linux/sound/soc/codecs/nau8821.c
Mark Brown 2d86cef353
ASoC: nau8821: Don't unconditionally free interrupt
The remove() operation unconditionally frees the interrupt for the device
but we may not actually have an interrupt so there might be nothing to
free. Since the interrupt is requested after all other resources we don't
need the explicit free anyway, unwinding is guaranteed to be safe, so just
delete the remove() function and let devm take care of things.

Reported-by: Zheyu Ma <zheyuma97@gmail.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Tested-by: Zheyu Ma <zheyuma97@gmail.com>
Link: https://lore.kernel.org/r/20220718140405.57233-1-broonie@kernel.org
Signed-off-by: Mark Brown <broonie@kernel.org>
2022-07-19 14:54:26 +01:00

1769 lines
55 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
//
// nau8821.c -- Nuvoton NAU88L21 audio codec driver
//
// Copyright 2021 Nuvoton Technology Corp.
// Author: John Hsu <kchsu0@nuvoton.com>
// Co-author: Seven Lee <wtli@nuvoton.com>
//
#include <linux/acpi.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/math64.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/initval.h>
#include <sound/jack.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/tlv.h>
#include "nau8821.h"
#define NAU_FREF_MAX 13500000
#define NAU_FVCO_MAX 100000000
#define NAU_FVCO_MIN 90000000
#define NAU8821_BUTTON SND_JACK_BTN_0
/* the maximum frequency of CLK_ADC and CLK_DAC */
#define CLK_DA_AD_MAX 6144000
static int nau8821_configure_sysclk(struct nau8821 *nau8821,
int clk_id, unsigned int freq);
static bool nau8821_is_jack_inserted(struct regmap *regmap);
struct nau8821_fll {
int mclk_src;
int ratio;
int fll_frac;
int fll_int;
int clk_ref_div;
};
struct nau8821_fll_attr {
unsigned int param;
unsigned int val;
};
/* scaling for mclk from sysclk_src output */
static const struct nau8821_fll_attr mclk_src_scaling[] = {
{ 1, 0x0 },
{ 2, 0x2 },
{ 4, 0x3 },
{ 8, 0x4 },
{ 16, 0x5 },
{ 32, 0x6 },
{ 3, 0x7 },
{ 6, 0xa },
{ 12, 0xb },
{ 24, 0xc },
{ 48, 0xd },
{ 96, 0xe },
{ 5, 0xf },
};
/* ratio for input clk freq */
static const struct nau8821_fll_attr fll_ratio[] = {
{ 512000, 0x01 },
{ 256000, 0x02 },
{ 128000, 0x04 },
{ 64000, 0x08 },
{ 32000, 0x10 },
{ 8000, 0x20 },
{ 4000, 0x40 },
};
static const struct nau8821_fll_attr fll_pre_scalar[] = {
{ 0, 0x0 },
{ 1, 0x1 },
{ 2, 0x2 },
{ 3, 0x3 },
};
/* over sampling rate */
struct nau8821_osr_attr {
unsigned int osr;
unsigned int clk_src;
};
static const struct nau8821_osr_attr osr_dac_sel[] = {
{ 64, 2 }, /* OSR 64, SRC 1/4 */
{ 256, 0 }, /* OSR 256, SRC 1 */
{ 128, 1 }, /* OSR 128, SRC 1/2 */
{ 0, 0 },
{ 32, 3 }, /* OSR 32, SRC 1/8 */
};
static const struct nau8821_osr_attr osr_adc_sel[] = {
{ 32, 3 }, /* OSR 32, SRC 1/8 */
{ 64, 2 }, /* OSR 64, SRC 1/4 */
{ 128, 1 }, /* OSR 128, SRC 1/2 */
{ 256, 0 }, /* OSR 256, SRC 1 */
};
struct nau8821_dmic_speed {
unsigned int param;
unsigned int val;
};
static const struct nau8821_dmic_speed dmic_speed_sel[] = {
{ 0, 0x0 }, /*SPEED 1, SRC 1 */
{ 1, 0x1 }, /*SPEED 2, SRC 1/2 */
{ 2, 0x2 }, /*SPEED 4, SRC 1/4 */
{ 3, 0x3 }, /*SPEED 8, SRC 1/8 */
};
static const struct reg_default nau8821_reg_defaults[] = {
{ NAU8821_R01_ENA_CTRL, 0x00ff },
{ NAU8821_R03_CLK_DIVIDER, 0x0050 },
{ NAU8821_R04_FLL1, 0x0 },
{ NAU8821_R05_FLL2, 0x00bc },
{ NAU8821_R06_FLL3, 0x0008 },
{ NAU8821_R07_FLL4, 0x0010 },
{ NAU8821_R08_FLL5, 0x4000 },
{ NAU8821_R09_FLL6, 0x6900 },
{ NAU8821_R0A_FLL7, 0x0031 },
{ NAU8821_R0B_FLL8, 0x26e9 },
{ NAU8821_R0D_JACK_DET_CTRL, 0x0 },
{ NAU8821_R0F_INTERRUPT_MASK, 0x0 },
{ NAU8821_R12_INTERRUPT_DIS_CTRL, 0xffff },
{ NAU8821_R13_DMIC_CTRL, 0x0 },
{ NAU8821_R1A_GPIO12_CTRL, 0x0 },
{ NAU8821_R1B_TDM_CTRL, 0x0 },
{ NAU8821_R1C_I2S_PCM_CTRL1, 0x000a },
{ NAU8821_R1D_I2S_PCM_CTRL2, 0x8010 },
{ NAU8821_R1E_LEFT_TIME_SLOT, 0x0 },
{ NAU8821_R1F_RIGHT_TIME_SLOT, 0x0 },
{ NAU8821_R21_BIQ0_COF1, 0x0 },
{ NAU8821_R22_BIQ0_COF2, 0x0 },
{ NAU8821_R23_BIQ0_COF3, 0x0 },
{ NAU8821_R24_BIQ0_COF4, 0x0 },
{ NAU8821_R25_BIQ0_COF5, 0x0 },
{ NAU8821_R26_BIQ0_COF6, 0x0 },
{ NAU8821_R27_BIQ0_COF7, 0x0 },
{ NAU8821_R28_BIQ0_COF8, 0x0 },
{ NAU8821_R29_BIQ0_COF9, 0x0 },
{ NAU8821_R2A_BIQ0_COF10, 0x0 },
{ NAU8821_R2B_ADC_RATE, 0x0002 },
{ NAU8821_R2C_DAC_CTRL1, 0x0082 },
{ NAU8821_R2D_DAC_CTRL2, 0x0 },
{ NAU8821_R2F_DAC_DGAIN_CTRL, 0x0 },
{ NAU8821_R30_ADC_DGAIN_CTRL, 0x0 },
{ NAU8821_R31_MUTE_CTRL, 0x0 },
{ NAU8821_R32_HSVOL_CTRL, 0x0 },
{ NAU8821_R34_DACR_CTRL, 0xcfcf },
{ NAU8821_R35_ADC_DGAIN_CTRL1, 0xcfcf },
{ NAU8821_R36_ADC_DRC_KNEE_IP12, 0x1486 },
{ NAU8821_R37_ADC_DRC_KNEE_IP34, 0x0f12 },
{ NAU8821_R38_ADC_DRC_SLOPES, 0x25ff },
{ NAU8821_R39_ADC_DRC_ATKDCY, 0x3457 },
{ NAU8821_R3A_DAC_DRC_KNEE_IP12, 0x1486 },
{ NAU8821_R3B_DAC_DRC_KNEE_IP34, 0x0f12 },
{ NAU8821_R3C_DAC_DRC_SLOPES, 0x25f9 },
{ NAU8821_R3D_DAC_DRC_ATKDCY, 0x3457 },
{ NAU8821_R41_BIQ1_COF1, 0x0 },
{ NAU8821_R42_BIQ1_COF2, 0x0 },
{ NAU8821_R43_BIQ1_COF3, 0x0 },
{ NAU8821_R44_BIQ1_COF4, 0x0 },
{ NAU8821_R45_BIQ1_COF5, 0x0 },
{ NAU8821_R46_BIQ1_COF6, 0x0 },
{ NAU8821_R47_BIQ1_COF7, 0x0 },
{ NAU8821_R48_BIQ1_COF8, 0x0 },
{ NAU8821_R49_BIQ1_COF9, 0x0 },
{ NAU8821_R4A_BIQ1_COF10, 0x0 },
{ NAU8821_R4B_CLASSG_CTRL, 0x0 },
{ NAU8821_R4C_IMM_MODE_CTRL, 0x0 },
{ NAU8821_R4D_IMM_RMS_L, 0x0 },
{ NAU8821_R53_OTPDOUT_1, 0xaad8 },
{ NAU8821_R54_OTPDOUT_2, 0x0002 },
{ NAU8821_R55_MISC_CTRL, 0x0 },
{ NAU8821_R66_BIAS_ADJ, 0x0 },
{ NAU8821_R68_TRIM_SETTINGS, 0x0 },
{ NAU8821_R69_ANALOG_CONTROL_1, 0x0 },
{ NAU8821_R6A_ANALOG_CONTROL_2, 0x0 },
{ NAU8821_R6B_PGA_MUTE, 0x0 },
{ NAU8821_R71_ANALOG_ADC_1, 0x0011 },
{ NAU8821_R72_ANALOG_ADC_2, 0x0020 },
{ NAU8821_R73_RDAC, 0x0008 },
{ NAU8821_R74_MIC_BIAS, 0x0006 },
{ NAU8821_R76_BOOST, 0x0 },
{ NAU8821_R77_FEPGA, 0x0 },
{ NAU8821_R7E_PGA_GAIN, 0x0 },
{ NAU8821_R7F_POWER_UP_CONTROL, 0x0 },
{ NAU8821_R80_CHARGE_PUMP, 0x0 },
};
