer_port_idx(struct ntb_dev *ntb, int port)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
if (port < 0 || IDT_MAX_NR_PORTS <= port)
return -EINVAL;
return ndev->port_idx_map[port];
}
/*===========================================================================
* 3. Link status operations
* There is no any ready-to-use method to have peer ports notified if NTB
* link is set up or got down. Instead global signal can be used instead.
* In case if any one of ports changes local NTB link state, it sends
* global signal and clears corresponding global state bit. Then all the ports
* receive a notification of that, so to make client driver being aware of
* possible NTB link change.
* Additionally each of active NT-functions is subscribed to PCIe-link
* state changes of peer ports.
*===========================================================================
*/
static void idt_ntb_local_link_disable(struct idt_ntb_dev *ndev);
/*
* idt_init_link() - Initialize NTB link state notification subsystem
* @ndev: IDT NTB hardware driver descriptor
*
* Function performs the basic initialization of some global registers
* needed to enable IRQ-based notifications of PCIe Link Up/Down and
* Global Signal events.
* NOTE Since it's not possible to determine when all the NTB peer drivers are
* unloaded as well as have those registers accessed concurrently, we must
* preinitialize them with the same value and leave it uncleared on local
* driver unload.
*/
static void idt_init_link(struct idt_ntb_dev *ndev)
{
u32 part_mask, port_mask, se_mask;
unsigned char pidx;
/* Initialize spin locker of Mapping Table access registers */
spin_lock_init(&ndev->mtbl_lock);
/* Walk over all detected peers collecting port and partition masks */
port_mask = ~BIT(ndev->port);
part_mask = ~BIT(ndev->part);
for (pidx = 0; pidx < ndev->peer_cnt; pidx++) {
port_mask &= ~BIT(ndev->peers[pidx].port);
part_mask &= ~BIT(ndev->peers[pidx].part);
}
/* Clean the Link Up/Down and GLobal Signal status registers */
idt_sw_write(ndev, IDT_SW_SELINKUPSTS, (u32)-1);
idt_sw_write(ndev, IDT_SW_SELINKDNSTS, (u32)-1);
idt_sw_write(ndev, IDT_SW_SEGSIGSTS, (u32)-1);
/* Unmask NT-activated partitions to receive Global Switch events */
idt_sw_write(ndev, IDT_SW_SEPMSK, part_mask);
/* Enable PCIe Link Up events of NT-activated ports */
idt_sw_write(ndev, IDT_SW_SELINKUPMSK, port_mask);
/* Enable PCIe Link Down events of NT-activated ports */
idt_sw_write(ndev, IDT_SW_SELINKDNMSK, port_mask);
/* Unmask NT-activated partitions to receive Global Signal events */
idt_sw_write(ndev, IDT_SW_SEGSIGMSK, part_mask);
/* Unmask Link Up/Down and Global Switch Events */
se_mask = ~(IDT_SEMSK_LINKUP | IDT_SEMSK_LINKDN | IDT_SEMSK_GSIGNAL);
idt_sw_write(ndev, IDT_SW_SEMSK, se_mask);
dev_dbg(&ndev->ntb.pdev->dev, "NTB link status events initialized");
}
/*
* idt_deinit_link() - deinitialize link subsystem
* @ndev: IDT NTB hardware driver descriptor
*
* Just disable the link back.
*/
static void idt_deinit_link(struct idt_ntb_dev *ndev)
{
/* Disable the link */
idt_ntb_local_link_disable(ndev);
dev_dbg(&ndev->ntb.pdev->dev, "NTB link status events deinitialized");
}
/*
* idt_se_isr() - switch events ISR
* @ndev: IDT NTB hardware driver descriptor
* @ntint_sts: NT-function interrupt status
*
* This driver doesn't support IDT PCIe-switch dynamic reconfigurations,
* Failover capability, etc, so switch events are utilized to notify of
* PCIe and NTB link events.
* The method is called from PCIe ISR bottom-half routine.
*/
static void idt_se_isr(struct idt_ntb_dev *ndev, u32 ntint_sts)
{
u32 sests;
/* Read Switch Events status */
sests = idt_sw_read(ndev, IDT_SW_SESTS);
/* Clean the Link Up/Down and Global Signal status registers */
idt_sw_write(ndev, IDT_SW_SELINKUPSTS, (u32)-1);
idt_sw_write(ndev, IDT_SW_SELINKDNSTS, (u32)-1);
idt_sw_write(ndev, IDT_SW_SEGSIGSTS, (u32)-1);
/* Clean the corresponding interrupt bit */
idt_nt_write(ndev, IDT_NT_NTINTSTS, IDT_NTINTSTS_SEVENT);
dev_dbg(&ndev->ntb.pdev->dev, "SE IRQ detected %#08x (SESTS %#08x)",
ntint_sts, sests);
/* Notify the client driver of possible link state change */
ntb_link_event(&ndev->ntb);
}
/*
* idt_ntb_local_link_enable() - enable the local NTB link.
* @ndev: IDT NTB hardware driver descriptor
*
* In order to enable the NTB link we need:
* - enable Completion TLPs translation
* - initialize mapping table to enable the Request ID translation
* - notify peers of NTB link state change
*/
static void idt_ntb_local_link_enable(struct idt_ntb_dev *ndev)
{
u32 reqid, mtbldata = 0;
unsigned long irqflags;
/* Enable the ID protection and Completion TLPs translation */
idt_nt_write(ndev, IDT_NT_NTCTL, IDT_NTCTL_CPEN);
/* Retrieve the current Requester ID (Bus:Device:Function) */
reqid = idt_nt_read(ndev, IDT_NT_REQIDCAP);
/*
* Set the corresponding NT Mapping table entry of port partition index
* with the data to perform the Request ID translation
*/
mtbldata = SET_FIELD(NTMTBLDATA_REQID, 0, reqid) |
SET_FIELD(NTMTBLDATA_PART, 0, ndev->part) |
IDT_NTMTBLDATA_VALID;
spin_lock_irqsave(&ndev->mtbl_lock, irqflags);
idt_nt_write(ndev, IDT_NT_NTMTBLADDR, ndev->part);
idt_nt_write(ndev, IDT_NT_NTMTBLDATA, mtbldata);
mmiowb();
spin_unlock_irqrestore(&ndev->mtbl_lock, irqflags);
/* Notify the peers by setting and clearing the global signal bit */
idt_nt_write(ndev, IDT_NT_NTGSIGNAL, IDT_NTGSIGNAL_SET);
idt_sw_write(ndev, IDT_SW_SEGSIGSTS, (u32)1 << ndev->part);
}
/*
* idt_ntb_local_link_disable() - disable the local NTB link.
* @ndev: IDT NTB hardware driver descriptor
*
* In order to enable the NTB link we need:
* - disable Completion TLPs translation
* - clear corresponding mapping table entry
* - notify peers of NTB link state change
*/
static void idt_ntb_local_link_disable(struct idt_ntb_dev *ndev)
{
unsigned long irqflags;
/* Disable Completion TLPs translation */
idt_nt_write(ndev, IDT_NT_NTCTL, 0);
/* Clear the corresponding NT Mapping table entry */
spin_lock_irqsave(&ndev->mtbl_lock, irqflags);
idt_nt_write(ndev, IDT_NT_NTMTBLADDR, ndev->part);
idt_nt_write(ndev, IDT_NT_NTMTBLDATA, 0);
mmiowb();
spin_unlock_irqrestore(&ndev->mtbl_lock, irqflags);
/* Notify the peers by setting and clearing the global signal bit */
idt_nt_write(ndev, IDT_NT_NTGSIGNAL, IDT_NTGSIGNAL_SET);
idt_sw_write(ndev, IDT_SW_SEGSIGSTS, (u32)1 << ndev->part);
}
/*
* idt_ntb_local_link_is_up() - test wethter local NTB link is up
* @ndev: IDT NTB hardware driver descriptor
*
* Local link is up under the following conditions:
* - Bus mastering is enabled
* - NTCTL has Completion TLPs translation enabled
* - Mapping table permits Request TLPs translation
* NOTE: We don't need to check PCIe link state since it's obviously
* up while we are able to communicate with IDT PCIe-switch
*
* Return: true if link is up, otherwise false
*/
static bool idt_ntb_local_link_is_up(struct idt_ntb_dev *ndev)
{
unsigned long irqflags;
u32 data;
/* Read the local Bus Master Enable status */
data = idt_nt_read(ndev, IDT_NT_PCICMDSTS);
if (!(data & IDT_PCICMDSTS_BME))
return false;
/* Read the local Completion TLPs translation enable status */
data = idt_nt_read(ndev, IDT_NT_NTCTL);
if (!(data & IDT_NTCTL_CPEN))
return false;
/* Read Mapping table entry corresponding to the local partition */
spin_lock_irqsave(&ndev->mtbl_lock, irqflags);
idt_nt_write(ndev, IDT_NT_NTMTBLADDR, ndev->part);
data = idt_nt_read(ndev, IDT_NT_NTMTBLDATA);
spin_unlock_irqrestore(&ndev->mtbl_lock, irqflags);
return !!(data & IDT_NTMTBLDATA_VALID);
}
/*
* idt_ntb_peer_link_is_up() - test whether peer NTB link is up
* @ndev: IDT NTB hardware driver descriptor
* @pidx: Peer port index
*
* Peer link is up under the following conditions:
* - PCIe link is up
* - Bus mastering is enabled
* - NTCTL has Completion TLPs translation enabled
* - Mapping table permits Request TLPs translation
*
* Return: true if link is up, otherwise false
*/
static bool idt_ntb_peer_link_is_up(struct idt_ntb_dev *ndev, int pidx)
{
unsigned long irqflags;
unsigned char port;
u32 data;
/* Retrieve the device port number */
port = ndev->peers[pidx].port;
/* Check whether PCIe link is up */
data = idt_sw_read(ndev, portdata_tbl[port].sts);
if (!(data & IDT_SWPORTxSTS_LINKUP))
return false;
/* Check whether bus mastering is enabled on the peer port */
data = idt_sw_read(ndev, portdata_tbl[port].pcicmdsts);
if (!(data & IDT_PCICMDSTS_BME))
return false;
/* Check if Completion TLPs translation is enabled on the peer port */
data = idt_sw_read(ndev, portdata_tbl[port].ntctl);
if (!(data & IDT_NTCTL_CPEN))
return false;
/* Read Mapping table entry corresponding to the peer partition */
spin_lock_irqsave(&ndev->mtbl_lock, irqflags);
idt_nt_write(ndev, IDT_NT_NTMTBLADDR, ndev->peers[pidx].part);
data = idt_nt_read(ndev, IDT_NT_NTMTBLDATA);
spin_unlock_irqrestore(&ndev->mtbl_lock, irqflags);
return !!(data & IDT_NTMTBLDATA_VALID);
}
/*
* idt_ntb_link_is_up() - get the current ntb link state (NTB API callback)
* @ntb: NTB device context.
