Alexander Gordeev 5fa2ea0714 s390/mcck: move register validation to C code
This update partially reverts commit 3037a52f9846 ("s390/nmi:
do register validation as early as possible").

Storage error checks and control registers validation are left
in the assembler code, since correct ASCEs and page tables are
required to enable DAT - which is done before the C handler is
entered.

System damage, kernel instruction address and PSW MWP checks
are left in the assembler code as well, since there is no way
to proceed if one of these checks is failed.

The getcpu vdso syscall reads CPU number from the programmable
field of the TOD clock. Disregard the TOD programmable register
validity bit and load the CPU number into the TOD programmable
field unconditionally.

Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2021-07-05 12:44:23 +02:00

516 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Machine check handler
*
* Copyright IBM Corp. 2000, 2009
* Author(s): Ingo Adlung <adlung@de.ibm.com>,
* Martin Schwidefsky <schwidefsky@de.ibm.com>,
* Cornelia Huck <cornelia.huck@de.ibm.com>,
* Heiko Carstens <heiko.carstens@de.ibm.com>,
*/
#include <linux/kernel_stat.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/hardirq.h>
#include <linux/log2.h>
#include <linux/kprobes.h>
#include <linux/kmemleak.h>
#include <linux/time.h>
#include <linux/module.h>
#include <linux/sched/signal.h>
#include <linux/export.h>
#include <asm/lowcore.h>
#include <asm/smp.h>
#include <asm/stp.h>
#include <asm/cputime.h>
#include <asm/nmi.h>
#include <asm/crw.h>
#include <asm/switch_to.h>
#include <asm/ctl_reg.h>
#include <asm/asm-offsets.h>
#include <linux/kvm_host.h>
struct mcck_struct {
unsigned int kill_task : 1;
unsigned int channel_report : 1;
unsigned int warning : 1;
unsigned int stp_queue : 1;
unsigned long mcck_code;
};
static DEFINE_PER_CPU(struct mcck_struct, cpu_mcck);
static struct kmem_cache *mcesa_cache;
static unsigned long mcesa_origin_lc;
static inline int nmi_needs_mcesa(void)
{
return MACHINE_HAS_VX || MACHINE_HAS_GS;
}
static inline unsigned long nmi_get_mcesa_size(void)
{
if (MACHINE_HAS_GS)
return MCESA_MAX_SIZE;
return MCESA_MIN_SIZE;
}
/*
* The initial machine check extended save area for the boot CPU.
* It will be replaced by nmi_init() with an allocated structure.
* The structure is required for machine check happening early in
* the boot process.
*/
static struct mcesa boot_mcesa __initdata __aligned(MCESA_MAX_SIZE);
void __init nmi_alloc_boot_cpu(struct lowcore *lc)
{
if (!nmi_needs_mcesa())
return;
lc->mcesad = (unsigned long) &boot_mcesa;
if (MACHINE_HAS_GS)
lc->mcesad |= ilog2(MCESA_MAX_SIZE);
}
static int __init nmi_init(void)
{
unsigned long origin, cr0, size;
if (!nmi_needs_mcesa())
return 0;
size = nmi_get_mcesa_size();
if (size > MCESA_MIN_SIZE)
mcesa_origin_lc = ilog2(size);
/* create slab cache for the machine-check-extended-save-areas */
mcesa_cache = kmem_cache_create("nmi_save_areas", size, size, 0, NULL);
if (!mcesa_cache)
panic("Couldn't create nmi save area cache");
origin = (unsigned long) kmem_cache_alloc(mcesa_cache, GFP_KERNEL);
if (!origin)
panic("Couldn't allocate nmi save area");
/* The pointer is stored with mcesa_bits ORed in */
kmemleak_not_leak((void *) origin);
__ctl_store(cr0, 0, 0);
__ctl_clear_bit(0, 28); /* disable lowcore protection */
/* Replace boot_mcesa on the boot CPU */
S390_lowcore.mcesad = origin | mcesa_origin_lc;
__ctl_load(cr0, 0, 0);
return 0;
}
early_initcall(nmi_init);
int nmi_alloc_per_cpu(struct lowcore *lc)
{
unsigned long origin;
if (!nmi_needs_mcesa())
return 0;
origin = (unsigned long) kmem_cache_alloc(mcesa_cache, GFP_KERNEL);
if (!origin)
return -ENOMEM;
/* The pointer is stored with mcesa_bits ORed in */
kmemleak_not_leak((void *) origin);
lc->mcesad = origin | mcesa_origin_lc;
return 0;
}
void nmi_free_per_cpu(struct lowcore *lc)
{
if (!nmi_needs_mcesa())
return;
kmem_cache_free(mcesa_cache, (void *)(lc->mcesad & MCESA_ORIGIN_MASK));
}
static notrace void s390_handle_damage(void)
{
smp_emergency_stop();
disabled_wait();
while (1);
}
NOKPROBE_SYMBOL(s390_handle_damage);
/*
* Main machine check handler function. Will be called with interrupts disabled
* and machine checks enabled.