static bool nau8821_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case NAU8821_R00_RESET ... NAU8821_R01_ENA_CTRL:
case NAU8821_R03_CLK_DIVIDER ... NAU8821_R0B_FLL8:
case NAU8821_R0D_JACK_DET_CTRL:
case NAU8821_R0F_INTERRUPT_MASK ... NAU8821_R13_DMIC_CTRL:
case NAU8821_R1A_GPIO12_CTRL ... NAU8821_R1F_RIGHT_TIME_SLOT:
case NAU8821_R21_BIQ0_COF1 ... NAU8821_R2D_DAC_CTRL2:
case NAU8821_R2F_DAC_DGAIN_CTRL ... NAU8821_R32_HSVOL_CTRL:
case NAU8821_R34_DACR_CTRL ... NAU8821_R3D_DAC_DRC_ATKDCY:
case NAU8821_R41_BIQ1_COF1 ... NAU8821_R4F_FUSE_CTRL3:
case NAU8821_R51_FUSE_CTRL1:
case NAU8821_R53_OTPDOUT_1 ... NAU8821_R55_MISC_CTRL:
case NAU8821_R58_I2C_DEVICE_ID ... NAU8821_R5A_SOFTWARE_RST:
case NAU8821_R66_BIAS_ADJ:
case NAU8821_R68_TRIM_SETTINGS ... NAU8821_R6B_PGA_MUTE:
case NAU8821_R71_ANALOG_ADC_1 ... NAU8821_R74_MIC_BIAS:
case NAU8821_R76_BOOST ... NAU8821_R77_FEPGA:
case NAU8821_R7E_PGA_GAIN ... NAU8821_R82_GENERAL_STATUS:
return true;
default:
return false;
}
}
static bool nau8821_writeable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case NAU8821_R00_RESET ... NAU8821_R01_ENA_CTRL:
case NAU8821_R03_CLK_DIVIDER ... NAU8821_R0B_FLL8:
case NAU8821_R0D_JACK_DET_CTRL:
case NAU8821_R0F_INTERRUPT_MASK:
case NAU8821_R11_INT_CLR_KEY_STATUS ... NAU8821_R13_DMIC_CTRL:
case NAU8821_R1A_GPIO12_CTRL ... NAU8821_R1F_RIGHT_TIME_SLOT:
case NAU8821_R21_BIQ0_COF1 ... NAU8821_R2D_DAC_CTRL2:
case NAU8821_R2F_DAC_DGAIN_CTRL ... NAU8821_R32_HSVOL_CTRL:
case NAU8821_R34_DACR_CTRL ... NAU8821_R3D_DAC_DRC_ATKDCY:
case NAU8821_R41_BIQ1_COF1 ... NAU8821_R4C_IMM_MODE_CTRL:
case NAU8821_R4E_FUSE_CTRL2 ... NAU8821_R4F_FUSE_CTRL3:
case NAU8821_R51_FUSE_CTRL1:
case NAU8821_R55_MISC_CTRL:
case NAU8821_R5A_SOFTWARE_RST:
case NAU8821_R66_BIAS_ADJ:
case NAU8821_R68_TRIM_SETTINGS ... NAU8821_R6B_PGA_MUTE:
case NAU8821_R71_ANALOG_ADC_1 ... NAU8821_R74_MIC_BIAS:
case NAU8821_R76_BOOST ... NAU8821_R77_FEPGA:
case NAU8821_R7E_PGA_GAIN ... NAU8821_R80_CHARGE_PUMP:
return true;
default:
return false;
}
}
static bool nau8821_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case NAU8821_R00_RESET:
case NAU8821_R10_IRQ_STATUS ... NAU8821_R11_INT_CLR_KEY_STATUS:
case NAU8821_R21_BIQ0_COF1 ... NAU8821_R2A_BIQ0_COF10:
case NAU8821_R41_BIQ1_COF1 ... NAU8821_R4A_BIQ1_COF10:
case NAU8821_R4D_IMM_RMS_L:
case NAU8821_R53_OTPDOUT_1 ... NAU8821_R54_OTPDOUT_2:
case NAU8821_R58_I2C_DEVICE_ID ... NAU8821_R5A_SOFTWARE_RST:
case NAU8821_R81_CHARGE_PUMP_INPUT_READ ... NAU8821_R82_GENERAL_STATUS:
return true;
default:
return false;
}
}
static int nau8821_biq_coeff_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_bytes_ext *params = (void *)kcontrol->private_value;
if (!component->regmap)
return -EINVAL;
regmap_raw_read(component->regmap, NAU8821_R21_BIQ0_COF1,
ucontrol->value.bytes.data, params->max);
return 0;
}
static int nau8821_biq_coeff_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_bytes_ext *params = (void *)kcontrol->private_value;
void *data;
if (!component->regmap)
return -EINVAL;
data = kmemdup(ucontrol->value.bytes.data,
params->max, GFP_KERNEL | GFP_DMA);
if (!data)
return -ENOMEM;
regmap_raw_write(component->regmap, NAU8821_R21_BIQ0_COF1,
data, params->max);
kfree(data);
return 0;
}
static const char * const nau8821_adc_decimation[] = {
"32", "64", "128", "256" };
static const struct soc_enum nau8821_adc_decimation_enum =
SOC_ENUM_SINGLE(NAU8821_R2B_ADC_RATE, NAU8821_ADC_SYNC_DOWN_SFT,
ARRAY_SIZE(nau8821_adc_decimation), nau8821_adc_decimation);
static const char * const nau8821_dac_oversampl[] = {
"64", "256", "128", "", "32" };
static const struct soc_enum nau8821_dac_oversampl_enum =
SOC_ENUM_SINGLE(NAU8821_R2C_DAC_CTRL1, NAU8821_DAC_OVERSAMPLE_SFT,
ARRAY_SIZE(nau8821_dac_oversampl), nau8821_dac_oversampl);
static const DECLARE_TLV_DB_MINMAX_MUTE(adc_vol_tlv, -6600, 2400);
static const DECLARE_TLV_DB_MINMAX_MUTE(sidetone_vol_tlv, -4200, 0);
static const DECLARE_TLV_DB_MINMAX(hp_vol_tlv, -900, 0);
static const DECLARE_TLV_DB_SCALE(playback_vol_tlv, -6600, 50, 1);
static const DECLARE_TLV_DB_MINMAX(fepga_gain_tlv, -100, 3600);
static const DECLARE_TLV_DB_MINMAX_MUTE(crosstalk_vol_tlv, -7000, 2400);
static const struct snd_kcontrol_new nau8821_controls[] = {
SOC_DOUBLE_TLV("Mic Volume", NAU8821_R35_ADC_DGAIN_CTRL1,
NAU8821_ADCL_CH_VOL_SFT, NAU8821_ADCR_CH_VOL_SFT,
0xff, 0, adc_vol_tlv),
SOC_DOUBLE_TLV("Headphone Bypass Volume", NAU8821_R30_ADC_DGAIN_CTRL,
12, 8, 0x0f, 0, sidetone_vol_tlv),
SOC_DOUBLE_TLV("Headphone Volume", NAU8821_R32_HSVOL_CTRL,
NAU8821_HPL_VOL_SFT, NAU8821_HPR_VOL_SFT, 0x3, 1, hp_vol_tlv),
SOC_DOUBLE_TLV("Digital Playback Volume", NAU8821_R34_DACR_CTRL,
NAU8821_DACL_CH_VOL_SFT, NAU8821_DACR_CH_VOL_SFT,
0xcf, 0, playback_vol_tlv),
SOC_DOUBLE_TLV("Frontend PGA Volume", NAU8821_R7E_PGA_GAIN,
NAU8821_PGA_GAIN_L_SFT, NAU8821_PGA_GAIN_R_SFT,
37, 0, fepga_gain_tlv),
SOC_DOUBLE_TLV("Headphone Crosstalk Volume",
NAU8821_R2F_DAC_DGAIN_CTRL,
0, 8, 0xff, 0, crosstalk_vol_tlv),
SOC_ENUM("ADC Decimation Rate", nau8821_adc_decimation_enum),
SOC_ENUM("DAC Oversampling Rate", nau8821_dac_oversampl_enum),
SND_SOC_BYTES_EXT("BIQ Coefficients", 20,
nau8821_biq_coeff_get, nau8821_biq_coeff_put),
SOC_SINGLE("ADC Phase Switch", NAU8821_R1B_TDM_CTRL,
NAU8821_ADCPHS_SFT, 1, 0),
};
static const struct snd_kcontrol_new nau8821_dmic_mode_switch =
SOC_DAPM_SINGLE("Switch", NAU8821_R13_DMIC_CTRL,
NAU8821_DMIC_EN_SFT, 1, 0);
static int dmic_clock_control(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *k, int event)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(w->dapm);
struct nau8821 *nau8821 = snd_soc_component_get_drvdata(component);
int i, speed_selection = -1, clk_adc_src, clk_adc;
unsigned int clk_divider_r03;
/* The DMIC clock is gotten from adc clock divided by
* CLK_DMIC_SRC (1, 2, 4, 8). The clock has to be equal or
* less than nau8821->dmic_clk_threshold.