* @speed: OUT - The link speed expressed as PCIe generation number.
* @width: OUT - The link width expressed as the number of PCIe lanes.
*
* Get the bitfield of NTB link states for all peer ports
*
* Return: bitfield of indexed ports link state: bit is set/cleared if the
* link is up/down respectively.
*/
static u64 idt_ntb_link_is_up(struct ntb_dev *ntb,
enum ntb_speed *speed, enum ntb_width *width)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
unsigned char pidx;
u64 status;
u32 data;
/* Retrieve the local link speed and width */
if (speed != NULL || width != NULL) {
data = idt_nt_read(ndev, IDT_NT_PCIELCTLSTS);
if (speed != NULL)
*speed = GET_FIELD(PCIELCTLSTS_CLS, data);
if (width != NULL)
*width = GET_FIELD(PCIELCTLSTS_NLW, data);
}
/* If local NTB link isn't up then all the links are considered down */
if (!idt_ntb_local_link_is_up(ndev))
return 0;
/* Collect all the peer ports link states into the bitfield */
status = 0;
for (pidx = 0; pidx < ndev->peer_cnt; pidx++) {
if (idt_ntb_peer_link_is_up(ndev, pidx))
status |= ((u64)1 << pidx);
}
return status;
}
/*
* idt_ntb_link_enable() - enable local port ntb link (NTB API callback)
* @ntb: NTB device context.
* @max_speed: The maximum link speed expressed as PCIe generation number.
* @max_width: The maximum link width expressed as the number of PCIe lanes.
*
* Enable just local NTB link. PCIe link parameters are ignored.
*
* Return: always zero.
*/
static int idt_ntb_link_enable(struct ntb_dev *ntb, enum ntb_speed speed,
enum ntb_width width)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
/* Just enable the local NTB link */
idt_ntb_local_link_enable(ndev);
dev_dbg(&ndev->ntb.pdev->dev, "Local NTB link enabled");
return 0;
}
/*
* idt_ntb_link_disable() - disable local port ntb link (NTB API callback)
* @ntb: NTB device context.
*
* Disable just local NTB link.
*
* Return: always zero.
*/
static int idt_ntb_link_disable(struct ntb_dev *ntb)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
/* Just disable the local NTB link */
idt_ntb_local_link_disable(ndev);
dev_dbg(&ndev->ntb.pdev->dev, "Local NTB link disabled");
return 0;
}
/*=============================================================================
* 4. Memory Window operations
*
* IDT PCIe-switches have two types of memory windows: MWs with direct
* address translation and MWs with LUT based translation. The first type of
* MWs is simple map of corresponding BAR address space to a memory space
* of specified target port. So it implemets just ont-to-one mapping. Lookup
* table in its turn can map one BAR address space to up to 24 different
* memory spaces of different ports.
* NT-functions BARs can be turned on to implement either direct or lookup
* table based address translations, so:
* BAR0 - NT configuration registers space/direct address translation
* BAR1 - direct address translation/upper address of BAR0x64
* BAR2 - direct address translation/Lookup table with either 12 or 24 entries
* BAR3 - direct address translation/upper address of BAR2x64
* BAR4 - direct address translation/Lookup table with either 12 or 24 entries
* BAR5 - direct address translation/upper address of BAR4x64
* Additionally BAR2 and BAR4 can't have 24-entries LUT enabled at the same
* time. Since the BARs setup can be rather complicated this driver implements
* a scanning algorithm to have all the possible memory windows configuration
* covered.
*
* NOTE 1 BAR setup must be done before Linux kernel enumerated NT-function
* of any port, so this driver would have memory windows configurations fixed.
* In this way all initializations must be performed either by platform BIOS
* or using EEPROM connected to IDT PCIe-switch master SMBus.
*
* NOTE 2 This driver expects BAR0 mapping NT-function configuration space.
* Easy calculation can give us an upper boundary of 29 possible memory windows
* per each NT-function if all the BARs are of 32bit type.
*=============================================================================
*/
/*
* idt_get_mw_count() - get memory window count
* @mw_type: Memory window type
*
* Return: number of memory windows with respect to the BAR type
*/
static inline unsigned char idt_get_mw_count(enum idt_mw_type mw_type)
{
switch (mw_type) {
case IDT_MW_DIR:
return 1;
case IDT_MW_LUT12:
return 12;
case IDT_MW_LUT24:
return 24;
default:
break;
}
return 0;
}
/*
* idt_get_mw_name() - get memory window name
* @mw_type: Memory window type
*
* Return: pointer to a string with name
*/
static inline char *idt_get_mw_name(enum idt_mw_type mw_type)
{
switch (mw_type) {
case IDT_MW_DIR:
return "DIR ";
case IDT_MW_LUT12:
return "LUT12";
case IDT_MW_LUT24:
return "LUT24";
default:
break;
}
return "unknown";
}
/*
* idt_scan_mws() - scan memory windows of the port
* @ndev: IDT NTB hardware driver descriptor
* @port: Port to get number of memory windows for
* @mw_cnt: Out - number of memory windows
*
* It walks over BAR setup registers of the specified port and determines
* the memory windows parameters if any activated.
*
* Return: array of memory windows
*/
static struct idt_mw_cfg *idt_scan_mws(struct idt_ntb_dev *ndev, int port,
unsigned char *mw_cnt)
{
struct idt_mw_cfg mws[IDT_MAX_NR_MWS], *ret_mws;
const struct idt_ntb_bar *bars;
enum idt_mw_type mw_type;
unsigned char widx, bidx, en_cnt;
bool bar_64bit = false;
int aprt_size;
u32 data;
/* Retrieve the array of the BARs registers */
bars = portdata_tbl[port].bars;
/* Scan all the BARs belonging to the port */
*mw_cnt = 0;
for (bidx = 0; bidx < IDT_BAR_CNT; bidx += 1 + bar_64bit) {
/* Read BARSETUP register value */
data = idt_sw_read(ndev, bars[bidx].setup);
/* Skip disabled BARs */
if (!(data & IDT_BARSETUP_EN)) {
bar_64bit = false;
continue;
}
/* Skip next BARSETUP if current one has 64bit addressing */
bar_64bit = IS_FLD_SET(BARSETUP_TYPE, data, 64);
/* Skip configuration space mapping BARs */
if (data & IDT_BARSETUP_MODE_CFG)
continue;
/* Retrieve MW type/entries count and aperture size */
mw_type = GET_FIELD(BARSETUP_ATRAN, data);
en_cnt = idt_get_mw_count(mw_type);
aprt_size = (u64)1 << GET_FIELD(BARSETUP_SIZE, data);
/* Save configurations of all available memory windows */
for (widx = 0; widx < en_cnt; widx++, (*mw_cnt)++) {
/*
* IDT can expose a limited number of MWs, so it's bug
* to have more than the driver expects
*/
if (*mw_cnt >= IDT_MAX_NR_MWS)
return ERR_PTR(-EINVAL);
/* Save basic MW info */
mws[*mw_cnt].type = mw_type;
mws[*mw_cnt].bar = bidx;
mws[*mw_cnt].idx = widx;
/* It's always DWORD aligned */
mws[*mw_cnt].addr_align = IDT_TRANS_ALIGN;
/* DIR and LUT approachs differently configure MWs */
if (mw_type == IDT_MW_DIR)
mws[*mw_cnt].size_max = aprt_size;
else if (mw_type == IDT_MW_LUT12)
mws[*mw_cnt].size_max = aprt_size / 16;
else
mws[*mw_cnt].size_max = aprt_size / 32;
mws[*mw_cnt].size_align = (mw_type == IDT_MW_DIR) ?