*/
void __s390_handle_mcck(void)
{
struct mcck_struct mcck;
/*
* Disable machine checks and get the current state of accumulated
* machine checks. Afterwards delete the old state and enable machine
* checks again.
*/
local_mcck_disable();
mcck = *this_cpu_ptr(&cpu_mcck);
memset(this_cpu_ptr(&cpu_mcck), 0, sizeof(mcck));
local_mcck_enable();
if (mcck.channel_report)
crw_handle_channel_report();
/*
* A warning may remain for a prolonged period on the bare iron.
* (actually until the machine is powered off, or the problem is gone)
* So we just stop listening for the WARNING MCH and avoid continuously
* being interrupted. One caveat is however, that we must do this per
* processor and cannot use the smp version of ctl_clear_bit().
* On VM we only get one interrupt per virtally presented machinecheck.
* Though one suffices, we may get one interrupt per (virtual) cpu.
*/
if (mcck.warning) { /* WARNING pending ? */
static int mchchk_wng_posted = 0;
/* Use single cpu clear, as we cannot handle smp here. */
__ctl_clear_bit(14, 24); /* Disable WARNING MCH */
if (xchg(&mchchk_wng_posted, 1) == 0)
kill_cad_pid(SIGPWR, 1);
}
if (mcck.stp_queue)
stp_queue_work();
if (mcck.kill_task) {
local_irq_enable();
printk(KERN_EMERG "mcck: Terminating task because of machine "
"malfunction (code 0x%016lx).\n", mcck.mcck_code);
printk(KERN_EMERG "mcck: task: %s, pid: %d.\n",
current->comm, current->pid);
do_exit(SIGSEGV);
}
}
void noinstr s390_handle_mcck(void)
{
trace_hardirqs_off();
__s390_handle_mcck();
trace_hardirqs_on();
}
/*
* returns 0 if all required registers are available
* returns 1 otherwise
*/
static int notrace s390_validate_registers(union mci mci, int umode)
{
struct mcesa *mcesa;
void *fpt_save_area;
union ctlreg2 cr2;
int kill_task;
u64 zero;
kill_task = 0;
zero = 0;
if (!mci.gr) {
/*
* General purpose registers couldn't be restored and have
* unknown contents. Stop system or terminate process.
*/
if (!umode)
s390_handle_damage();
kill_task = 1;
}
if (!mci.fp) {
/*
* Floating point registers can't be restored. If the
* kernel currently uses floating point registers the
* system is stopped. If the process has its floating
* pointer registers loaded it is terminated.
*/
if (S390_lowcore.fpu_flags & KERNEL_VXR_V0V7)
s390_handle_damage();
if (!test_cpu_flag(CIF_FPU))
kill_task = 1;
}
fpt_save_area = &S390_lowcore.floating_pt_save_area;
if (!mci.fc) {
/*
* Floating point control register can't be restored.
* If the kernel currently uses the floating pointer
* registers and needs the FPC register the system is
* stopped. If the process has its floating pointer
* registers loaded it is terminated. Otherwise the
* FPC is just validated.