*/
regmap_read(nau8821->regmap, NAU8821_R03_CLK_DIVIDER,
&clk_divider_r03);
clk_adc_src = (clk_divider_r03 & NAU8821_CLK_ADC_SRC_MASK)
>> NAU8821_CLK_ADC_SRC_SFT;
clk_adc = (nau8821->fs * 256) >> clk_adc_src;
for (i = 0 ; i < 4 ; i++)
if ((clk_adc >> dmic_speed_sel[i].param) <=
nau8821->dmic_clk_threshold) {
speed_selection = dmic_speed_sel[i].val;
break;
}
if (i == 4)
return -EINVAL;
dev_dbg(nau8821->dev,
"clk_adc=%d, dmic_clk_threshold = %d, param=%d, val = %d\n",
clk_adc, nau8821->dmic_clk_threshold,
dmic_speed_sel[i].param, dmic_speed_sel[i].val);
regmap_update_bits(nau8821->regmap, NAU8821_R13_DMIC_CTRL,
NAU8821_DMIC_SRC_MASK,
(speed_selection << NAU8821_DMIC_SRC_SFT));
return 0;
}
static int nau8821_left_adc_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(w->dapm);
struct nau8821 *nau8821 = snd_soc_component_get_drvdata(component);
switch (event) {
case SND_SOC_DAPM_POST_PMU:
msleep(125);
regmap_update_bits(nau8821->regmap, NAU8821_R01_ENA_CTRL,
NAU8821_EN_ADCL, NAU8821_EN_ADCL);
break;
case SND_SOC_DAPM_POST_PMD:
regmap_update_bits(nau8821->regmap,
NAU8821_R01_ENA_CTRL, NAU8821_EN_ADCL, 0);
break;
default:
return -EINVAL;
}
return 0;
}
static int nau8821_right_adc_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(w->dapm);
struct nau8821 *nau8821 = snd_soc_component_get_drvdata(component);
switch (event) {
case SND_SOC_DAPM_POST_PMU:
msleep(125);
regmap_update_bits(nau8821->regmap, NAU8821_R01_ENA_CTRL,
NAU8821_EN_ADCR, NAU8821_EN_ADCR);
break;
case SND_SOC_DAPM_POST_PMD:
regmap_update_bits(nau8821->regmap,
NAU8821_R01_ENA_CTRL, NAU8821_EN_ADCR, 0);
break;
default:
return -EINVAL;
}
return 0;
}
static int nau8821_pump_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(w->dapm);
struct nau8821 *nau8821 =
snd_soc_component_get_drvdata(component);
switch (event) {
case SND_SOC_DAPM_POST_PMU:
/* Prevent startup click by letting charge pump to ramp up */
msleep(20);
regmap_update_bits(nau8821->regmap, NAU8821_R80_CHARGE_PUMP,
NAU8821_JAMNODCLOW, NAU8821_JAMNODCLOW);
break;
case SND_SOC_DAPM_PRE_PMD:
regmap_update_bits(nau8821->regmap, NAU8821_R80_CHARGE_PUMP,
NAU8821_JAMNODCLOW, 0);
break;
default:
return -EINVAL;
}
return 0;
}
static int nau8821_output_dac_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(w->dapm);
struct nau8821 *nau8821 = snd_soc_component_get_drvdata(component);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
/* Disables the TESTDAC to let DAC signal pass through. */
regmap_update_bits(nau8821->regmap, NAU8821_R66_BIAS_ADJ,
NAU8821_BIAS_TESTDAC_EN, 0);
break;
case SND_SOC_DAPM_POST_PMD:
regmap_update_bits(nau8821->regmap, NAU8821_R66_BIAS_ADJ,
NAU8821_BIAS_TESTDAC_EN, NAU8821_BIAS_TESTDAC_EN);
break;
default:
return -EINVAL;
}
return 0;
}
static int system_clock_control(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *k, int event)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(w->dapm);
struct nau8821 *nau8821 = snd_soc_component_get_drvdata(component);
if (SND_SOC_DAPM_EVENT_OFF(event)) {
dev_dbg(nau8821->dev, "system clock control : POWER OFF\n");
/* Set clock source to disable or internal clock before the
* playback or capture end. Codec needs clock for Jack
* detection and button press if jack inserted; otherwise,
* the clock should be closed.
*/
if (nau8821_is_jack_inserted(nau8821->regmap)) {
nau8821_configure_sysclk(nau8821,
NAU8821_CLK_INTERNAL, 0);
} else {
nau8821_configure_sysclk(nau8821, NAU8821_CLK_DIS, 0);
}
}
return 0;
}
static const struct snd_soc_dapm_widget nau8821_dapm_widgets[] = {
SND_SOC_DAPM_SUPPLY("System Clock", SND_SOC_NOPM, 0, 0,
system_clock_control, SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_SUPPLY("MICBIAS", NAU8821_R74_MIC_BIAS,
NAU8821_MICBIAS_POWERUP_SFT, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("DMIC Clock", SND_SOC_NOPM, 0, 0,
dmic_clock_control, SND_SOC_DAPM_POST_PMU),
SND_SOC_DAPM_ADC("ADCL Power", NULL, NAU8821_R72_ANALOG_ADC_2,
NAU8821_POWERUP_ADCL_SFT, 0),
SND_SOC_DAPM_ADC("ADCR Power", NULL, NAU8821_R72_ANALOG_ADC_2,
NAU8821_POWERUP_ADCR_SFT, 0),
SND_SOC_DAPM_PGA_S("Frontend PGA L", 1, NAU8821_R7F_POWER_UP_CONTROL,
NAU8821_PUP_PGA_L_SFT, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("Frontend PGA R", 1, NAU8821_R7F_POWER_UP_CONTROL,
NAU8821_PUP_PGA_R_SFT, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("ADCL Digital path", 0, NAU8821_R01_ENA_CTRL,
NAU8821_EN_ADCL_SFT, 0, nau8821_left_adc_event,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_PGA_S("ADCR Digital path", 0, NAU8821_R01_ENA_CTRL,
NAU8821_EN_ADCR_SFT, 0, nau8821_right_adc_event,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_SWITCH("DMIC Enable", SND_SOC_NOPM,
0, 0, &nau8821_dmic_mode_switch),
SND_SOC_DAPM_AIF_OUT("AIFTX", "Capture", 0, NAU8821_R1D_I2S_PCM_CTRL2,
NAU8821_I2S_TRISTATE_SFT, 1),
SND_SOC_DAPM_AIF_IN("AIFRX", "Playback", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_PGA_S("ADACL", 2, NAU8821_R73_RDAC,
NAU8821_DACL_EN_SFT, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("ADACR", 2, NAU8821_R73_RDAC,
NAU8821_DACR_EN_SFT, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("ADACL Clock", 3, NAU8821_R73_RDAC,
NAU8821_DACL_CLK_EN_SFT, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("ADACR Clock", 3, NAU8821_R73_RDAC,
NAU8821_DACR_CLK_EN_SFT, 0, NULL, 0),
SND_SOC_DAPM_DAC("DDACR", NULL, NAU8821_R01_ENA_CTRL,
NAU8821_EN_DACR_SFT, 0),
SND_SOC_DAPM_DAC("DDACL", NULL, NAU8821_R01_ENA_CTRL,
NAU8821_EN_DACL_SFT, 0),
SND_SOC_DAPM_PGA_S("HP amp L", 0, NAU8821_R4B_CLASSG_CTRL,
NAU8821_CLASSG_LDAC_EN_SFT, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("HP amp R", 0, NAU8821_R4B_CLASSG_CTRL,
NAU8821_CLASSG_RDAC_EN_SFT, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("Charge Pump", 1, NAU8821_R80_CHARGE_PUMP,
NAU8821_CHANRGE_PUMP_EN_SFT, 0, nau8821_pump_event,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_PGA_S("Output Driver R Stage 1", 4,
NAU8821_R7F_POWER_UP_CONTROL,
NAU8821_PUP_INTEG_R_SFT, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("Output Driver L Stage 1", 4,
NAU8821_R7F_POWER_UP_CONTROL,
NAU8821_PUP_INTEG_L_SFT, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("Output Driver R Stage 2", 5,
NAU8821_R7F_POWER_UP_CONTROL,
NAU8821_PUP_DRV_INSTG_R_SFT, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("Output Driver L Stage 2", 5,
NAU8821_R7F_POWER_UP_CONTROL,
NAU8821_PUP_DRV_INSTG_L_SFT, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("Output Driver R Stage 3", 6,
NAU8821_R7F_POWER_UP_CONTROL,
NAU8821_PUP_MAIN_DRV_R_SFT, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("Output Driver L Stage 3", 6,
NAU8821_R7F_POWER_UP_CONTROL,
NAU8821_PUP_MAIN_DRV_L_SFT, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("Output DACL", 7,
NAU8821_R80_CHARGE_PUMP, NAU8821_POWER_DOWN_DACL_SFT,
0, nau8821_output_dac_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_PGA_S("Output DACR", 7,
NAU8821_R80_CHARGE_PUMP, NAU8821_POWER_DOWN_DACR_SFT,
0, nau8821_output_dac_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
/* HPOL/R are ungrounded by disabling 16 Ohm pull-downs on playback */
SND_SOC_DAPM_PGA_S("HPOL Pulldown", 8,
NAU8821_R0D_JACK_DET_CTRL,
NAU8821_SPKR_DWN1L_SFT, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("HPOR Pulldown", 8,
NAU8821_R0D_JACK_DET_CTRL,
NAU8821_SPKR_DWN1R_SFT, 0, NULL, 0),
/* High current HPOL/R boost driver */
SND_SOC_DAPM_PGA_S("HP Boost Driver", 9,
NAU8821_R76_BOOST, NAU8821_HP_BOOST_DIS_SFT, 1, NULL, 0),
SND_SOC_DAPM_PGA("Class G", NAU8821_R4B_CLASSG_CTRL,