IDT_DIR_SIZE_ALIGN : mws[*mw_cnt].size_max;
}
}
/* Allocate memory for memory window descriptors */
ret_mws = devm_kcalloc(&ndev->ntb.pdev->dev, *mw_cnt,
sizeof(*ret_mws), GFP_KERNEL);
if (IS_ERR_OR_NULL(ret_mws))
return ERR_PTR(-ENOMEM);
/* Copy the info of detected memory windows */
memcpy(ret_mws, mws, (*mw_cnt)*sizeof(*ret_mws));
return ret_mws;
}
/*
* idt_init_mws() - initialize memory windows subsystem
* @ndev: IDT NTB hardware driver descriptor
*
* Scan BAR setup registers of local and peer ports to determine the
* outbound and inbound memory windows parameters
*
* Return: zero on success, otherwise a negative error number
*/
static int idt_init_mws(struct idt_ntb_dev *ndev)
{
struct idt_ntb_peer *peer;
unsigned char pidx;
/* Scan memory windows of the local port */
ndev->mws = idt_scan_mws(ndev, ndev->port, &ndev->mw_cnt);
if (IS_ERR(ndev->mws)) {
dev_err(&ndev->ntb.pdev->dev,
"Failed to scan mws of local port %hhu", ndev->port);
return PTR_ERR(ndev->mws);
}
/* Scan memory windows of the peer ports */
for (pidx = 0; pidx < ndev->peer_cnt; pidx++) {
peer = &ndev->peers[pidx];
peer->mws = idt_scan_mws(ndev, peer->port, &peer->mw_cnt);
if (IS_ERR(peer->mws)) {
dev_err(&ndev->ntb.pdev->dev,
"Failed to scan mws of port %hhu", peer->port);
return PTR_ERR(peer->mws);
}
}
/* Initialize spin locker of the LUT registers */
spin_lock_init(&ndev->lut_lock);
dev_dbg(&ndev->ntb.pdev->dev, "Outbound and inbound MWs initialized");
return 0;
}
/*
* idt_ntb_mw_count() - number of inbound memory windows (NTB API callback)
* @ntb: NTB device context.
* @pidx: Port index of peer device.
*
* The value is returned for the specified peer, so generally speaking it can
* be different for different port depending on the IDT PCIe-switch
* initialization.
*
* Return: the number of memory windows.
*/
static int idt_ntb_mw_count(struct ntb_dev *ntb, int pidx)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
if (pidx < 0 || ndev->peer_cnt <= pidx)
return -EINVAL;
return ndev->peers[pidx].mw_cnt;
}
/*
* idt_ntb_mw_get_align() - inbound memory window parameters (NTB API callback)
* @ntb: NTB device context.
* @pidx: Port index of peer device.
* @widx: Memory window index.
* @addr_align: OUT - the base alignment for translating the memory window
* @size_align: OUT - the size alignment for translating the memory window
* @size_max: OUT - the maximum size of the memory window
*
* The peer memory window parameters have already been determined, so just
* return the corresponding values, which mustn't change within session.
*
* Return: Zero on success, otherwise a negative error number.
*/
static int idt_ntb_mw_get_align(struct ntb_dev *ntb, int pidx, int widx,
resource_size_t *addr_align,
resource_size_t *size_align,
resource_size_t *size_max)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
struct idt_ntb_peer *peer;
if (pidx < 0 || ndev->peer_cnt <= pidx)
return -EINVAL;
peer = &ndev->peers[pidx];
if (widx < 0 || peer->mw_cnt <= widx)
return -EINVAL;
if (addr_align != NULL)
*addr_align = peer->mws[widx].addr_align;
if (size_align != NULL)
*size_align = peer->mws[widx].size_align;
if (size_max != NULL)
*size_max = peer->mws[widx].size_max;
return 0;
}
/*
* idt_ntb_peer_mw_count() - number of outbound memory windows
* (NTB API callback)
* @ntb: NTB device context.
*
* Outbound memory windows parameters have been determined based on the
* BAR setup registers value, which are mostly constants within one session.
*
* Return: the number of memory windows.
*/
static int idt_ntb_peer_mw_count(struct ntb_dev *ntb)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
return ndev->mw_cnt;
}
/*
* idt_ntb_peer_mw_get_addr() - get map address of an outbound memory window
* (NTB API callback)
* @ntb: NTB device context.
* @widx: Memory window index (within ntb_peer_mw_count() return value).
* @base: OUT - the base address of mapping region.
* @size: OUT - the size of mapping region.
*
* Return just parameters of BAR resources mapping. Size reflects just the size
* of the resource
*
* Return: Zero on success, otherwise a negative error number.
*/
static int idt_ntb_peer_mw_get_addr(struct ntb_dev *ntb, int widx,
phys_addr_t *base, resource_size_t *size)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
if (widx < 0 || ndev->mw_cnt <= widx)
return -EINVAL;
/* Mapping address is just properly shifted BAR resource start */
if (base != NULL)
*base = pci_resource_start(ntb->pdev, ndev->mws[widx].bar) +
ndev->mws[widx].idx * ndev->mws[widx].size_max;
/* Mapping size has already been calculated at MWs scanning */
if (size != NULL)
*size = ndev->mws[widx].size_max;
return 0;
}
/*
* idt_ntb_peer_mw_set_trans() - set a translation address of a memory window
* (NTB API callback)
* @ntb: NTB device context.
* @pidx: Port index of peer device the translation address received from.
* @widx: Memory window index.
* @addr: The dma address of the shared memory to access.
* @size: The size of the shared memory to access.
*
* The Direct address translation and LUT base translation is initialized a
* bit differenet. Although the parameters restriction are now determined by
* the same code.
*
* Return: Zero on success, otherwise an error number.
*/
static int idt_ntb_peer_mw_set_trans(struct ntb_dev *ntb, int pidx, int widx,
u64 addr, resource_size_t size)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
struct idt_mw_cfg *mw_cfg;
u32 data = 0, lutoff = 0;
if (pidx < 0 || ndev->peer_cnt <= pidx)
return -EINVAL;
if (widx < 0 || ndev->mw_cnt <= widx)
return -EINVAL;
/*
* Retrieve the memory window config to make sure the passed arguments
* fit it restrictions
*/
mw_cfg = &ndev->mws[widx];
if (!IS_ALIGNED(addr, mw_cfg->addr_align))
return -EINVAL;
if (!IS_ALIGNED(size, mw_cfg->size_align) || size > mw_cfg->size_max)
return -EINVAL;
/* DIR and LUT based translations are initialized differently */
if (mw_cfg->type == IDT_MW_DIR) {
const struct idt_ntb_bar *bar = &ntdata_tbl.bars[mw_cfg->bar];
u64 limit;
/* Set destination partition of translation */
data = idt_nt_read(ndev, bar->setup);
data = SET_FIELD(BARSETUP_TPART, data, ndev->peers[pidx].part);
idt_nt_write(ndev, bar->setup, data);
/* Set translation base address */
idt_nt_write(ndev, bar->ltbase, (u32)addr);
idt_nt_write(ndev, bar->utbase, (u32)(addr >> 32));
/* Set the custom BAR aperture limit */
limit = pci_resource_start(ntb->pdev, mw_cfg->bar) + size;
idt_nt_write(ndev, bar->limit, (u32)limit);
if (IS_FLD_SET(BARSETUP_TYPE, data, 64))
idt_nt_write(ndev, (bar + 1)->limit, (limit >> 32));
} else {
unsigned long irqflags;
/* Initialize corresponding LUT entry */
lutoff = SET_FIELD(LUTOFFSET_INDEX, 0, mw_cfg->idx) |
SET_FIELD(LUTOFFSET_BAR, 0, mw_cfg->bar);
data = SET_FIELD(LUTUDATA_PART, 0, ndev->peers[pidx].part) |
IDT_LUTUDATA_VALID;
spin_lock_irqsave(&ndev->lut_lock, irqflags);
idt_nt_write(ndev, IDT_NT_LUTOFFSET, lutoff);
idt_nt_write(ndev, IDT_NT_LUTLDATA, (u32)addr);
idt_nt_write(ndev, IDT_NT_LUTMDATA, (u32)(addr >> 32));
idt_nt_write(ndev, IDT_NT_LUTUDATA, data);
mmiowb();
spin_unlock_irqrestore(&ndev->lut_lock, irqflags);
/* Limit address isn't specified since size is fixed for LUT */
}
return 0;
}
/*
* idt_ntb_peer_mw_clear_trans() - clear the outbound MW translation address
* (NTB API callback)
* @ntb: NTB device context.
* @pidx: Port index of peer device.
* @widx: Memory window index.
*
* It effectively disables the translation over the specified outbound MW.
*
* Return: Zero on success, otherwise an error number.