*/
if (S390_lowcore.fpu_flags & KERNEL_FPC)
s390_handle_damage();
asm volatile(
" lfpc %0\n"
:
: "Q" (zero));
if (!test_cpu_flag(CIF_FPU))
kill_task = 1;
} else {
asm volatile(
" lfpc %0\n"
:
: "Q" (S390_lowcore.fpt_creg_save_area));
}
mcesa = (struct mcesa *)(S390_lowcore.mcesad & MCESA_ORIGIN_MASK);
if (!MACHINE_HAS_VX) {
/* Validate floating point registers */
asm volatile(
" ld 0,0(%0)\n"
" ld 1,8(%0)\n"
" ld 2,16(%0)\n"
" ld 3,24(%0)\n"
" ld 4,32(%0)\n"
" ld 5,40(%0)\n"
" ld 6,48(%0)\n"
" ld 7,56(%0)\n"
" ld 8,64(%0)\n"
" ld 9,72(%0)\n"
" ld 10,80(%0)\n"
" ld 11,88(%0)\n"
" ld 12,96(%0)\n"
" ld 13,104(%0)\n"
" ld 14,112(%0)\n"
" ld 15,120(%0)\n"
:
: "a" (fpt_save_area)
: "memory");
} else {
/* Validate vector registers */
union ctlreg0 cr0;
if (!mci.vr) {
/*
* Vector registers can't be restored. If the kernel
* currently uses vector registers the system is
* stopped. If the process has its vector registers
* loaded it is terminated. Otherwise just validate
* the registers.
*/
if (S390_lowcore.fpu_flags & KERNEL_VXR)
s390_handle_damage();
if (!test_cpu_flag(CIF_FPU))
kill_task = 1;
}
cr0.val = S390_lowcore.cregs_save_area[0];
cr0.afp = cr0.vx = 1;
__ctl_load(cr0.val, 0, 0);
asm volatile(
" la 1,%0\n"
" .word 0xe70f,0x1000,0x0036\n" /* vlm 0,15,0(1) */
" .word 0xe70f,0x1100,0x0c36\n" /* vlm 16,31,256(1) */
:
: "Q" (*(struct vx_array *)mcesa->vector_save_area)
: "1");
__ctl_load(S390_lowcore.cregs_save_area[0], 0, 0);
}
/* Validate access registers */
asm volatile(
" lam 0,15,0(%0)\n"
:
: "a" (&S390_lowcore.access_regs_save_area)
: "memory");
if (!mci.ar) {
/*
* Access registers have unknown contents.
* Terminating task.
*/
kill_task = 1;
}
/* Validate guarded storage registers */
cr2.val = S390_lowcore.cregs_save_area[2];
if (cr2.gse) {
if (!mci.gs) {
/*
* Guarded storage register can't be restored and
* the current processes uses guarded storage.
* It has to be terminated.
*/
kill_task = 1;
} else {
load_gs_cb((struct gs_cb *)mcesa->guarded_storage_save_area);
}
}
/*
* The getcpu vdso syscall reads CPU number from the programmable
* field of the TOD clock. Disregard the TOD programmable register
* validity bit and load the CPU number into the TOD programmable
* field unconditionally.
*/
set_tod_programmable_field(raw_smp_processor_id());
/* Validate clock comparator register */
set_clock_comparator(S390_lowcore.clock_comparator);
if (!mci.ms || !mci.pm || !mci.ia)
kill_task = 1;
return kill_task;
}
NOKPROBE_SYMBOL(s390_validate_registers);
/*
* Backup the guest's machine check info to its description block
*/
static void notrace s390_backup_mcck_info(struct pt_regs *regs)
{
struct mcck_volatile_info *mcck_backup;
struct sie_page *sie_page;
/* r14 contains the sie block, which was set in sie64a */
struct kvm_s390_sie_block *sie_block =
(struct kvm_s390_sie_block *) regs->gprs[14];
if (sie_block == NULL)
/* Something's seriously wrong, stop system. */
s390_handle_damage();
sie_page = container_of(sie_block, struct sie_page, sie_block);
mcck_backup = &sie_page->mcck_info;
mcck_backup->mcic = S390_lowcore.mcck_interruption_code &
~(MCCK_CODE_CP | MCCK_CODE_EXT_DAMAGE);
mcck_backup->ext_damage_code = S390_lowcore.external_damage_code;
mcck_backup->failing_storage_address
= S390_lowcore.failing_storage_address;
}
NOKPROBE_SYMBOL(s390_backup_mcck_info);
#define MAX_IPD_COUNT 29
#define MAX_IPD_TIME (5 * 60 * USEC_PER_SEC) /* 5 minutes */
#define ED_STP_ISLAND 6 /* External damage STP island check */
#define ED_STP_SYNC 7 /* External damage STP sync check */
#define MCCK_CODE_NO_GUEST (MCCK_CODE_CP | MCCK_CODE_EXT_DAMAGE)
/*
* machine check handler.