NAU8821_CLASSG_EN_SFT, 0, NULL, 0),
SND_SOC_DAPM_INPUT("MICL"),
SND_SOC_DAPM_INPUT("MICR"),
SND_SOC_DAPM_INPUT("DMIC"),
SND_SOC_DAPM_OUTPUT("HPOL"),
SND_SOC_DAPM_OUTPUT("HPOR"),
};
static const struct snd_soc_dapm_route nau8821_dapm_routes[] = {
{"DMIC Enable", "Switch", "DMIC"},
{"DMIC Enable", NULL, "DMIC Clock"},
{"Frontend PGA L", NULL, "MICL"},
{"Frontend PGA R", NULL, "MICR"},
{"Frontend PGA L", NULL, "MICBIAS"},
{"Frontend PGA R", NULL, "MICBIAS"},
{"ADCL Power", NULL, "Frontend PGA L"},
{"ADCR Power", NULL, "Frontend PGA R"},
{"ADCL Digital path", NULL, "ADCL Power"},
{"ADCR Digital path", NULL, "ADCR Power"},
{"ADCL Digital path", NULL, "DMIC Enable"},
{"ADCR Digital path", NULL, "DMIC Enable"},
{"AIFTX", NULL, "ADCL Digital path"},
{"AIFTX", NULL, "ADCR Digital path"},
{"AIFTX", NULL, "System Clock"},
{"AIFRX", NULL, "System Clock"},
{"DDACL", NULL, "AIFRX"},
{"DDACR", NULL, "AIFRX"},
{"HP amp L", NULL, "DDACL"},
{"HP amp R", NULL, "DDACR"},
{"Charge Pump", NULL, "HP amp L"},
{"Charge Pump", NULL, "HP amp R"},
{"ADACL", NULL, "Charge Pump"},
{"ADACR", NULL, "Charge Pump"},
{"ADACL Clock", NULL, "ADACL"},
{"ADACR Clock", NULL, "ADACR"},
{"Output Driver L Stage 1", NULL, "ADACL Clock"},
{"Output Driver R Stage 1", NULL, "ADACR Clock"},
{"Output Driver L Stage 2", NULL, "Output Driver L Stage 1"},
{"Output Driver R Stage 2", NULL, "Output Driver R Stage 1"},
{"Output Driver L Stage 3", NULL, "Output Driver L Stage 2"},
{"Output Driver R Stage 3", NULL, "Output Driver R Stage 2"},
{"Output DACL", NULL, "Output Driver L Stage 3"},
{"Output DACR", NULL, "Output Driver R Stage 3"},
{"HPOL Pulldown", NULL, "Output DACL"},
{"HPOR Pulldown", NULL, "Output DACR"},
{"HP Boost Driver", NULL, "HPOL Pulldown"},
{"HP Boost Driver", NULL, "HPOR Pulldown"},
{"Class G", NULL, "HP Boost Driver"},
{"HPOL", NULL, "Class G"},
{"HPOR", NULL, "Class G"},
};
static int nau8821_clock_check(struct nau8821 *nau8821,
int stream, int rate, int osr)
{
int osrate = 0;
if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
if (osr >= ARRAY_SIZE(osr_dac_sel))
return -EINVAL;
osrate = osr_dac_sel[osr].osr;
} else {
if (osr >= ARRAY_SIZE(osr_adc_sel))
return -EINVAL;
osrate = osr_adc_sel[osr].osr;
}
if (!osrate || rate * osrate > CLK_DA_AD_MAX) {
dev_err(nau8821->dev,
"exceed the maximum frequency of CLK_ADC or CLK_DAC");
return -EINVAL;
}
return 0;
}
static int nau8821_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params, struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct nau8821 *nau8821 = snd_soc_component_get_drvdata(component);
unsigned int val_len = 0, osr, ctrl_val, bclk_fs, clk_div;
nau8821->fs = params_rate(params);
/* CLK_DAC or CLK_ADC = OSR * FS
* DAC or ADC clock frequency is defined as Over Sampling Rate (OSR)
* multiplied by the audio sample rate (Fs). Note that the OSR and Fs
* values must be selected such that the maximum frequency is less
* than 6.144 MHz.
*/
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
regmap_read(nau8821->regmap, NAU8821_R2C_DAC_CTRL1, &osr);
osr &= NAU8821_DAC_OVERSAMPLE_MASK;
if (nau8821_clock_check(nau8821, substream->stream,
nau8821->fs, osr)) {
return -EINVAL;
}
regmap_update_bits(nau8821->regmap, NAU8821_R03_CLK_DIVIDER,
NAU8821_CLK_DAC_SRC_MASK,
osr_dac_sel[osr].clk_src << NAU8821_CLK_DAC_SRC_SFT);
} else {
regmap_read(nau8821->regmap, NAU8821_R2B_ADC_RATE, &osr);
osr &= NAU8821_ADC_SYNC_DOWN_MASK;
if (nau8821_clock_check(nau8821, substream->stream,
nau8821->fs, osr)) {
return -EINVAL;
}
regmap_update_bits(nau8821->regmap, NAU8821_R03_CLK_DIVIDER,
NAU8821_CLK_ADC_SRC_MASK,
osr_adc_sel[osr].clk_src << NAU8821_CLK_ADC_SRC_SFT);
}
/* make BCLK and LRC divde configuration if the codec as master. */
regmap_read(nau8821->regmap, NAU8821_R1D_I2S_PCM_CTRL2, &ctrl_val);
if (ctrl_val & NAU8821_I2S_MS_MASTER) {
/* get the bclk and fs ratio */
bclk_fs = snd_soc_params_to_bclk(params) / nau8821->fs;
if (bclk_fs <= 32)
clk_div = 3;
else if (bclk_fs <= 64)
clk_div = 2;
else if (bclk_fs <= 128)
clk_div = 1;
else {
return -EINVAL;
}
regmap_update_bits(nau8821->regmap, NAU8821_R1D_I2S_PCM_CTRL2,
NAU8821_I2S_LRC_DIV_MASK | NAU8821_I2S_BLK_DIV_MASK,
(clk_div << NAU8821_I2S_LRC_DIV_SFT) | clk_div);
}
switch (params_width(params)) {
case 16:
val_len |= NAU8821_I2S_DL_16;
break;
case 20:
val_len |= NAU8821_I2S_DL_20;
break;
case 24:
val_len |= NAU8821_I2S_DL_24;
break;
case 32:
val_len |= NAU8821_I2S_DL_32;
break;
default:
return -EINVAL;
}
regmap_update_bits(nau8821->regmap, NAU8821_R1C_I2S_PCM_CTRL1,
NAU8821_I2S_DL_MASK, val_len);
return 0;
}
static int nau8821_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
{
struct snd_soc_component *component = codec_dai->component;
struct nau8821 *nau8821 = snd_soc_component_get_drvdata(component);
unsigned int ctrl1_val = 0, ctrl2_val = 0;
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBP_CFP:
ctrl2_val |= NAU8821_I2S_MS_MASTER;
break;
case SND_SOC_DAIFMT_CBC_CFC:
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
break;
case SND_SOC_DAIFMT_IB_NF:
ctrl1_val |= NAU8821_I2S_BP_INV;
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
ctrl1_val |= NAU8821_I2S_DF_I2S;
break;
case SND_SOC_DAIFMT_LEFT_J:
ctrl1_val |= NAU8821_I2S_DF_LEFT;
break;
case SND_SOC_DAIFMT_RIGHT_J:
ctrl1_val |= NAU8821_I2S_DF_RIGTH;
break;
case SND_SOC_DAIFMT_DSP_A:
ctrl1_val |= NAU8821_I2S_DF_PCM_AB;
break;
case SND_SOC_DAIFMT_DSP_B:
ctrl1_val |= NAU8821_I2S_DF_PCM_AB;
ctrl1_val |= NAU8821_I2S_PCMB_EN;
break;
default:
return -EINVAL;
}
regmap_update_bits(nau8821->regmap, NAU8821_R1C_I2S_PCM_CTRL1,
NAU8821_I2S_DL_MASK | NAU8821_I2S_DF_MASK |
NAU8821_I2S_BP_MASK | NAU8821_I2S_PCMB_MASK, ctrl1_val);
regmap_update_bits(nau8821->regmap, NAU8821_R1D_I2S_PCM_CTRL2,
NAU8821_I2S_MS_MASK, ctrl2_val);
return 0;
}
static int nau8821_digital_mute(struct snd_soc_dai *dai, int mute,
int direction)
{
struct snd_soc_component *component = dai->component;
struct nau8821 *nau8821 = snd_soc_component_get_drvdata(component);
unsigned int val = 0;
if (mute)
val = NAU8821_DAC_SOFT_MUTE;
return regmap_update_bits(nau8821->regmap,
NAU8821_R31_MUTE_CTRL, NAU8821_DAC_SOFT_MUTE, val);
}
static const struct snd_soc_dai_ops nau8821_dai_ops = {
.hw_params = nau8821_hw_params,
.set_fmt = nau8821_set_dai_fmt,
.mute_stream = nau8821_digital_mute,
.no_capture_mute = 1,
};
#define NAU8821_RATES SNDRV_PCM_RATE_8000_192000
#define NAU8821_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \
| SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
static struct snd_soc_dai_driver nau8821_dai = {
.name = NUVOTON_CODEC_DAI,
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = 2,
.rates = NAU8821_RATES,
.formats = NAU8821_FORMATS,
},
.capture = {
.stream_name = "Capture",
.channels_min = 1,
.channels_max = 2,
.rates = NAU8821_RATES,
.formats = NAU8821_FORMATS,
},
.ops = &nau8821_dai_ops,
};
static bool nau8821_is_jack_inserted(struct regmap *regmap)
{
bool active_high, is_high;
int status, jkdet;
regmap_read(regmap, NAU8821_R0D_JACK_DET_CTRL, &jkdet);
active_high = jkdet & NAU8821_JACK_POLARITY;
regmap_read(regmap, NAU8821_R82_GENERAL_STATUS, &status);
is_high = status & NAU8821_GPIO2_IN;
/* return jack connection status according to jack insertion logic
* active high or active low.
*/
return active_high == is_high;
}
static void nau8821_int_status_clear_all(struct regmap *regmap)
{
int active_irq, clear_irq, i;
/* Reset the intrruption status from rightmost bit if the corres-
* ponding irq event occurs.