*/
static int idt_ntb_peer_mw_clear_trans(struct ntb_dev *ntb, int pidx,
int widx)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
struct idt_mw_cfg *mw_cfg;
if (pidx < 0 || ndev->peer_cnt <= pidx)
return -EINVAL;
if (widx < 0 || ndev->mw_cnt <= widx)
return -EINVAL;
mw_cfg = &ndev->mws[widx];
/* DIR and LUT based translations are initialized differently */
if (mw_cfg->type == IDT_MW_DIR) {
const struct idt_ntb_bar *bar = &ntdata_tbl.bars[mw_cfg->bar];
u32 data;
/* Read BARSETUP to check BAR type */
data = idt_nt_read(ndev, bar->setup);
/* Disable translation by specifying zero BAR limit */
idt_nt_write(ndev, bar->limit, 0);
if (IS_FLD_SET(BARSETUP_TYPE, data, 64))
idt_nt_write(ndev, (bar + 1)->limit, 0);
} else {
unsigned long irqflags;
u32 lutoff;
/* Clear the corresponding LUT entry up */
lutoff = SET_FIELD(LUTOFFSET_INDEX, 0, mw_cfg->idx) |
SET_FIELD(LUTOFFSET_BAR, 0, mw_cfg->bar);
spin_lock_irqsave(&ndev->lut_lock, irqflags);
idt_nt_write(ndev, IDT_NT_LUTOFFSET, lutoff);
idt_nt_write(ndev, IDT_NT_LUTLDATA, 0);
idt_nt_write(ndev, IDT_NT_LUTMDATA, 0);
idt_nt_write(ndev, IDT_NT_LUTUDATA, 0);
mmiowb();
spin_unlock_irqrestore(&ndev->lut_lock, irqflags);
}
return 0;
}
/*=============================================================================
* 5. Doorbell operations
*
* Doorbell functionality of IDT PCIe-switches is pretty unusual. First of
* all there is global doorbell register which state can by changed by any
* NT-function of the IDT device in accordance with global permissions. These
* permissions configs are not supported by NTB API, so it must be done by
* either BIOS or EEPROM settings. In the same way the state of the global
* doorbell is reflected to the NT-functions local inbound doorbell registers.
* It can lead to situations when client driver sets some peer doorbell bits
* and get them bounced back to local inbound doorbell if permissions are
* granted.
* Secondly there is just one IRQ vector for Doorbell, Message, Temperature
* and Switch events, so if client driver left any of Doorbell bits set and
* some other event occurred, the driver will be notified of Doorbell event
* again.
*=============================================================================
*/
/*
* idt_db_isr() - doorbell event ISR
* @ndev: IDT NTB hardware driver descriptor
* @ntint_sts: NT-function interrupt status
*
* Doorbell event happans when DBELL bit of NTINTSTS switches from 0 to 1.
* It happens only when unmasked doorbell bits are set to ones on completely
* zeroed doorbell register.
* The method is called from PCIe ISR bottom-half routine.
*/
static void idt_db_isr(struct idt_ntb_dev *ndev, u32 ntint_sts)
{
/*
* Doorbell IRQ status will be cleaned only when client
* driver unsets all the doorbell bits.
*/
dev_dbg(&ndev->ntb.pdev->dev, "DB IRQ detected %#08x", ntint_sts);
/* Notify the client driver of possible doorbell state change */
ntb_db_event(&ndev->ntb, 0);
}
/*
* idt_ntb_db_valid_mask() - get a mask of doorbell bits supported by the ntb
* (NTB API callback)
* @ntb: NTB device context.
*
* IDT PCIe-switches expose just one Doorbell register of DWORD size.
*
* Return: A mask of doorbell bits supported by the ntb.
*/
static u64 idt_ntb_db_valid_mask(struct ntb_dev *ntb)
{
return IDT_DBELL_MASK;
}
/*
* idt_ntb_db_read() - read the local doorbell register (NTB API callback)
* @ntb: NTB device context.
*
* There is just on inbound doorbell register of each NT-function, so
* this method return it value.
*
* Return: The bits currently set in the local doorbell register.
*/
static u64 idt_ntb_db_read(struct ntb_dev *ntb)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
return idt_nt_read(ndev, IDT_NT_INDBELLSTS);
}
/*
* idt_ntb_db_clear() - clear bits in the local doorbell register
* (NTB API callback)
* @ntb: NTB device context.
* @db_bits: Doorbell bits to clear.
*
* Clear bits of inbound doorbell register by writing ones to it.
*
* NOTE! Invalid bits are always considered cleared so it's not an error
* to clear them over.
*
* Return: always zero as success.
*/
static int idt_ntb_db_clear(struct ntb_dev *ntb, u64 db_bits)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
idt_nt_write(ndev, IDT_NT_INDBELLSTS, (u32)db_bits);
return 0;
}
/*
* idt_ntb_db_read_mask() - read the local doorbell mask (NTB API callback)
* @ntb: NTB device context.
*
* Each inbound doorbell bit can be masked from generating IRQ by setting
* the corresponding bit in inbound doorbell mask. So this method returns
* the value of the register.
*
* Return: The bits currently set in the local doorbell mask register.
*/
static u64 idt_ntb_db_read_mask(struct ntb_dev *ntb)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
return idt_nt_read(ndev, IDT_NT_INDBELLMSK);
}
/*
* idt_ntb_db_set_mask() - set bits in the local doorbell mask
* (NTB API callback)
* @ntb: NTB device context.
* @db_bits: Doorbell mask bits to set.
*
* The inbound doorbell register mask value must be read, then OR'ed with
* passed field and only then set back.
*
* Return: zero on success, negative error if invalid argument passed.
*/
static int idt_ntb_db_set_mask(struct ntb_dev *ntb, u64 db_bits)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
return idt_reg_set_bits(ndev, IDT_NT_INDBELLMSK, &ndev->db_mask_lock,
IDT_DBELL_MASK, db_bits);
}
/*
* idt_ntb_db_clear_mask() - clear bits in the local doorbell mask
* (NTB API callback)
* @ntb: NTB device context.
* @db_bits: Doorbell bits to clear.
*
* The method just clears the set bits up in accordance with the passed
* bitfield. IDT PCIe-switch shall generate an interrupt if there hasn't
* been any unmasked bit set before current unmasking. Otherwise IRQ won't
* be generated since there is only one IRQ vector for all doorbells.
*
* Return: always zero as success
*/
static int idt_ntb_db_clear_mask(struct ntb_dev *ntb, u64 db_bits)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
idt_reg_clear_bits(ndev, IDT_NT_INDBELLMSK, &ndev->db_mask_lock,
db_bits);
return 0;
}
/*
* idt_ntb_peer_db_set() - set bits in the peer doorbell register
* (NTB API callback)
* @ntb: NTB device context.
* @db_bits: Doorbell bits to set.
*
* IDT PCIe-switches exposes local outbound doorbell register to change peer
* inbound doorbell register state.
*
* Return: zero on success, negative error if invalid argument passed.
*/
static int idt_ntb_peer_db_set(struct ntb_dev *ntb, u64 db_bits)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
if (db_bits & ~(u64)IDT_DBELL_MASK)
return -EINVAL;
idt_nt_write(ndev, IDT_NT_OUTDBELLSET, (u32)db_bits);
return 0;
}
/*=============================================================================
* 6. Messaging operations
*
* Each NT-function of IDT PCIe-switch has four inbound and four outbound
* message registers. Each outbound message register can be connected to one or
* even more than one peer inbound message registers by setting global
* configurations. Since NTB API permits one-on-one message registers mapping
* only, the driver acts in according with that restriction.
*=============================================================================
*/
/*
* idt_init_msg() - initialize messaging interface
* @ndev: IDT NTB hardware driver descriptor
*
* Just initialize the message registers routing tables locker.
*/
static void idt_init_msg(struct idt_ntb_dev *ndev)
{
unsigned char midx;
/* Init the messages routing table lockers */
for (midx = 0; midx < IDT_MSG_CNT; midx++)
spin_lock_init(&ndev->msg_locks[midx]);
dev_dbg(&ndev->ntb.pdev->dev, "NTB Messaging initialized");
}
/*
* idt_msg_isr() - message event ISR
* @ndev: IDT NTB hardware driver descriptor
* @ntint_sts: NT-function interrupt status
*
* Message event happens when MSG bit of NTINTSTS switches from 0 to 1.
* It happens only when unmasked message status bits are set to ones on
* completely zeroed message status register.
* The method is called from PCIe ISR bottom-half routine.
*/
static void idt_msg_isr(struct idt_ntb_dev *ndev, u32 ntint_sts)
{
/*
* Message IRQ status will be cleaned only when client
* driver unsets all the message status bits.
*/
dev_dbg(&ndev->ntb.pdev->dev, "Message IRQ detected %#08x", ntint_sts);
/* Notify the client driver of possible message status change */
ntb_msg_event(&ndev->ntb);
}
/*
* idt_ntb_msg_count() - get the number of message registers (NTB API callback)
* @ntb: NTB device context.
*
* IDT PCIe-switches support four message registers.
*
* Return: the number of message registers.
*/
static int idt_ntb_msg_count(struct ntb_dev *ntb)
{
return IDT_MSG_CNT;
}
/*
* idt_ntb_msg_inbits() - get a bitfield of inbound message registers status
* (NTB API callback)
* @ntb: NTB device context.
*
* NT message status register is shared between inbound and outbound message
* registers status
*
* Return: bitfield of inbound message registers.