*/
int notrace s390_do_machine_check(struct pt_regs *regs)
{
static int ipd_count;
static DEFINE_SPINLOCK(ipd_lock);
static unsigned long long last_ipd;
struct mcck_struct *mcck;
unsigned long long tmp;
union mci mci;
unsigned long mcck_dam_code;
int mcck_pending = 0;
nmi_enter();
if (user_mode(regs))
update_timer_mcck();
inc_irq_stat(NMI_NMI);
mci.val = S390_lowcore.mcck_interruption_code;
mcck = this_cpu_ptr(&cpu_mcck);
/*
* Reinject the instruction processing damages' machine checks
* including Delayed Access Exception into the guest
* instead of damaging the host if they happen in the guest.
*/
if (mci.pd && !test_cpu_flag(CIF_MCCK_GUEST)) {
if (mci.b) {
/* Processing backup -> verify if we can survive this */
u64 z_mcic, o_mcic, t_mcic;
z_mcic = (1ULL<<63 | 1ULL<<59 | 1ULL<<29);
o_mcic = (1ULL<<43 | 1ULL<<42 | 1ULL<<41 | 1ULL<<40 |
1ULL<<36 | 1ULL<<35 | 1ULL<<34 | 1ULL<<32 |
1ULL<<30 | 1ULL<<21 | 1ULL<<20 | 1ULL<<17 |
1ULL<<16);
t_mcic = mci.val;
if (((t_mcic & z_mcic) != 0) ||
((t_mcic & o_mcic) != o_mcic)) {
s390_handle_damage();
}
/*
* Nullifying exigent condition, therefore we might
* retry this instruction.
*/
spin_lock(&ipd_lock);
tmp = get_tod_clock();
if (((tmp - last_ipd) >> 12) < MAX_IPD_TIME)
ipd_count++;
else
ipd_count = 1;
last_ipd = tmp;
if (ipd_count == MAX_IPD_COUNT)
s390_handle_damage();
spin_unlock(&ipd_lock);
} else {
/* Processing damage -> stopping machine */
s390_handle_damage();
}
}
if (s390_validate_registers(mci, user_mode(regs))) {
/*
* Couldn't restore all register contents for the
* user space process -> mark task for termination.
*/
mcck->kill_task = 1;
mcck->mcck_code = mci.val;
mcck_pending = 1;
}
/*
* Backup the machine check's info if it happens when the guest
* is running.
*/
if (test_cpu_flag(CIF_MCCK_GUEST))
s390_backup_mcck_info(regs);
if (mci.cd) {
/* Timing facility damage */
s390_handle_damage();
}
if (mci.ed && mci.ec) {
/* External damage */
if (S390_lowcore.external_damage_code & (1U << ED_STP_SYNC))
mcck->stp_queue |= stp_sync_check();
if (S390_lowcore.external_damage_code & (1U << ED_STP_ISLAND))
mcck->stp_queue |= stp_island_check();
mcck_pending = 1;
}
if (mci.cp) {
/* Channel report word pending */
mcck->channel_report = 1;
mcck_pending = 1;
}
if (mci.w) {
/* Warning pending */
mcck->warning = 1;
mcck_pending = 1;
}
/*
* If there are only Channel Report Pending and External Damage
* machine checks, they will not be reinjected into the guest
* because they refer to host conditions only.
*/
mcck_dam_code = (mci.val & MCIC_SUBCLASS_MASK);
if (test_cpu_flag(CIF_MCCK_GUEST) &&
(mcck_dam_code & MCCK_CODE_NO_GUEST) != mcck_dam_code) {
/* Set exit reason code for host's later handling */
*((long *)(regs->gprs[15] + __SF_SIE_REASON)) = -EINTR;
}
clear_cpu_flag(CIF_MCCK_GUEST);
if (user_mode(regs) && mcck_pending) {
nmi_exit();
return 1;
}
if (mcck_pending)
schedule_mcck_handler();
nmi_exit();
return 0;
}
NOKPROBE_SYMBOL(s390_do_machine_check);
static int __init machine_check_init(void)
{
ctl_set_bit(14, 25); /* enable external damage MCH */
ctl_set_bit(14, 27); /* enable system recovery MCH */
ctl_set_bit(14, 24); /* enable warning MCH */
return 0;
}
early_initcall(machine_check_init);