*/
regmap_read(regmap, NAU8821_R10_IRQ_STATUS, &active_irq);
for (i = 0; i < NAU8821_REG_DATA_LEN; i++) {
clear_irq = (0x1 << i);
if (active_irq & clear_irq)
regmap_write(regmap,
NAU8821_R11_INT_CLR_KEY_STATUS, clear_irq);
}
}
static void nau8821_eject_jack(struct nau8821 *nau8821)
{
struct snd_soc_dapm_context *dapm = nau8821->dapm;
struct regmap *regmap = nau8821->regmap;
struct snd_soc_component *component = snd_soc_dapm_to_component(dapm);
/* Detach 2kOhm Resistors from MICBIAS to MICGND */
regmap_update_bits(regmap, NAU8821_R74_MIC_BIAS,
NAU8821_MICBIAS_JKR2, 0);
/* HPL/HPR short to ground */
regmap_update_bits(regmap, NAU8821_R0D_JACK_DET_CTRL,
NAU8821_SPKR_DWN1R | NAU8821_SPKR_DWN1L, 0);
snd_soc_component_disable_pin(component, "MICBIAS");
snd_soc_dapm_sync(dapm);
/* Clear all interruption status */
nau8821_int_status_clear_all(regmap);
/* Enable the insertion interruption, disable the ejection inter-
* ruption, and then bypass de-bounce circuit.
*/
regmap_update_bits(regmap, NAU8821_R12_INTERRUPT_DIS_CTRL,
NAU8821_IRQ_EJECT_DIS | NAU8821_IRQ_INSERT_DIS,
NAU8821_IRQ_EJECT_DIS);
/* Mask unneeded IRQs: 1 - disable, 0 - enable */
regmap_update_bits(regmap, NAU8821_R0F_INTERRUPT_MASK,
NAU8821_IRQ_EJECT_EN | NAU8821_IRQ_INSERT_EN,
NAU8821_IRQ_EJECT_EN);
regmap_update_bits(regmap, NAU8821_R0D_JACK_DET_CTRL,
NAU8821_JACK_DET_DB_BYPASS, NAU8821_JACK_DET_DB_BYPASS);
/* Close clock for jack type detection at manual mode */
if (dapm->bias_level < SND_SOC_BIAS_PREPARE)
nau8821_configure_sysclk(nau8821, NAU8821_CLK_DIS, 0);
/* Recover to normal channel input */
regmap_update_bits(regmap, NAU8821_R2B_ADC_RATE,
NAU8821_ADC_R_SRC_EN, 0);
if (nau8821->key_enable) {
regmap_update_bits(regmap, NAU8821_R0F_INTERRUPT_MASK,
NAU8821_IRQ_KEY_RELEASE_EN |
NAU8821_IRQ_KEY_PRESS_EN,
NAU8821_IRQ_KEY_RELEASE_EN |
NAU8821_IRQ_KEY_PRESS_EN);
regmap_update_bits(regmap,
NAU8821_R12_INTERRUPT_DIS_CTRL,
NAU8821_IRQ_KEY_RELEASE_DIS |
NAU8821_IRQ_KEY_PRESS_DIS,
NAU8821_IRQ_KEY_RELEASE_DIS |
NAU8821_IRQ_KEY_PRESS_DIS);
}
}
static void nau8821_jdet_work(struct work_struct *work)
{
struct nau8821 *nau8821 =
container_of(work, struct nau8821, jdet_work);
struct snd_soc_dapm_context *dapm = nau8821->dapm;
struct snd_soc_component *component = snd_soc_dapm_to_component(dapm);
struct regmap *regmap = nau8821->regmap;
int jack_status_reg, mic_detected, event = 0, event_mask = 0;
snd_soc_component_force_enable_pin(component, "MICBIAS");
snd_soc_dapm_sync(dapm);
msleep(20);
regmap_read(regmap, NAU8821_R58_I2C_DEVICE_ID, &jack_status_reg);
mic_detected = !(jack_status_reg & NAU8821_KEYDET);
if (mic_detected) {
dev_dbg(nau8821->dev, "Headset connected\n");
event |= SND_JACK_HEADSET;
/* 2kOhm Resistor from MICBIAS to MICGND1 */
regmap_update_bits(regmap, NAU8821_R74_MIC_BIAS,
NAU8821_MICBIAS_JKR2, NAU8821_MICBIAS_JKR2);
/* Latch Right Channel Analog data
* input into the Right Channel Filter
*/
regmap_update_bits(regmap, NAU8821_R2B_ADC_RATE,
NAU8821_ADC_R_SRC_EN, NAU8821_ADC_R_SRC_EN);
if (nau8821->key_enable) {
regmap_update_bits(regmap, NAU8821_R0F_INTERRUPT_MASK,
NAU8821_IRQ_KEY_RELEASE_EN |
NAU8821_IRQ_KEY_PRESS_EN, 0);
regmap_update_bits(regmap,
NAU8821_R12_INTERRUPT_DIS_CTRL,
NAU8821_IRQ_KEY_RELEASE_DIS |
NAU8821_IRQ_KEY_PRESS_DIS, 0);
}
} else {
dev_dbg(nau8821->dev, "Headphone connected\n");
event |= SND_JACK_HEADPHONE;
snd_soc_component_disable_pin(component, "MICBIAS");
snd_soc_dapm_sync(dapm);
}
event_mask |= SND_JACK_HEADSET;
snd_soc_jack_report(nau8821->jack, event, event_mask);
}
/* Enable interruptions with internal clock. */
static void nau8821_setup_inserted_irq(struct nau8821 *nau8821)
{
struct regmap *regmap = nau8821->regmap;
/* Enable internal VCO needed for interruptions */
if (nau8821->dapm->bias_level < SND_SOC_BIAS_PREPARE)
nau8821_configure_sysclk(nau8821, NAU8821_CLK_INTERNAL, 0);
/* Chip needs one FSCLK cycle in order to generate interruptions,
* as we cannot guarantee one will be provided by the system. Turning
* master mode on then off enables us to generate that FSCLK cycle
* with a minimum of contention on the clock bus.
*/
regmap_update_bits(regmap, NAU8821_R1D_I2S_PCM_CTRL2,
NAU8821_I2S_MS_MASK, NAU8821_I2S_MS_MASTER);
regmap_update_bits(regmap, NAU8821_R1D_I2S_PCM_CTRL2,
NAU8821_I2S_MS_MASK, NAU8821_I2S_MS_SLAVE);
/* Not bypass de-bounce circuit */
regmap_update_bits(regmap, NAU8821_R0D_JACK_DET_CTRL,
NAU8821_JACK_DET_DB_BYPASS, 0);
regmap_update_bits(regmap, NAU8821_R0F_INTERRUPT_MASK,
NAU8821_IRQ_EJECT_EN, 0);
regmap_update_bits(regmap, NAU8821_R12_INTERRUPT_DIS_CTRL,
NAU8821_IRQ_EJECT_DIS, 0);
}
static irqreturn_t nau8821_interrupt(int irq, void *data)
{
struct nau8821 *nau8821 = (struct nau8821 *)data;
struct regmap *regmap = nau8821->regmap;
int active_irq, clear_irq = 0, event = 0, event_mask = 0;
if (regmap_read(regmap, NAU8821_R10_IRQ_STATUS, &active_irq)) {
dev_err(nau8821->dev, "failed to read irq status\n");
return IRQ_NONE;
}
dev_dbg(nau8821->dev, "IRQ %d\n", active_irq);
if ((active_irq & NAU8821_JACK_EJECT_IRQ_MASK) ==
NAU8821_JACK_EJECT_DETECTED) {
regmap_update_bits(regmap, NAU8821_R71_ANALOG_ADC_1,
NAU8821_MICDET_MASK, NAU8821_MICDET_DIS);
nau8821_eject_jack(nau8821);
event_mask |= SND_JACK_HEADSET;
clear_irq = NAU8821_JACK_EJECT_IRQ_MASK;
} else if (active_irq & NAU8821_KEY_SHORT_PRESS_IRQ) {
event |= NAU8821_BUTTON;
event_mask |= NAU8821_BUTTON;
clear_irq = NAU8821_KEY_SHORT_PRESS_IRQ;
} else if (active_irq & NAU8821_KEY_RELEASE_IRQ) {
event_mask = NAU8821_BUTTON;
clear_irq = NAU8821_KEY_RELEASE_IRQ;
} else if ((active_irq & NAU8821_JACK_INSERT_IRQ_MASK) ==
NAU8821_JACK_INSERT_DETECTED) {
regmap_update_bits(regmap, NAU8821_R71_ANALOG_ADC_1,
NAU8821_MICDET_MASK, NAU8821_MICDET_EN);
if (nau8821_is_jack_inserted(regmap)) {
/* detect microphone and jack type */
cancel_work_sync(&nau8821->jdet_work);
schedule_work(&nau8821->jdet_work);
/* Turn off insertion interruption at manual mode */
regmap_update_bits(regmap,
NAU8821_R12_INTERRUPT_DIS_CTRL,
NAU8821_IRQ_INSERT_DIS,
NAU8821_IRQ_INSERT_DIS);
regmap_update_bits(regmap,
NAU8821_R0F_INTERRUPT_MASK,
NAU8821_IRQ_INSERT_EN,
NAU8821_IRQ_INSERT_EN);
nau8821_setup_inserted_irq(nau8821);
} else {
dev_warn(nau8821->dev,
"Inserted IRQ fired but not connected\n");
nau8821_eject_jack(nau8821);
}
}
if (!clear_irq)
clear_irq = active_irq;
/* clears the rightmost interruption */
regmap_write(regmap, NAU8821_R11_INT_CLR_KEY_STATUS, clear_irq);
if (event_mask)
snd_soc_jack_report(nau8821->jack, event, event_mask);
return IRQ_HANDLED;
}
static const struct regmap_config nau8821_regmap_config = {
.val_bits = NAU8821_REG_DATA_LEN,
.reg_bits = NAU8821_REG_ADDR_LEN,
.max_register = NAU8821_REG_MAX,
.readable_reg = nau8821_readable_reg,
.writeable_reg = nau8821_writeable_reg,
.volatile_reg = nau8821_volatile_reg,
.cache_type = REGCACHE_RBTREE,
.reg_defaults = nau8821_reg_defaults,
.num_reg_defaults = ARRAY_SIZE(nau8821_reg_defaults),
};
static int nau8821_component_probe(struct snd_soc_component *component)
{
struct nau8821 *nau8821 = snd_soc_component_get_drvdata(component);
struct snd_soc_dapm_context *dapm =
snd_soc_component_get_dapm(component);
nau8821->dapm = dapm;
return 0;
}
/**
* nau8821_calc_fll_param - Calculate FLL parameters.