*/
static u64 idt_ntb_msg_inbits(struct ntb_dev *ntb)
{
return (u64)IDT_INMSG_MASK;
}
/*
* idt_ntb_msg_outbits() - get a bitfield of outbound message registers status
* (NTB API callback)
* @ntb: NTB device context.
*
* NT message status register is shared between inbound and outbound message
* registers status
*
* Return: bitfield of outbound message registers.
*/
static u64 idt_ntb_msg_outbits(struct ntb_dev *ntb)
{
return (u64)IDT_OUTMSG_MASK;
}
/*
* idt_ntb_msg_read_sts() - read the message registers status (NTB API callback)
* @ntb: NTB device context.
*
* IDT PCIe-switches expose message status registers to notify drivers of
* incoming data and failures in case if peer message register isn't freed.
*
* Return: status bits of message registers
*/
static u64 idt_ntb_msg_read_sts(struct ntb_dev *ntb)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
return idt_nt_read(ndev, IDT_NT_MSGSTS);
}
/*
* idt_ntb_msg_clear_sts() - clear status bits of message registers
* (NTB API callback)
* @ntb: NTB device context.
* @sts_bits: Status bits to clear.
*
* Clear bits in the status register by writing ones.
*
* NOTE! Invalid bits are always considered cleared so it's not an error
* to clear them over.
*
* Return: always zero as success.
*/
static int idt_ntb_msg_clear_sts(struct ntb_dev *ntb, u64 sts_bits)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
idt_nt_write(ndev, IDT_NT_MSGSTS, sts_bits);
return 0;
}
/*
* idt_ntb_msg_set_mask() - set mask of message register status bits
* (NTB API callback)
* @ntb: NTB device context.
* @mask_bits: Mask bits.
*
* Mask the message status bits from raising an IRQ.
*
* Return: zero on success, negative error if invalid argument passed.
*/
static int idt_ntb_msg_set_mask(struct ntb_dev *ntb, u64 mask_bits)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
return idt_reg_set_bits(ndev, IDT_NT_MSGSTSMSK, &ndev->msg_mask_lock,
IDT_MSG_MASK, mask_bits);
}
/*
* idt_ntb_msg_clear_mask() - clear message registers mask
* (NTB API callback)
* @ntb: NTB device context.
* @mask_bits: Mask bits.
*
* Clear mask of message status bits IRQs.
*
* Return: always zero as success.
*/
static int idt_ntb_msg_clear_mask(struct ntb_dev *ntb, u64 mask_bits)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
idt_reg_clear_bits(ndev, IDT_NT_MSGSTSMSK, &ndev->msg_mask_lock,
mask_bits);
return 0;
}
/*
* idt_ntb_msg_read() - read message register with specified index
* (NTB API callback)
* @ntb: NTB device context.
* @pidx: OUT - Port index of peer device a message retrieved from
* @midx: Message register index
*
* Read data from the specified message register and source register.
*
* Return: inbound message register value.
*/
static u32 idt_ntb_msg_read(struct ntb_dev *ntb, int *pidx, int midx)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
if (midx < 0 || IDT_MSG_CNT <= midx)
return ~(u32)0;
/* Retrieve source port index of the message */
if (pidx != NULL) {
u32 srcpart;
srcpart = idt_nt_read(ndev, ntdata_tbl.msgs[midx].src);
*pidx = ndev->part_idx_map[srcpart];
/* Sanity check partition index (for initial case) */
if (*pidx == -EINVAL)
*pidx = 0;
}
/* Retrieve data of the corresponding message register */
return idt_nt_read(ndev, ntdata_tbl.msgs[midx].in);
}
/*
* idt_ntb_peer_msg_write() - write data to the specified message register
* (NTB API callback)
* @ntb: NTB device context.
* @pidx: Port index of peer device a message being sent to
* @midx: Message register index
* @msg: Data to send
*
* Just try to send data to a peer. Message status register should be
* checked by client driver.
*
* Return: zero on success, negative error if invalid argument passed.
*/
static int idt_ntb_peer_msg_write(struct ntb_dev *ntb, int pidx, int midx,
u32 msg)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
unsigned long irqflags;
u32 swpmsgctl = 0;
if (midx < 0 || IDT_MSG_CNT <= midx)
return -EINVAL;
if (pidx < 0 || ndev->peer_cnt <= pidx)
return -EINVAL;
/* Collect the routing information */
swpmsgctl = SET_FIELD(SWPxMSGCTL_REG, 0, midx) |
SET_FIELD(SWPxMSGCTL_PART, 0, ndev->peers[pidx].part);
/* Lock the messages routing table of the specified register */
spin_lock_irqsave(&ndev->msg_locks[midx], irqflags);
/* Set the route and send the data */
idt_sw_write(ndev, partdata_tbl[ndev->part].msgctl[midx], swpmsgctl);
idt_nt_write(ndev, ntdata_tbl.msgs[midx].out, msg);
mmiowb();
/* Unlock the messages routing table */
spin_unlock_irqrestore(&ndev->msg_locks[midx], irqflags);
/* Client driver shall check the status register */
return 0;
}
/*=============================================================================
* 7. Temperature sensor operations
*
* IDT PCIe-switch has an embedded temperature sensor, which can be used to
* warn a user-space of possible chip overheating. Since workload temperature
* can be different on different platforms, temperature thresholds as well as
* general sensor settings must be setup in the framework of BIOS/EEPROM
* initializations. It includes the actual sensor enabling as well.
*=============================================================================
*/
/*
* idt_read_temp() - read temperature from chip sensor
* @ntb: NTB device context.
* @val: OUT - integer value of temperature
* @frac: OUT - fraction
*/
static void idt_read_temp(struct idt_ntb_dev *ndev, unsigned char *val,
unsigned char *frac)
{
u32 data;
/* Read the data from TEMP field of the TMPSTS register */
data = idt_sw_read(ndev, IDT_SW_TMPSTS);
data = GET_FIELD(TMPSTS_TEMP, data);
/* TEMP field has one fractional bit and seven integer bits */
*val = data >> 1;
*frac = ((data & 0x1) ? 5 : 0);
}
/*
* idt_temp_isr() - temperature sensor alarm events ISR
* @ndev: IDT NTB hardware driver descriptor
* @ntint_sts: NT-function interrupt status
*
* It handles events of temperature crossing alarm thresholds. Since reading
* of TMPALARM register clears it up, the function doesn't analyze the
* read value, instead the current temperature value just warningly printed to
* log.
* The method is called from PCIe ISR bottom-half routine.
*/
static void idt_temp_isr(struct idt_ntb_dev *ndev, u32 ntint_sts)
{
unsigned char val, frac;
/* Read the current temperature value */
idt_read_temp(ndev, &val, &frac);
/* Read the temperature alarm to clean the alarm status out */
/*(void)idt_sw_read(ndev, IDT_SW_TMPALARM);*/
/* Clean the corresponding interrupt bit */
idt_nt_write(ndev, IDT_NT_NTINTSTS, IDT_NTINTSTS_TMPSENSOR);
dev_dbg(&ndev->ntb.pdev->dev,
"Temp sensor IRQ detected %#08x", ntint_sts);
/* Print temperature value to log */
dev_warn(&ndev->ntb.pdev->dev, "Temperature %hhu.%hhu", val, frac);
}
/*=============================================================================
* 8. ISRs related operations
*
* IDT PCIe-switch has strangely developed IRQ system. There is just one
* interrupt vector for doorbell and message registers. So the hardware driver
* can't determine actual source of IRQ if, for example, message event happened
* while any of unmasked doorbell is still set. The similar situation may be if
* switch or temperature sensor events pop up. The difference is that SEVENT
* and TMPSENSOR bits of NT interrupt status register can be cleaned by
* IRQ handler so a next interrupt request won't have false handling of
* corresponding events.
* The hardware driver has only bottom-half handler of the IRQ, since if any
* of events happened the device won't raise it again before the last one is
* handled by clearing of corresponding NTINTSTS bit.
*=============================================================================
*/
static irqreturn_t idt_thread_isr(int irq, void *devid);
/*
* idt_init_isr() - initialize PCIe interrupt handler
* @ndev: IDT NTB hardware driver descriptor
*
* Return: zero on success, otherwise a negative error number.
*/
static int idt_init_isr(struct idt_ntb_dev *ndev)
{
struct pci_dev *pdev = ndev->ntb.pdev;
u32 ntint_mask;
int ret;
/* Allocate just one interrupt vector for the ISR */
ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI | PCI_IRQ_LEGACY);
if (ret != 1) {
dev_err(&pdev->dev, "Failed to allocate IRQ vector");
return ret;
}
/* Retrieve the IRQ vector */
ret = pci_irq_vector(pdev, 0);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to get IRQ vector");
goto err_free_vectors;
}
/* Set the IRQ handler */
ret = devm_request_threaded_irq(&pdev->dev, ret, NULL, idt_thread_isr,
IRQF_ONESHOT, NTB_IRQNAME, ndev);
if (ret != 0) {
dev_err(&pdev->dev, "Failed to set MSI IRQ handler, %d", ret);
goto err_free_vectors;
}
/* Unmask Message/Doorbell/SE/Temperature interrupts */
ntint_mask = idt_nt_read(ndev, IDT_NT_NTINTMSK) & ~IDT_NTINTMSK_ALL;
idt_nt_write(ndev, IDT_NT_NTINTMSK, ntint_mask);
/* From now on the interrupts are enabled */
dev_dbg(&pdev->dev, "NTB interrupts initialized");
return 0;
err_free_vectors:
pci_free_irq_vectors(pdev);
return ret;
}
/*
* idt_deinit_ist() - deinitialize PCIe interrupt handler
* @ndev: IDT NTB hardware driver descriptor
*
* Disable corresponding interrupts and free allocated IRQ vectors.
