linux/arch/x86/kernel/nmi.c
Paul Gortmaker 69c60c88ee x86: Fix files explicitly requiring export.h for EXPORT_SYMBOL/THIS_MODULE
These files were implicitly getting EXPORT_SYMBOL via device.h
which was including module.h, but that will be fixed up shortly.

By fixing these now, we can avoid seeing things like:

arch/x86/kernel/rtc.c:29: warning: type defaults to ‘int’ in declaration of ‘EXPORT_SYMBOL’
arch/x86/kernel/pci-dma.c:20: warning: type defaults to ‘int’ in declaration of ‘EXPORT_SYMBOL’
arch/x86/kernel/e820.c:69: warning: type defaults to ‘int’ in declaration of ‘EXPORT_SYMBOL_GPL’

[ with input from Randy Dunlap <rdunlap@xenotime.net> and also
  from Stephen Rothwell <sfr@canb.auug.org.au> ]

Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2011-10-31 19:30:35 -04:00

435 lines
10 KiB
C

/*
* Copyright (C) 1991, 1992 Linus Torvalds
* Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
* Copyright (C) 2011 Don Zickus Red Hat, Inc.
*
* Pentium III FXSR, SSE support
* Gareth Hughes <gareth@valinux.com>, May 2000
*/
/*
* Handle hardware traps and faults.
*/
#include <linux/spinlock.h>
#include <linux/kprobes.h>
#include <linux/kdebug.h>
#include <linux/nmi.h>
#include <linux/delay.h>
#include <linux/hardirq.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/mca.h>
#if defined(CONFIG_EDAC)
#include <linux/edac.h>
#endif
#include <linux/atomic.h>
#include <asm/traps.h>
#include <asm/mach_traps.h>
#include <asm/nmi.h>
#define NMI_MAX_NAMELEN 16
struct nmiaction {
struct list_head list;
nmi_handler_t handler;
unsigned int flags;
char *name;
};
struct nmi_desc {
spinlock_t lock;
struct list_head head;
};
static struct nmi_desc nmi_desc[NMI_MAX] =
{
{
.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
.head = LIST_HEAD_INIT(nmi_desc[0].head),
},
{
.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
.head = LIST_HEAD_INIT(nmi_desc[1].head),
},
};
struct nmi_stats {
unsigned int normal;
unsigned int unknown;
unsigned int external;
unsigned int swallow;
};
static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
static int ignore_nmis;
int unknown_nmi_panic;
/*
* Prevent NMI reason port (0x61) being accessed simultaneously, can
* only be used in NMI handler.
*/
static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
static int __init setup_unknown_nmi_panic(char *str)
{
unknown_nmi_panic = 1;
return 1;
}
__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
#define nmi_to_desc(type) (&nmi_desc[type])
static int notrace __kprobes nmi_handle(unsigned int type, struct pt_regs *regs, bool b2b)
{
struct nmi_desc *desc = nmi_to_desc(type);
struct nmiaction *a;
int handled=0;
rcu_read_lock();
/*
* NMIs are edge-triggered, which means if you have enough
* of them concurrently, you can lose some because only one
* can be latched at any given time. Walk the whole list
* to handle those situations.
*/
list_for_each_entry_rcu(a, &desc->head, list)
handled += a->handler(type, regs);
rcu_read_unlock();
/* return total number of NMI events handled */
return handled;
}
static int __setup_nmi(unsigned int type, struct nmiaction *action)
{
struct nmi_desc *desc = nmi_to_desc(type);
unsigned long flags;
spin_lock_irqsave(&desc->lock, flags);
/*
* most handlers of type NMI_UNKNOWN never return because
* they just assume the NMI is theirs. Just a sanity check
* to manage expectations
*/
WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
/*
* some handlers need to be executed first otherwise a fake
* event confuses some handlers (kdump uses this flag)
*/
if (action->flags & NMI_FLAG_FIRST)
list_add_rcu(&action->list, &desc->head);
else