* @fll_in: external clock provided to codec.
* @fs: sampling rate.
* @fll_param: Pointer to structure of FLL parameters.
*
* Calculate FLL parameters to configure codec.
*
* Returns 0 for success or negative error code.
*/
static int nau8821_calc_fll_param(unsigned int fll_in,
unsigned int fs, struct nau8821_fll *fll_param)
{
u64 fvco, fvco_max;
unsigned int fref, i, fvco_sel;
/* Ensure the reference clock frequency (FREF) is <= 13.5MHz by
* dividing freq_in by 1, 2, 4, or 8 using FLL pre-scalar.
* FREF = freq_in / NAU8821_FLL_REF_DIV_MASK
*/
for (i = 0; i < ARRAY_SIZE(fll_pre_scalar); i++) {
fref = fll_in >> fll_pre_scalar[i].param;
if (fref <= NAU_FREF_MAX)
break;
}
if (i == ARRAY_SIZE(fll_pre_scalar))
return -EINVAL;
fll_param->clk_ref_div = fll_pre_scalar[i].val;
/* Choose the FLL ratio based on FREF */
for (i = 0; i < ARRAY_SIZE(fll_ratio); i++) {
if (fref >= fll_ratio[i].param)
break;
}
if (i == ARRAY_SIZE(fll_ratio))
return -EINVAL;
fll_param->ratio = fll_ratio[i].val;
/* Calculate the frequency of DCO (FDCO) given freq_out = 256 * Fs.
* FDCO must be within the 90MHz - 100MHz or the FFL cannot be
* guaranteed across the full range of operation.
* FDCO = freq_out * 2 * mclk_src_scaling
*/
fvco_max = 0;
fvco_sel = ARRAY_SIZE(mclk_src_scaling);
for (i = 0; i < ARRAY_SIZE(mclk_src_scaling); i++) {
fvco = 256ULL * fs * 2 * mclk_src_scaling[i].param;
if (fvco > NAU_FVCO_MIN && fvco < NAU_FVCO_MAX &&
fvco_max < fvco) {
fvco_max = fvco;
fvco_sel = i;
}
}
if (ARRAY_SIZE(mclk_src_scaling) == fvco_sel)
return -EINVAL;
fll_param->mclk_src = mclk_src_scaling[fvco_sel].val;
/* Calculate the FLL 10-bit integer input and the FLL 24-bit fractional
* input based on FDCO, FREF and FLL ratio.
*/
fvco = div_u64(fvco_max << 24, fref * fll_param->ratio);
fll_param->fll_int = (fvco >> 24) & 0x3ff;
fll_param->fll_frac = fvco & 0xffffff;
return 0;
}
static void nau8821_fll_apply(struct nau8821 *nau8821,
struct nau8821_fll *fll_param)
{
struct regmap *regmap = nau8821->regmap;
regmap_update_bits(regmap, NAU8821_R03_CLK_DIVIDER,
NAU8821_CLK_SRC_MASK | NAU8821_CLK_MCLK_SRC_MASK,
NAU8821_CLK_SRC_MCLK | fll_param->mclk_src);
/* Make DSP operate at high speed for better performance. */
regmap_update_bits(regmap, NAU8821_R04_FLL1,
NAU8821_FLL_RATIO_MASK | NAU8821_ICTRL_LATCH_MASK,
fll_param->ratio | (0x6 << NAU8821_ICTRL_LATCH_SFT));
/* FLL 24-bit fractional input */
regmap_write(regmap, NAU8821_R0A_FLL7,
(fll_param->fll_frac >> 16) & 0xff);
regmap_write(regmap, NAU8821_R0B_FLL8, fll_param->fll_frac & 0xffff);
/* FLL 10-bit integer input */
regmap_update_bits(regmap, NAU8821_R06_FLL3,
NAU8821_FLL_INTEGER_MASK, fll_param->fll_int);
/* FLL pre-scaler */
regmap_update_bits(regmap, NAU8821_R07_FLL4,
NAU8821_HIGHBW_EN | NAU8821_FLL_REF_DIV_MASK,
NAU8821_HIGHBW_EN |
(fll_param->clk_ref_div << NAU8821_FLL_REF_DIV_SFT));
/* select divided VCO input */
regmap_update_bits(regmap, NAU8821_R08_FLL5,
NAU8821_FLL_CLK_SW_MASK, NAU8821_FLL_CLK_SW_REF);
/* Disable free-running mode */
regmap_update_bits(regmap,
NAU8821_R09_FLL6, NAU8821_DCO_EN, 0);
if (fll_param->fll_frac) {
/* set FLL loop filter enable and cutoff frequency at 500Khz */
regmap_update_bits(regmap, NAU8821_R08_FLL5,
NAU8821_FLL_PDB_DAC_EN | NAU8821_FLL_LOOP_FTR_EN |
NAU8821_FLL_FTR_SW_MASK,
NAU8821_FLL_PDB_DAC_EN | NAU8821_FLL_LOOP_FTR_EN |
NAU8821_FLL_FTR_SW_FILTER);
regmap_update_bits(regmap, NAU8821_R09_FLL6,
NAU8821_SDM_EN | NAU8821_CUTOFF500,
NAU8821_SDM_EN | NAU8821_CUTOFF500);
} else {
/* disable FLL loop filter and cutoff frequency */
regmap_update_bits(regmap, NAU8821_R08_FLL5,
NAU8821_FLL_PDB_DAC_EN | NAU8821_FLL_LOOP_FTR_EN |
NAU8821_FLL_FTR_SW_MASK, NAU8821_FLL_FTR_SW_ACCU);
regmap_update_bits(regmap, NAU8821_R09_FLL6,
NAU8821_SDM_EN | NAU8821_CUTOFF500, 0);
}
}
/**
* nau8821_set_fll - FLL configuration of nau8821
* @component: codec component
* @pll_id: PLL requested
* @source: clock source
* @freq_in: frequency of input clock source
* @freq_out: must be 256*Fs in order to achieve the best performance
*
* The FLL function can select BCLK or MCLK as the input clock source.
*
* Returns 0 if the parameters have been applied successfully
* or negative error code.
*/
static int nau8821_set_fll(struct snd_soc_component *component,
int pll_id, int source, unsigned int freq_in, unsigned int freq_out)
{
struct nau8821 *nau8821 = snd_soc_component_get_drvdata(component);
struct nau8821_fll fll_set_param, *fll_param = &fll_set_param;
int ret, fs;
fs = freq_out >> 8;
ret = nau8821_calc_fll_param(freq_in, fs, fll_param);
if (ret) {
dev_err(nau8821->dev,
"Unsupported input clock %d to output clock %d\n",
freq_in, freq_out);
return ret;
}
dev_dbg(nau8821->dev,
"mclk_src=%x ratio=%x fll_frac=%x fll_int=%x clk_ref_div=%x\n",
fll_param->mclk_src, fll_param->ratio, fll_param->fll_frac,
fll_param->fll_int, fll_param->clk_ref_div);
nau8821_fll_apply(nau8821, fll_param);
mdelay(2);
regmap_update_bits(nau8821->regmap, NAU8821_R03_CLK_DIVIDER,
NAU8821_CLK_SRC_MASK, NAU8821_CLK_SRC_VCO);
return 0;
}
static void nau8821_configure_mclk_as_sysclk(struct regmap *regmap)
{
regmap_update_bits(regmap, NAU8821_R03_CLK_DIVIDER,
NAU8821_CLK_SRC_MASK, NAU8821_CLK_SRC_MCLK);
regmap_update_bits(regmap, NAU8821_R09_FLL6,
NAU8821_DCO_EN, 0);
/* Make DSP operate as default setting for power saving. */
regmap_update_bits(regmap, NAU8821_R04_FLL1,
NAU8821_ICTRL_LATCH_MASK, 0);
}
static int nau8821_configure_sysclk(struct nau8821 *nau8821,
int clk_id, unsigned int freq)
{
struct regmap *regmap = nau8821->regmap;
switch (clk_id) {
case NAU8821_CLK_DIS:
/* Clock provided externally and disable internal VCO clock */
nau8821_configure_mclk_as_sysclk(regmap);
break;
case NAU8821_CLK_MCLK:
nau8821_configure_mclk_as_sysclk(regmap);
/* MCLK not changed by clock tree */
regmap_update_bits(regmap, NAU8821_R03_CLK_DIVIDER,
NAU8821_CLK_MCLK_SRC_MASK, 0);
break;
case NAU8821_CLK_INTERNAL:
if (nau8821_is_jack_inserted(regmap)) {
regmap_update_bits(regmap, NAU8821_R09_FLL6,
NAU8821_DCO_EN, NAU8821_DCO_EN);
regmap_update_bits(regmap, NAU8821_R03_CLK_DIVIDER,
NAU8821_CLK_SRC_MASK, NAU8821_CLK_SRC_VCO);
/* Decrease the VCO frequency and make DSP operate
* as default setting for power saving.