*/
static void idt_deinit_isr(struct idt_ntb_dev *ndev)
{
struct pci_dev *pdev = ndev->ntb.pdev;
u32 ntint_mask;
/* Mask interrupts back */
ntint_mask = idt_nt_read(ndev, IDT_NT_NTINTMSK) | IDT_NTINTMSK_ALL;
idt_nt_write(ndev, IDT_NT_NTINTMSK, ntint_mask);
/* Manually free IRQ otherwise PCI free irq vectors will fail */
devm_free_irq(&pdev->dev, pci_irq_vector(pdev, 0), ndev);
/* Free allocated IRQ vectors */
pci_free_irq_vectors(pdev);
dev_dbg(&pdev->dev, "NTB interrupts deinitialized");
}
/*
* idt_thread_isr() - NT function interrupts handler
* @irq: IRQ number
* @devid: Custom buffer
*
* It reads current NT interrupts state register and handles all the event
* it declares.
* The method is bottom-half routine of actual default PCIe IRQ handler.
*/
static irqreturn_t idt_thread_isr(int irq, void *devid)
{
struct idt_ntb_dev *ndev = devid;
bool handled = false;
u32 ntint_sts;
/* Read the NT interrupts status register */
ntint_sts = idt_nt_read(ndev, IDT_NT_NTINTSTS);
/* Handle messaging interrupts */
if (ntint_sts & IDT_NTINTSTS_MSG) {
idt_msg_isr(ndev, ntint_sts);
handled = true;
}
/* Handle doorbell interrupts */
if (ntint_sts & IDT_NTINTSTS_DBELL) {
idt_db_isr(ndev, ntint_sts);
handled = true;
}
/* Handle switch event interrupts */
if (ntint_sts & IDT_NTINTSTS_SEVENT) {
idt_se_isr(ndev, ntint_sts);
handled = true;
}
/* Handle temperature sensor interrupt */
if (ntint_sts & IDT_NTINTSTS_TMPSENSOR) {
idt_temp_isr(ndev, ntint_sts);
handled = true;
}
dev_dbg(&ndev->ntb.pdev->dev, "IDT IRQs 0x%08x handled", ntint_sts);
return handled ? IRQ_HANDLED : IRQ_NONE;
}
/*===========================================================================
* 9. NTB hardware driver initialization
*===========================================================================
*/
/*
* NTB API operations
*/
static const struct ntb_dev_ops idt_ntb_ops = {
.port_number = idt_ntb_port_number,
.peer_port_count = idt_ntb_peer_port_count,
.peer_port_number = idt_ntb_peer_port_number,
.peer_port_idx = idt_ntb_peer_port_idx,
.link_is_up = idt_ntb_link_is_up,
.link_enable = idt_ntb_link_enable,
.link_disable = idt_ntb_link_disable,
.mw_count = idt_ntb_mw_count,
.mw_get_align = idt_ntb_mw_get_align,
.peer_mw_count = idt_ntb_peer_mw_count,
.peer_mw_get_addr = idt_ntb_peer_mw_get_addr,
.peer_mw_set_trans = idt_ntb_peer_mw_set_trans,
.peer_mw_clear_trans = idt_ntb_peer_mw_clear_trans,
.db_valid_mask = idt_ntb_db_valid_mask,
.db_read = idt_ntb_db_read,
.db_clear = idt_ntb_db_clear,
.db_read_mask = idt_ntb_db_read_mask,
.db_set_mask = idt_ntb_db_set_mask,
.db_clear_mask = idt_ntb_db_clear_mask,
.peer_db_set = idt_ntb_peer_db_set,
.msg_count = idt_ntb_msg_count,
.msg_inbits = idt_ntb_msg_inbits,
.msg_outbits = idt_ntb_msg_outbits,
.msg_read_sts = idt_ntb_msg_read_sts,
.msg_clear_sts = idt_ntb_msg_clear_sts,
.msg_set_mask = idt_ntb_msg_set_mask,
.msg_clear_mask = idt_ntb_msg_clear_mask,
.msg_read = idt_ntb_msg_read,
.peer_msg_write = idt_ntb_peer_msg_write
};
/*
* idt_register_device() - register IDT NTB device
* @ndev: IDT NTB hardware driver descriptor
*
* Return: zero on success, otherwise a negative error number.
*/
static int idt_register_device(struct idt_ntb_dev *ndev)
{
int ret;
/* Initialize the rest of NTB device structure and register it */
ndev->ntb.ops = &idt_ntb_ops;
ndev->ntb.topo = NTB_TOPO_SWITCH;
ret = ntb_register_device(&ndev->ntb);
if (ret != 0) {
dev_err(&ndev->ntb.pdev->dev, "Failed to register NTB device");
return ret;
}
dev_dbg(&ndev->ntb.pdev->dev, "NTB device successfully registered");
return 0;
}
/*
* idt_unregister_device() - unregister IDT NTB device
* @ndev: IDT NTB hardware driver descriptor
*/
static void idt_unregister_device(struct idt_ntb_dev *ndev)
{
/* Just unregister the NTB device */
ntb_unregister_device(&ndev->ntb);
dev_dbg(&ndev->ntb.pdev->dev, "NTB device unregistered");
}
/*=============================================================================
* 10. DebugFS node initialization
*=============================================================================
*/
static ssize_t idt_dbgfs_info_read(struct file *filp, char __user *ubuf,
size_t count, loff_t *offp);
/*
* Driver DebugFS info file operations
*/
static const struct file_operations idt_dbgfs_info_ops = {
.owner = THIS_MODULE,
.open = simple_open,
.read = idt_dbgfs_info_read
};
/*
* idt_dbgfs_info_read() - DebugFS read info node callback
* @file: File node descriptor.
* @ubuf: User-space buffer to put data to
* @count: Size of the buffer
* @offp: Offset within the buffer
*/
static ssize_t idt_dbgfs_info_read(struct file *filp, char __user *ubuf,
size_t count, loff_t *offp)
{
struct idt_ntb_dev *ndev = filp->private_data;
unsigned char temp, frac, idx, pidx, cnt;
ssize_t ret = 0, off = 0;
unsigned long irqflags;
enum ntb_speed speed;
enum ntb_width width;
char *strbuf;
size_t size;
u32 data;
/* Lets limit the buffer size the way the Intel/AMD drivers do */
size = min_t(size_t, count, 0x1000U);
/* Allocate the memory for the buffer */
strbuf = kmalloc(size, GFP_KERNEL);
if (strbuf == NULL)
return -ENOMEM;
/* Put the data into the string buffer */
off += scnprintf(strbuf + off, size - off,
"\n\t\tIDT NTB device Information:\n\n");
/* General local device configurations */
off += scnprintf(strbuf + off, size - off,
"Local Port %hhu, Partition %hhu\n", ndev->port, ndev->part);
/* Peer ports information */
off += scnprintf(strbuf + off, size - off, "Peers:\n");
for (idx = 0; idx < ndev->peer_cnt; idx++) {
off += scnprintf(strbuf + off, size - off,
"\t%hhu. Port %hhu, Partition %hhu\n",
idx, ndev->peers[idx].port, ndev->peers[idx].part);
}
/* Links status */
data = idt_ntb_link_is_up(&ndev->ntb, &speed, &width);
off += scnprintf(strbuf + off, size - off,
"NTB link status\t- 0x%08x, ", data);
off += scnprintf(strbuf + off, size - off, "PCIe Gen %d x%d lanes\n",
speed, width);
/* Mapping table entries */
off += scnprintf(strbuf + off, size - off, "NTB Mapping Table:\n");
for (idx = 0; idx < IDT_MTBL_ENTRY_CNT; idx++) {
spin_lock_irqsave(&ndev->mtbl_lock, irqflags);
idt_nt_write(ndev, IDT_NT_NTMTBLADDR, idx);
data = idt_nt_read(ndev, IDT_NT_NTMTBLDATA);
spin_unlock_irqrestore(&ndev->mtbl_lock, irqflags);
/* Print valid entries only */
if (data & IDT_NTMTBLDATA_VALID) {
off += scnprintf(strbuf + off, size - off,
"\t%hhu. Partition %d, Requester ID 0x%04x\n",
idx, GET_FIELD(NTMTBLDATA_PART, data),
GET_FIELD(NTMTBLDATA_REQID, data));
}
}
off += scnprintf(strbuf + off, size - off, "\n");
/* Outbound memory windows information */
off += scnprintf(strbuf + off, size - off,
"Outbound Memory Windows:\n");
for (idx = 0; idx < ndev->mw_cnt; idx += cnt) {
data = ndev->mws[idx].type;
cnt = idt_get_mw_count(data);
/* Print Memory Window information */
if (data == IDT_MW_DIR)
off += scnprintf(strbuf + off, size - off,
"\t%hhu.\t", idx);
else
off += scnprintf(strbuf + off, size - off,
"\t%hhu-%hhu.\t", idx, idx + cnt - 1);
off += scnprintf(strbuf + off, size - off, "%s BAR%hhu, ",
idt_get_mw_name(data), ndev->mws[idx].bar);
off += scnprintf(strbuf + off, size - off,
"Address align 0x%08llx, ", ndev->mws[idx].addr_align);
off += scnprintf(strbuf + off, size - off,
"Size align 0x%08llx, Size max %llu\n",
ndev->mws[idx].size_align, ndev->mws[idx].size_max);
}