list_add_tail_rcu(&action->list, &desc->head);
spin_unlock_irqrestore(&desc->lock, flags);
return 0;
}
static struct nmiaction *__free_nmi(unsigned int type, const char *name)
{
struct nmi_desc *desc = nmi_to_desc(type);
struct nmiaction *n;
unsigned long flags;
spin_lock_irqsave(&desc->lock, flags);
list_for_each_entry_rcu(n, &desc->head, list) {
/*
* the name passed in to describe the nmi handler
* is used as the lookup key
*/
if (!strcmp(n->name, name)) {
WARN(in_nmi(),
"Trying to free NMI (%s) from NMI context!\n", n->name);
list_del_rcu(&n->list);
break;
}
}
spin_unlock_irqrestore(&desc->lock, flags);
synchronize_rcu();
return (n);
}
int register_nmi_handler(unsigned int type, nmi_handler_t handler,
unsigned long nmiflags, const char *devname)
{
struct nmiaction *action;
int retval = -ENOMEM;
if (!handler)
return -EINVAL;
action = kzalloc(sizeof(struct nmiaction), GFP_KERNEL);
if (!action)
goto fail_action;
action->handler = handler;
action->flags = nmiflags;
action->name = kstrndup(devname, NMI_MAX_NAMELEN, GFP_KERNEL);
if (!action->name)
goto fail_action_name;
retval = __setup_nmi(type, action);
if (retval)
goto fail_setup_nmi;
return retval;
fail_setup_nmi:
kfree(action->name);
fail_action_name:
kfree(action);
fail_action:
return retval;
}
EXPORT_SYMBOL_GPL(register_nmi_handler);
void unregister_nmi_handler(unsigned int type, const char *name)
{
struct nmiaction *a;
a = __free_nmi(type, name);
if (a) {
kfree(a->name);
kfree(a);
}
}
EXPORT_SYMBOL_GPL(unregister_nmi_handler);
static notrace __kprobes void
pci_serr_error(unsigned char reason, struct pt_regs *regs)
{
pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
reason, smp_processor_id());
/*
* On some machines, PCI SERR line is used to report memory
* errors. EDAC makes use of it.
*/
#if defined(CONFIG_EDAC)
if (edac_handler_set()) {
edac_atomic_assert_error();
return;
}
#endif
if (panic_on_unrecovered_nmi)
panic("NMI: Not continuing");
pr_emerg("Dazed and confused, but trying to continue\n");
/* Clear and disable the PCI SERR error line. */
reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
outb(reason, NMI_REASON_PORT);
}
static notrace __kprobes void
io_check_error(unsigned char reason, struct pt_regs *regs)
{
unsigned long i;
pr_emerg(
"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
reason, smp_processor_id());
show_registers(regs);
if (panic_on_io_nmi)
panic("NMI IOCK error: Not continuing");
/* Re-enable the IOCK line, wait for a few seconds */
reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
outb(reason, NMI_REASON_PORT);
i = 20000;
while (--i) {
touch_nmi_watchdog();
udelay(100);
}
reason &= ~NMI_REASON_CLEAR_IOCHK;
outb(reason, NMI_REASON_PORT);
}
static notrace __kprobes void
unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
{
int handled;
/*
* Use 'false' as back-to-back NMIs are dealt with one level up.
* Of course this makes having multiple 'unknown' handlers useless
* as only the first one is ever run (unless it can actually determine
* if it caused the NMI)
*/
handled = nmi_handle(NMI_UNKNOWN, regs, false);
if (handled) {
__this_cpu_add(nmi_stats.unknown, handled);
return;
}
__this_cpu_add(nmi_stats.unknown, 1);
#ifdef CONFIG_MCA
/*
* Might actually be able to figure out what the guilty party
* is:
*/
if (MCA_bus) {
mca_handle_nmi();
return;
}
#endif
pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
reason, smp_processor_id());
pr_emerg("Do you have a strange power saving mode enabled?\n");
if (unknown_nmi_panic || panic_on_unrecovered_nmi)
panic("NMI: Not continuing");
pr_emerg("Dazed and confused, but trying to continue\n");
}