*/
regmap_update_bits(regmap, NAU8821_R03_CLK_DIVIDER,
NAU8821_CLK_MCLK_SRC_MASK, 0xf);
regmap_update_bits(regmap, NAU8821_R04_FLL1,
NAU8821_ICTRL_LATCH_MASK |
NAU8821_FLL_RATIO_MASK, 0x10);
regmap_update_bits(regmap, NAU8821_R09_FLL6,
NAU8821_SDM_EN, NAU8821_SDM_EN);
}
break;
case NAU8821_CLK_FLL_MCLK:
/* Higher FLL reference input frequency can only set lower
* gain error, such as 0000 for input reference from MCLK
* 12.288Mhz.
*/
regmap_update_bits(regmap, NAU8821_R06_FLL3,
NAU8821_FLL_CLK_SRC_MASK | NAU8821_GAIN_ERR_MASK,
NAU8821_FLL_CLK_SRC_MCLK | 0);
break;
case NAU8821_CLK_FLL_BLK:
/* If FLL reference input is from low frequency source,
* higher error gain can apply such as 0xf which has
* the most sensitive gain error correction threshold,
* Therefore, FLL has the most accurate DCO to
* target frequency.
*/
regmap_update_bits(regmap, NAU8821_R06_FLL3,
NAU8821_FLL_CLK_SRC_MASK | NAU8821_GAIN_ERR_MASK,
NAU8821_FLL_CLK_SRC_BLK |
(0xf << NAU8821_GAIN_ERR_SFT));
break;
case NAU8821_CLK_FLL_FS:
/* If FLL reference input is from low frequency source,
* higher error gain can apply such as 0xf which has
* the most sensitive gain error correction threshold,
* Therefore, FLL has the most accurate DCO to
* target frequency.
*/
regmap_update_bits(regmap, NAU8821_R06_FLL3,
NAU8821_FLL_CLK_SRC_MASK | NAU8821_GAIN_ERR_MASK,
NAU8821_FLL_CLK_SRC_FS |
(0xf << NAU8821_GAIN_ERR_SFT));
break;
default:
dev_err(nau8821->dev, "Invalid clock id (%d)\n", clk_id);
return -EINVAL;
}
nau8821->clk_id = clk_id;
dev_dbg(nau8821->dev, "Sysclk is %dHz and clock id is %d\n", freq,
nau8821->clk_id);
return 0;
}
static int nau8821_set_sysclk(struct snd_soc_component *component, int clk_id,
int source, unsigned int freq, int dir)
{
struct nau8821 *nau8821 = snd_soc_component_get_drvdata(component);
return nau8821_configure_sysclk(nau8821, clk_id, freq);
}
static int nau8821_resume_setup(struct nau8821 *nau8821)
{
struct regmap *regmap = nau8821->regmap;
/* Close clock when jack type detection at manual mode */
nau8821_configure_sysclk(nau8821, NAU8821_CLK_DIS, 0);
if (nau8821->irq) {
/* Clear all interruption status */
nau8821_int_status_clear_all(regmap);
/* Enable both insertion and ejection interruptions, and then
* bypass de-bounce circuit.
*/
regmap_update_bits(regmap, NAU8821_R0F_INTERRUPT_MASK,
NAU8821_IRQ_EJECT_EN | NAU8821_IRQ_INSERT_EN, 0);
regmap_update_bits(regmap, NAU8821_R0D_JACK_DET_CTRL,
NAU8821_JACK_DET_DB_BYPASS,
NAU8821_JACK_DET_DB_BYPASS);
regmap_update_bits(regmap, NAU8821_R12_INTERRUPT_DIS_CTRL,
NAU8821_IRQ_INSERT_DIS | NAU8821_IRQ_EJECT_DIS, 0);
}
return 0;
}
static int nau8821_set_bias_level(struct snd_soc_component *component,
enum snd_soc_bias_level level)
{
struct nau8821 *nau8821 = snd_soc_component_get_drvdata(component);
struct regmap *regmap = nau8821->regmap;
switch (level) {
case SND_SOC_BIAS_ON:
break;
case SND_SOC_BIAS_PREPARE:
break;
case SND_SOC_BIAS_STANDBY:
/* Setup codec configuration after resume */
if (snd_soc_component_get_bias_level(component) ==
SND_SOC_BIAS_OFF)
nau8821_resume_setup(nau8821);
break;
case SND_SOC_BIAS_OFF:
/* HPL/HPR short to ground */
regmap_update_bits(regmap, NAU8821_R0D_JACK_DET_CTRL,
NAU8821_SPKR_DWN1R | NAU8821_SPKR_DWN1L, 0);
if (nau8821->irq) {
/* Reset the configuration of jack type for detection.
* Detach 2kOhm Resistors from MICBIAS to MICGND1/2.
*/
regmap_update_bits(regmap, NAU8821_R74_MIC_BIAS,
NAU8821_MICBIAS_JKR2, 0);
/* Turn off all interruptions before system shutdown.
* Keep theinterruption quiet before resume
* setup completes.
*/
regmap_write(regmap,
NAU8821_R12_INTERRUPT_DIS_CTRL, 0xffff);
regmap_update_bits(regmap, NAU8821_R0F_INTERRUPT_MASK,
NAU8821_IRQ_EJECT_EN | NAU8821_IRQ_INSERT_EN,
NAU8821_IRQ_EJECT_EN | NAU8821_IRQ_INSERT_EN);
}
break;
default:
break;
}
return 0;
}
static int __maybe_unused nau8821_suspend(struct snd_soc_component *component)
{
struct nau8821 *nau8821 = snd_soc_component_get_drvdata(component);
if (nau8821->irq)
disable_irq(nau8821->irq);
snd_soc_component_force_bias_level(component, SND_SOC_BIAS_OFF);
/* Power down codec power; don't support button wakeup */
snd_soc_component_disable_pin(component, "MICBIAS");
snd_soc_dapm_sync(nau8821->dapm);
regcache_cache_only(nau8821->regmap, true);
regcache_mark_dirty(nau8821->regmap);
return 0;
}
static int __maybe_unused nau8821_resume(struct snd_soc_component *component)
{
struct nau8821 *nau8821 = snd_soc_component_get_drvdata(component);
regcache_cache_only(nau8821->regmap, false);
regcache_sync(nau8821->regmap);
if (nau8821->irq)
enable_irq(nau8821->irq);
return 0;
}
static const struct snd_soc_component_driver nau8821_component_driver = {
.probe = nau8821_component_probe,
.set_sysclk = nau8821_set_sysclk,
.set_pll = nau8821_set_fll,
.set_bias_level = nau8821_set_bias_level,
.suspend = nau8821_suspend,
.resume = nau8821_resume,
.controls = nau8821_controls,
.num_controls = ARRAY_SIZE(nau8821_controls),
.dapm_widgets = nau8821_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(nau8821_dapm_widgets),
.dapm_routes = nau8821_dapm_routes,
.num_dapm_routes = ARRAY_SIZE(nau8821_dapm_routes),
.suspend_bias_off = 1,
.idle_bias_on = 1,
.use_pmdown_time = 1,
.endianness = 1,
};
/**
* nau8821_enable_jack_detect - Specify a jack for event reporting
*
* @component: component to register the jack with
* @jack: jack to use to report headset and button events on
*
* After this function has been called the headset insert/remove and button
* events will be routed to the given jack. Jack can be null to stop
* reporting.
*/
int nau8821_enable_jack_detect(struct snd_soc_component *component,
struct snd_soc_jack *jack)
{
struct nau8821 *nau8821 = snd_soc_component_get_drvdata(component);
int ret;
nau8821->jack = jack;
/* Initiate jack detection work queue */
INIT_WORK(&nau8821->jdet_work, nau8821_jdet_work);
ret = devm_request_threaded_irq(nau8821->dev, nau8821->irq, NULL,
nau8821_interrupt, IRQF_TRIGGER_LOW | IRQF_ONESHOT,
"nau8821", nau8821);
if (ret) {
dev_err(nau8821->dev, "Cannot request irq %d (%d)\n",
nau8821->irq, ret);
return ret;
}
return ret;
}
EXPORT_SYMBOL_GPL(nau8821_enable_jack_detect);
static void nau8821_reset_chip(struct regmap *regmap)
{
regmap_write(regmap, NAU8821_R00_RESET, 0xffff);
regmap_write(regmap, NAU8821_R00_RESET, 0xffff);
}
static void nau8821_print_device_properties(struct nau8821 *nau8821)
{
struct device *dev = nau8821->dev;
dev_dbg(dev, "jkdet-enable: %d\n", nau8821->jkdet_enable);
dev_dbg(dev, "jkdet-pull-enable: %d\n", nau8821->jkdet_pull_enable);
dev_dbg(dev, "jkdet-pull-up: %d\n", nau8821->jkdet_pull_up);
dev_dbg(dev, "jkdet-polarity: %d\n", nau8821->jkdet_polarity);
dev_dbg(dev, "micbias-voltage: %d\n", nau8821->micbias_voltage);
dev_dbg(dev, "vref-impedance: %d\n", nau8821->vref_impedance);
dev_dbg(dev, "jack-insert-debounce: %d\n",
nau8821->jack_insert_debounce);
dev_dbg(dev, "jack-eject-debounce: %d\n",
nau8821->jack_eject_debounce);
dev_dbg(dev, "dmic-clk-threshold: %d\n",
nau8821->dmic_clk_threshold);
dev_dbg(dev, "key_enable: %d\n", nau8821->key_enable);
}
static int nau8821_read_device_properties(struct device *dev,
struct nau8821 *nau8821)
{
int ret;
nau8821->jkdet_enable = device_property_read_bool(dev,
"nuvoton,jkdet-enable");
nau8821->jkdet_pull_enable = device_property_read_bool(dev,
"nuvoton,jkdet-pull-enable");
nau8821->jkdet_pull_up = device_property_read_bool(dev,
"nuvoton,jkdet-pull-up");
nau8821->key_enable = device_property_read_bool(dev,
"nuvoton,key-enable");
ret = device_property_read_u32(dev, "nuvoton,jkdet-polarity",
&nau8821->jkdet_polarity);
if (ret)
nau8821->jkdet_polarity = 1;
ret = device_property_read_u32(dev, "nuvoton,micbias-voltage",
&nau8821->micbias_voltage);
if (ret)
nau8821->micbias_voltage = 6;
ret = device_property_read_u32(dev, "nuvoton,vref-impedance",
&nau8821->vref_impedance);
if (ret)
nau8821->vref_impedance = 2;
ret = device_property_read_u32(dev, "nuvoton,jack-insert-debounce",
&nau8821->jack_insert_debounce);
if (ret)
nau8821->jack_insert_debounce = 7;
ret = device_property_read_u32(dev, "nuvoton,jack-eject-debounce",
&nau8821->jack_eject_debounce);
if (ret)
nau8821->jack_eject_debounce = 0;
ret = device_property_read_u32(dev, "nuvoton,dmic-clk-threshold",
&nau8821->dmic_clk_threshold);
if (ret)
nau8821->dmic_clk_threshold = 3072000;
return 0;
}
static void nau8821_init_regs(struct nau8821 *nau8821)
{
struct regmap *regmap = nau8821->regmap;
/* Enable Bias/Vmid */
regmap_update_bits(regmap, NAU8821_R66_BIAS_ADJ,
NAU8821_BIAS_VMID, NAU8821_BIAS_VMID);
regmap_update_bits(regmap, NAU8821_R76_BOOST,
NAU8821_GLOBAL_BIAS_EN, NAU8821_GLOBAL_BIAS_EN);
/* VMID Tieoff setting and enable TESTDAC.