/* Inbound memory windows information */
for (pidx = 0; pidx < ndev->peer_cnt; pidx++) {
off += scnprintf(strbuf + off, size - off,
"Inbound Memory Windows for peer %hhu (Port %hhu):\n",
pidx, ndev->peers[pidx].port);
/* Print Memory Windows information */
for (idx = 0; idx < ndev->peers[pidx].mw_cnt; idx += cnt) {
data = ndev->peers[pidx].mws[idx].type;
cnt = idt_get_mw_count(data);
if (data == IDT_MW_DIR)
off += scnprintf(strbuf + off, size - off,
"\t%hhu.\t", idx);
else
off += scnprintf(strbuf + off, size - off,
"\t%hhu-%hhu.\t", idx, idx + cnt - 1);
off += scnprintf(strbuf + off, size - off,
"%s BAR%hhu, ", idt_get_mw_name(data),
ndev->peers[pidx].mws[idx].bar);
off += scnprintf(strbuf + off, size - off,
"Address align 0x%08llx, ",
ndev->peers[pidx].mws[idx].addr_align);
off += scnprintf(strbuf + off, size - off,
"Size align 0x%08llx, Size max %llu\n",
ndev->peers[pidx].mws[idx].size_align,
ndev->peers[pidx].mws[idx].size_max);
}
}
off += scnprintf(strbuf + off, size - off, "\n");
/* Doorbell information */
data = idt_sw_read(ndev, IDT_SW_GDBELLSTS);
off += scnprintf(strbuf + off, size - off,
"Global Doorbell state\t- 0x%08x\n", data);
data = idt_ntb_db_read(&ndev->ntb);
off += scnprintf(strbuf + off, size - off,
"Local Doorbell state\t- 0x%08x\n", data);
data = idt_nt_read(ndev, IDT_NT_INDBELLMSK);
off += scnprintf(strbuf + off, size - off,
"Local Doorbell mask\t- 0x%08x\n", data);
off += scnprintf(strbuf + off, size - off, "\n");
/* Messaging information */
off += scnprintf(strbuf + off, size - off,
"Message event valid\t- 0x%08x\n", IDT_MSG_MASK);
data = idt_ntb_msg_read_sts(&ndev->ntb);
off += scnprintf(strbuf + off, size - off,
"Message event status\t- 0x%08x\n", data);
data = idt_nt_read(ndev, IDT_NT_MSGSTSMSK);
off += scnprintf(strbuf + off, size - off,
"Message event mask\t- 0x%08x\n", data);
off += scnprintf(strbuf + off, size - off,
"Message data:\n");
for (idx = 0; idx < IDT_MSG_CNT; idx++) {
int src;
data = idt_ntb_msg_read(&ndev->ntb, &src, idx);
off += scnprintf(strbuf + off, size - off,
"\t%hhu. 0x%08x from peer %hhu (Port %hhu)\n",
idx, data, src, ndev->peers[src].port);
}
off += scnprintf(strbuf + off, size - off, "\n");
/* Current temperature */
idt_read_temp(ndev, &temp, &frac);
off += scnprintf(strbuf + off, size - off,
"Switch temperature\t\t- %hhu.%hhuC\n", temp, frac);
/* Copy the buffer to the User Space */
ret = simple_read_from_buffer(ubuf, count, offp, strbuf, off);
kfree(strbuf);
return ret;
}
/*
* idt_init_dbgfs() - initialize DebugFS node
* @ndev: IDT NTB hardware driver descriptor
*
* Return: zero on success, otherwise a negative error number.
*/
static int idt_init_dbgfs(struct idt_ntb_dev *ndev)
{
char devname[64];
/* If the top directory is not created then do nothing */
if (IS_ERR_OR_NULL(dbgfs_topdir)) {
dev_info(&ndev->ntb.pdev->dev, "Top DebugFS directory absent");
return PTR_ERR(dbgfs_topdir);
}
/* Create the info file node */
snprintf(devname, 64, "info:%s", pci_name(ndev->ntb.pdev));
ndev->dbgfs_info = debugfs_create_file(devname, 0400, dbgfs_topdir,
ndev, &idt_dbgfs_info_ops);
if (IS_ERR(ndev->dbgfs_info)) {
dev_dbg(&ndev->ntb.pdev->dev, "Failed to create DebugFS node");
return PTR_ERR(ndev->dbgfs_info);
}
dev_dbg(&ndev->ntb.pdev->dev, "NTB device DebugFS node created");
return 0;
}
/*
* idt_deinit_dbgfs() - deinitialize DebugFS node
* @ndev: IDT NTB hardware driver descriptor
*
* Just discard the info node from DebugFS
*/
static void idt_deinit_dbgfs(struct idt_ntb_dev *ndev)
{
debugfs_remove(ndev->dbgfs_info);
dev_dbg(&ndev->ntb.pdev->dev, "NTB device DebugFS node discarded");
}
/*=============================================================================
* 11. Basic PCIe device initialization
*=============================================================================
*/
/*
* idt_check_setup() - Check whether the IDT PCIe-swtich is properly
* pre-initialized
* @pdev: Pointer to the PCI device descriptor
*
* Return: zero on success, otherwise a negative error number.
*/
static int idt_check_setup(struct pci_dev *pdev)
{
u32 data;
int ret;
/* Read the BARSETUP0 */
ret = pci_read_config_dword(pdev, IDT_NT_BARSETUP0, &data);
if (ret != 0) {
dev_err(&pdev->dev,
"Failed to read BARSETUP0 config register");
return ret;
}
/* Check whether the BAR0 register is enabled to be of config space */
if (!(data & IDT_BARSETUP_EN) || !(data & IDT_BARSETUP_MODE_CFG)) {
dev_err(&pdev->dev, "BAR0 doesn't map config space");
return -EINVAL;
}
/* Configuration space BAR0 must have certain size */
if ((data & IDT_BARSETUP_SIZE_MASK) != IDT_BARSETUP_SIZE_CFG) {
dev_err(&pdev->dev, "Invalid size of config space");
return -EINVAL;
}
dev_dbg(&pdev->dev, "NTB device pre-initialized correctly");
return 0;
}
/*
* Create the IDT PCIe-switch driver descriptor
* @pdev: Pointer to the PCI device descriptor
* @id: IDT PCIe-device configuration
*
* It just allocates a memory for IDT PCIe-switch device structure and
* initializes some commonly used fields.
*
* No need of release method, since managed device resource is used for
* memory allocation.
*
* Return: pointer to the descriptor, otherwise a negative error number.
*/
static struct idt_ntb_dev *idt_create_dev(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct idt_ntb_dev *ndev;
/* Allocate memory for the IDT PCIe-device descriptor */
ndev = devm_kzalloc(&pdev->dev, sizeof(*ndev), GFP_KERNEL);
if (IS_ERR_OR_NULL(ndev)) {
dev_err(&pdev->dev, "Memory allocation failed for descriptor");
return ERR_PTR(-ENOMEM);
}
/* Save the IDT PCIe-switch ports configuration */
ndev->swcfg = (struct idt_89hpes_cfg *)id->driver_data;
/* Save the PCI-device pointer inside the NTB device structure */
ndev->ntb.pdev = pdev;
/* Initialize spin locker of Doorbell, Message and GASA registers */
spin_lock_init(&ndev->db_mask_lock);
spin_lock_init(&ndev->msg_mask_lock);
spin_lock_init(&ndev->gasa_lock);
dev_info(&pdev->dev, "IDT %s discovered", ndev->swcfg->name);
dev_dbg(&pdev->dev, "NTB device descriptor created");
return ndev;
}
/*
* idt_init_pci() - initialize the basic PCI-related subsystem
* @ndev: Pointer to the IDT PCIe-switch driver descriptor
*
* Managed device resources will be freed automatically in case of failure or
* driver detachment.
*
* Return: zero on success, otherwise negative error number.
*/
static int idt_init_pci(struct idt_ntb_dev *ndev)
{
struct pci_dev *pdev = ndev->ntb.pdev;
int ret;
/* Initialize the bit mask of PCI/NTB DMA */
ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
if (ret != 0) {
ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (ret != 0) {
dev_err(&pdev->dev, "Failed to set DMA bit mask\n");
return ret;
}
dev_warn(&pdev->dev, "Cannot set DMA highmem bit mask\n");
}
ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
if (ret != 0) {
ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
if (ret != 0) {
dev_err(&pdev->dev,
"Failed to set consistent DMA bit mask\n");
return ret;
}
dev_warn(&pdev->dev,
"Cannot set consistent DMA highmem bit mask\n");
}
ret = dma_coerce_mask_and_coherent(&ndev->ntb.dev,
dma_get_mask(&pdev->dev));
if (ret != 0) {
dev_err(&pdev->dev, "Failed to set NTB device DMA bit mask\n");
return ret;
}
/*
* Enable the device advanced error reporting. It's not critical to
* have AER disabled in the kernel.