static DEFINE_PER_CPU(bool, swallow_nmi);
static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
static notrace __kprobes void default_do_nmi(struct pt_regs *regs)
{
unsigned char reason = 0;
int handled;
bool b2b = false;
/*
* CPU-specific NMI must be processed before non-CPU-specific
* NMI, otherwise we may lose it, because the CPU-specific
* NMI can not be detected/processed on other CPUs.
*/
/*
* Back-to-back NMIs are interesting because they can either
* be two NMI or more than two NMIs (any thing over two is dropped
* due to NMI being edge-triggered). If this is the second half
* of the back-to-back NMI, assume we dropped things and process
* more handlers. Otherwise reset the 'swallow' NMI behaviour
*/
if (regs->ip == __this_cpu_read(last_nmi_rip))
b2b = true;
else
__this_cpu_write(swallow_nmi, false);
__this_cpu_write(last_nmi_rip, regs->ip);
handled = nmi_handle(NMI_LOCAL, regs, b2b);
__this_cpu_add(nmi_stats.normal, handled);
if (handled) {
/*
* There are cases when a NMI handler handles multiple
* events in the current NMI. One of these events may
* be queued for in the next NMI. Because the event is
* already handled, the next NMI will result in an unknown
* NMI. Instead lets flag this for a potential NMI to
* swallow.
*/
if (handled > 1)
__this_cpu_write(swallow_nmi, true);
return;
}
/* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
raw_spin_lock(&nmi_reason_lock);
reason = get_nmi_reason();
if (reason & NMI_REASON_MASK) {
if (reason & NMI_REASON_SERR)
pci_serr_error(reason, regs);
else if (reason & NMI_REASON_IOCHK)
io_check_error(reason, regs);
#ifdef CONFIG_X86_32
/*
* Reassert NMI in case it became active
* meanwhile as it's edge-triggered:
*/
reassert_nmi();
#endif
__this_cpu_add(nmi_stats.external, 1);
raw_spin_unlock(&nmi_reason_lock);
return;
}
raw_spin_unlock(&nmi_reason_lock);
/*
* Only one NMI can be latched at a time. To handle
* this we may process multiple nmi handlers at once to
* cover the case where an NMI is dropped. The downside
* to this approach is we may process an NMI prematurely,
* while its real NMI is sitting latched. This will cause
* an unknown NMI on the next run of the NMI processing.
*
* We tried to flag that condition above, by setting the
* swallow_nmi flag when we process more than one event.
* This condition is also only present on the second half
* of a back-to-back NMI, so we flag that condition too.
*
* If both are true, we assume we already processed this
* NMI previously and we swallow it. Otherwise we reset
* the logic.
*
* There are scenarios where we may accidentally swallow
* a 'real' unknown NMI. For example, while processing
* a perf NMI another perf NMI comes in along with a
* 'real' unknown NMI. These two NMIs get combined into
* one (as descibed above). When the next NMI gets
* processed, it will be flagged by perf as handled, but
* noone will know that there was a 'real' unknown NMI sent
* also. As a result it gets swallowed. Or if the first
* perf NMI returns two events handled then the second
* NMI will get eaten by the logic below, again losing a
* 'real' unknown NMI. But this is the best we can do
* for now.
*/
if (b2b && __this_cpu_read(swallow_nmi))
__this_cpu_add(nmi_stats.swallow, 1);
else
unknown_nmi_error(reason, regs);
}
dotraplinkage notrace __kprobes void
do_nmi(struct pt_regs *regs, long error_code)
{
nmi_enter();
inc_irq_stat(__nmi_count);
if (!ignore_nmis)
default_do_nmi(regs);
nmi_exit();
}
void stop_nmi(void)
{
ignore_nmis++;
}
void restart_nmi(void)
{
ignore_nmis--;
}
/* reset the back-to-back NMI logic */
void local_touch_nmi(void)
{
__this_cpu_write(last_nmi_rip, 0);
}