* This sets the analog DAC inputs to a '0' input signal to avoid
* any glitches due to power up transients in both the analog and
* digital DAC circuit.
*/
regmap_update_bits(regmap, NAU8821_R66_BIAS_ADJ,
NAU8821_BIAS_VMID_SEL_MASK | NAU8821_BIAS_TESTDAC_EN,
(nau8821->vref_impedance << NAU8821_BIAS_VMID_SEL_SFT) |
NAU8821_BIAS_TESTDAC_EN);
/* Disable short Frame Sync detection logic */
regmap_update_bits(regmap, NAU8821_R1E_LEFT_TIME_SLOT,
NAU8821_DIS_FS_SHORT_DET, NAU8821_DIS_FS_SHORT_DET);
/* Disable Boost Driver, Automatic Short circuit protection enable */
regmap_update_bits(regmap, NAU8821_R76_BOOST,
NAU8821_PRECHARGE_DIS | NAU8821_HP_BOOST_DIS |
NAU8821_HP_BOOST_G_DIS | NAU8821_SHORT_SHUTDOWN_EN,
NAU8821_PRECHARGE_DIS | NAU8821_HP_BOOST_DIS |
NAU8821_HP_BOOST_G_DIS | NAU8821_SHORT_SHUTDOWN_EN);
/* Class G timer 64ms */
regmap_update_bits(regmap, NAU8821_R4B_CLASSG_CTRL,
NAU8821_CLASSG_TIMER_MASK,
0x20 << NAU8821_CLASSG_TIMER_SFT);
/* Class AB bias current to 2x, DAC Capacitor enable MSB/LSB */
regmap_update_bits(regmap, NAU8821_R6A_ANALOG_CONTROL_2,
NAU8821_HP_NON_CLASSG_CURRENT_2xADJ |
NAU8821_DAC_CAPACITOR_MSB | NAU8821_DAC_CAPACITOR_LSB,
NAU8821_HP_NON_CLASSG_CURRENT_2xADJ |
NAU8821_DAC_CAPACITOR_MSB | NAU8821_DAC_CAPACITOR_LSB);
/* Disable DACR/L power */
regmap_update_bits(regmap, NAU8821_R80_CHARGE_PUMP,
NAU8821_POWER_DOWN_DACR | NAU8821_POWER_DOWN_DACL, 0);
/* DAC clock delay 2ns, VREF */
regmap_update_bits(regmap, NAU8821_R73_RDAC,
NAU8821_DAC_CLK_DELAY_MASK | NAU8821_DAC_VREF_MASK,
(0x2 << NAU8821_DAC_CLK_DELAY_SFT) |
(0x3 << NAU8821_DAC_VREF_SFT));
regmap_update_bits(regmap, NAU8821_R74_MIC_BIAS,
NAU8821_MICBIAS_VOLTAGE_MASK, nau8821->micbias_voltage);
/* Default oversampling/decimations settings are unusable
* (audible hiss). Set it to something better.
*/
regmap_update_bits(regmap, NAU8821_R2B_ADC_RATE,
NAU8821_ADC_SYNC_DOWN_MASK, NAU8821_ADC_SYNC_DOWN_64);
regmap_update_bits(regmap, NAU8821_R2C_DAC_CTRL1,
NAU8821_DAC_OVERSAMPLE_MASK, NAU8821_DAC_OVERSAMPLE_64);
}
static int nau8821_setup_irq(struct nau8821 *nau8821)
{
struct regmap *regmap = nau8821->regmap;
/* Jack detection */
regmap_update_bits(regmap, NAU8821_R1A_GPIO12_CTRL,
NAU8821_JKDET_OUTPUT_EN,
nau8821->jkdet_enable ? 0 : NAU8821_JKDET_OUTPUT_EN);
regmap_update_bits(regmap, NAU8821_R1A_GPIO12_CTRL,
NAU8821_JKDET_PULL_EN,
nau8821->jkdet_pull_enable ? 0 : NAU8821_JKDET_PULL_EN);
regmap_update_bits(regmap, NAU8821_R1A_GPIO12_CTRL,
NAU8821_JKDET_PULL_UP,
nau8821->jkdet_pull_up ? NAU8821_JKDET_PULL_UP : 0);
regmap_update_bits(regmap, NAU8821_R0D_JACK_DET_CTRL,
NAU8821_JACK_POLARITY,
/* jkdet_polarity - 1 is for active-low */
nau8821->jkdet_polarity ? 0 : NAU8821_JACK_POLARITY);
regmap_update_bits(regmap, NAU8821_R0D_JACK_DET_CTRL,
NAU8821_JACK_INSERT_DEBOUNCE_MASK,
nau8821->jack_insert_debounce <<
NAU8821_JACK_INSERT_DEBOUNCE_SFT);
regmap_update_bits(regmap, NAU8821_R0D_JACK_DET_CTRL,
NAU8821_JACK_EJECT_DEBOUNCE_MASK,
nau8821->jack_eject_debounce <<
NAU8821_JACK_EJECT_DEBOUNCE_SFT);
/* Pull up IRQ pin */
regmap_update_bits(regmap, NAU8821_R0F_INTERRUPT_MASK,
NAU8821_IRQ_PIN_PULL_UP | NAU8821_IRQ_PIN_PULL_EN |
NAU8821_IRQ_OUTPUT_EN, NAU8821_IRQ_PIN_PULL_UP |
NAU8821_IRQ_PIN_PULL_EN | NAU8821_IRQ_OUTPUT_EN);
/* Disable interruption before codec initiation done */
/* Mask unneeded IRQs: 1 - disable, 0 - enable */
regmap_update_bits(regmap, NAU8821_R0F_INTERRUPT_MASK, 0x3f5, 0x3f5);
return 0;
}
static int nau8821_i2c_probe(struct i2c_client *i2c)
{
struct device *dev = &i2c->dev;
struct nau8821 *nau8821 = dev_get_platdata(&i2c->dev);
int ret, value;
if (!nau8821) {
nau8821 = devm_kzalloc(dev, sizeof(*nau8821), GFP_KERNEL);
if (!nau8821)
return -ENOMEM;
nau8821_read_device_properties(dev, nau8821);
}
i2c_set_clientdata(i2c, nau8821);
nau8821->regmap = devm_regmap_init_i2c(i2c, &nau8821_regmap_config);
if (IS_ERR(nau8821->regmap))
return PTR_ERR(nau8821->regmap);
nau8821->dev = dev;
nau8821->irq = i2c->irq;
nau8821_print_device_properties(nau8821);
nau8821_reset_chip(nau8821->regmap);
ret = regmap_read(nau8821->regmap, NAU8821_R58_I2C_DEVICE_ID, &value);
if (ret) {
dev_err(dev, "Failed to read device id (%d)\n", ret);
return ret;
}
nau8821_init_regs(nau8821);
if (i2c->irq)
nau8821_setup_irq(nau8821);
ret = devm_snd_soc_register_component(&i2c->dev,
&nau8821_component_driver, &nau8821_dai, 1);
return ret;
}
static const struct i2c_device_id nau8821_i2c_ids[] = {
{ "nau8821", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, nau8821_i2c_ids);
#ifdef CONFIG_OF
static const struct of_device_id nau8821_of_ids[] = {
{ .compatible = "nuvoton,nau8821", },
{}
};
MODULE_DEVICE_TABLE(of, nau8821_of_ids);
#endif
#ifdef CONFIG_ACPI
static const struct acpi_device_id nau8821_acpi_match[] = {
{ "NVTN2020", 0 },
{},
};
MODULE_DEVICE_TABLE(acpi, nau8821_acpi_match);
#endif
static struct i2c_driver nau8821_driver = {
.driver = {
.name = "nau8821",
.of_match_table = of_match_ptr(nau8821_of_ids),
.acpi_match_table = ACPI_PTR(nau8821_acpi_match),
},
.probe_new = nau8821_i2c_probe,
.id_table = nau8821_i2c_ids,
};
module_i2c_driver(nau8821_driver);
MODULE_DESCRIPTION("ASoC nau8821 driver");
MODULE_AUTHOR("John Hsu <kchsu0@nuvoton.com>");
MODULE_AUTHOR("Seven Lee <wtli@nuvoton.com>");
MODULE_LICENSE("GPL");