*/
ret = pci_enable_pcie_error_reporting(pdev);
if (ret != 0)
dev_warn(&pdev->dev, "PCIe AER capability disabled\n");
else /* Cleanup uncorrectable error status before getting to init */
pci_cleanup_aer_uncorrect_error_status(pdev);
/* First enable the PCI device */
ret = pcim_enable_device(pdev);
if (ret != 0) {
dev_err(&pdev->dev, "Failed to enable PCIe device\n");
goto err_disable_aer;
}
/*
* Enable the bus mastering, which effectively enables MSI IRQs and
* Request TLPs translation
*/
pci_set_master(pdev);
/* Request all BARs resources and map BAR0 only */
ret = pcim_iomap_regions_request_all(pdev, 1, NTB_NAME);
if (ret != 0) {
dev_err(&pdev->dev, "Failed to request resources\n");
goto err_clear_master;
}
/* Retrieve virtual address of BAR0 - PCI configuration space */
ndev->cfgspc = pcim_iomap_table(pdev)[0];
/* Put the IDT driver data pointer to the PCI-device private pointer */
pci_set_drvdata(pdev, ndev);
dev_dbg(&pdev->dev, "NT-function PCIe interface initialized");
return 0;
err_clear_master:
pci_clear_master(pdev);
err_disable_aer:
(void)pci_disable_pcie_error_reporting(pdev);
return ret;
}
/*
* idt_deinit_pci() - deinitialize the basic PCI-related subsystem
* @ndev: Pointer to the IDT PCIe-switch driver descriptor
*
* Managed resources will be freed on the driver detachment
*/
static void idt_deinit_pci(struct idt_ntb_dev *ndev)
{
struct pci_dev *pdev = ndev->ntb.pdev;
/* Clean up the PCI-device private data pointer */
pci_set_drvdata(pdev, NULL);
/* Clear the bus master disabling the Request TLPs translation */
pci_clear_master(pdev);
/* Disable the AER capability */
(void)pci_disable_pcie_error_reporting(pdev);
dev_dbg(&pdev->dev, "NT-function PCIe interface cleared");
}
/*===========================================================================
* 12. PCI bus callback functions
*===========================================================================
*/
/*
* idt_pci_probe() - PCI device probe callback
* @pdev: Pointer to PCI device structure
* @id: PCIe device custom descriptor
*
* Return: zero on success, otherwise negative error number
*/
static int idt_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct idt_ntb_dev *ndev;
int ret;
/* Check whether IDT PCIe-switch is properly pre-initialized */
ret = idt_check_setup(pdev);
if (ret != 0)
return ret;
/* Allocate the memory for IDT NTB device data */
ndev = idt_create_dev(pdev, id);
if (IS_ERR_OR_NULL(ndev))
return PTR_ERR(ndev);
/* Initialize the basic PCI subsystem of the device */
ret = idt_init_pci(ndev);
if (ret != 0)
return ret;
/* Scan ports of the IDT PCIe-switch */
(void)idt_scan_ports(ndev);
/* Initialize NTB link events subsystem */
idt_init_link(ndev);
/* Initialize MWs subsystem */
ret = idt_init_mws(ndev);
if (ret != 0)
goto err_deinit_link;
/* Initialize Messaging subsystem */
idt_init_msg(ndev);
/* Initialize IDT interrupts handler */
ret = idt_init_isr(ndev);
if (ret != 0)
goto err_deinit_link;
/* Register IDT NTB devices on the NTB bus */
ret = idt_register_device(ndev);
if (ret != 0)
goto err_deinit_isr;
/* Initialize DebugFS info node */
(void)idt_init_dbgfs(ndev);
/* IDT PCIe-switch NTB driver is finally initialized */
dev_info(&pdev->dev, "IDT NTB device is ready");
/* May the force be with us... */
return 0;
err_deinit_isr:
idt_deinit_isr(ndev);
err_deinit_link:
idt_deinit_link(ndev);
idt_deinit_pci(ndev);
return ret;
}
/*
* idt_pci_probe() - PCI device remove callback
* @pdev: Pointer to PCI device structure
*/
static void idt_pci_remove(struct pci_dev *pdev)
{
struct idt_ntb_dev *ndev = pci_get_drvdata(pdev);
/* Deinit the DebugFS node */
idt_deinit_dbgfs(ndev);
/* Unregister NTB device */
idt_unregister_device(ndev);
/* Stop the interrupts handling */
idt_deinit_isr(ndev);
/* Deinitialize link event subsystem */
idt_deinit_link(ndev);
/* Deinit basic PCI subsystem */
idt_deinit_pci(ndev);
/* IDT PCIe-switch NTB driver is finally initialized */
dev_info(&pdev->dev, "IDT NTB device is removed");
/* Sayonara... */
}
/*
* IDT PCIe-switch models ports configuration structures
*/
static const struct idt_89hpes_cfg idt_89hpes24nt6ag2_config = {
.name = "89HPES24NT6AG2",
.port_cnt = 6, .ports = {0, 2, 4, 6, 8, 12}
};
static const struct idt_89hpes_cfg idt_89hpes32nt8ag2_config = {
.name = "89HPES32NT8AG2",
.port_cnt = 8, .ports = {0, 2, 4, 6, 8, 12, 16, 20}
};
static const struct idt_89hpes_cfg idt_89hpes32nt8bg2_config = {
.name = "89HPES32NT8BG2",
.port_cnt = 8, .ports = {0, 2, 4, 6, 8, 12, 16, 20}
};
static const struct idt_89hpes_cfg idt_89hpes12nt12g2_config = {
.name = "89HPES12NT12G2",
.port_cnt = 3, .ports = {0, 8, 16}
};
static const struct idt_89hpes_cfg idt_89hpes16nt16g2_config = {
.name = "89HPES16NT16G2",
.port_cnt = 4, .ports = {0, 8, 12, 16}
};
static const struct idt_89hpes_cfg idt_89hpes24nt24g2_config = {
.name = "89HPES24NT24G2",
.port_cnt = 8, .ports = {0, 2, 4, 6, 8, 12, 16, 20}
};
static const struct idt_89hpes_cfg idt_89hpes32nt24ag2_config = {
.name = "89HPES32NT24AG2",
.port_cnt = 8, .ports = {0, 2, 4, 6, 8, 12, 16, 20}
};
static const struct idt_89hpes_cfg idt_89hpes32nt24bg2_config = {
.name = "89HPES32NT24BG2",
.port_cnt = 8, .ports = {0, 2, 4, 6, 8, 12, 16, 20}
};
/*
* PCI-ids table of the supported IDT PCIe-switch devices
*/
static const struct pci_device_id idt_pci_tbl[] = {
{IDT_PCI_DEVICE_IDS(89HPES24NT6AG2, idt_89hpes24nt6ag2_config)},
{IDT_PCI_DEVICE_IDS(89HPES32NT8AG2, idt_89hpes32nt8ag2_config)},
{IDT_PCI_DEVICE_IDS(89HPES32NT8BG2, idt_89hpes32nt8bg2_config)},
{IDT_PCI_DEVICE_IDS(89HPES12NT12G2, idt_89hpes12nt12g2_config)},
{IDT_PCI_DEVICE_IDS(89HPES16NT16G2, idt_89hpes16nt16g2_config)},
{IDT_PCI_DEVICE_IDS(89HPES24NT24G2, idt_89hpes24nt24g2_config)},
{IDT_PCI_DEVICE_IDS(89HPES32NT24AG2, idt_89hpes32nt24ag2_config)},
{IDT_PCI_DEVICE_IDS(89HPES32NT24BG2, idt_89hpes32nt24bg2_config)},
{0}
};
MODULE_DEVICE_TABLE(pci, idt_pci_tbl);
/*
* IDT PCIe-switch NT-function device driver structure definition
*/
static struct pci_driver idt_pci_driver = {
.name = KBUILD_MODNAME,
.probe = idt_pci_probe,
.remove = idt_pci_remove,
.id_table = idt_pci_tbl,
};
static int __init idt_pci_driver_init(void)
{
pr_info("%s %s\n", NTB_DESC, NTB_VER);
/* Create the top DebugFS directory if the FS is initialized */
if (debugfs_initialized())
dbgfs_topdir = debugfs_create_dir(KBUILD_MODNAME, NULL);
/* Register the NTB hardware driver to handle the PCI device */
return pci_register_driver(&idt_pci_driver);
}
module_init(idt_pci_driver_init);
static void __exit idt_pci_driver_exit(void)
{
/* Unregister the NTB hardware driver */
pci_unregister_driver(&idt_pci_driver);
/* Discard the top DebugFS directory */
debugfs_remove_recursive(dbgfs_topdir);
}
module_exit(idt_pci_driver_exit);