6c2dc5ae4a
Extract the signature digest for an X.509 certificate earlier, at the end of x509_cert_parse() rather than leaving it to the callers thereof since it has to be called anyway. Further, immediately after that, check the signature on self-signed certificates, also rather in the callers of x509_cert_parse(). We note in the x509_certificate struct the following bits of information: (1) Whether the signature is self-signed (even if we can't check the signature due to missing crypto). (2) Whether the key held in the certificate needs unsupported crypto to be used. We may get a PKCS#7 message with X.509 certs that we can't make use of - we just ignore them and give ENOPKG at the end it we couldn't verify anything if at least one of these unusable certs are in the chain of trust. (3) Whether the signature held in the certificate needs unsupported crypto to be checked. We can still use the key held in this certificate, even if we can't check the signature on it - if it is held in the system trusted keyring, for instance. We just can't add it to a ring of trusted keys or follow it further up the chain of trust. Making these checks earlier allows x509_check_signature() to be removed and replaced with direct calls to public_key_verify_signature(). Signed-off-by: David Howells <dhowells@redhat.com>
444 lines
11 KiB
C
444 lines
11 KiB
C
/* Instantiate a public key crypto key from an X.509 Certificate
|
|
*
|
|
* Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public Licence
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the Licence, or (at your option) any later version.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "X.509: "fmt
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <keys/asymmetric-subtype.h>
|
|
#include <keys/asymmetric-parser.h>
|
|
#include <keys/system_keyring.h>
|
|
#include <crypto/hash.h>
|
|
#include "asymmetric_keys.h"
|
|
#include "x509_parser.h"
|
|
|
|
static bool use_builtin_keys;
|
|
static struct asymmetric_key_id *ca_keyid;
|
|
|
|
#ifndef MODULE
|
|
static struct {
|
|
struct asymmetric_key_id id;
|
|
unsigned char data[10];
|
|
} cakey;
|
|
|
|
static int __init ca_keys_setup(char *str)
|
|
{
|
|
if (!str) /* default system keyring */
|
|
return 1;
|
|
|
|
if (strncmp(str, "id:", 3) == 0) {
|
|
struct asymmetric_key_id *p = &cakey.id;
|
|
size_t hexlen = (strlen(str) - 3) / 2;
|
|
int ret;
|
|
|
|
if (hexlen == 0 || hexlen > sizeof(cakey.data)) {
|
|
pr_err("Missing or invalid ca_keys id\n");
|
|
return 1;
|
|
}
|
|
|
|
ret = __asymmetric_key_hex_to_key_id(str + 3, p, hexlen);
|
|
if (ret < 0)
|
|
pr_err("Unparsable ca_keys id hex string\n");
|
|
else
|
|
ca_keyid = p; /* owner key 'id:xxxxxx' */
|
|
} else if (strcmp(str, "builtin") == 0) {
|
|
use_builtin_keys = true;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
__setup("ca_keys=", ca_keys_setup);
|
|
#endif
|
|
|
|
/**
|
|
* x509_request_asymmetric_key - Request a key by X.509 certificate params.
|
|
* @keyring: The keys to search.
|
|
* @id: The issuer & serialNumber to look for or NULL.
|
|
* @skid: The subjectKeyIdentifier to look for or NULL.
|
|
* @partial: Use partial match if true, exact if false.
|
|
*
|
|
* Find a key in the given keyring by identifier. The preferred identifier is
|
|
* the issuer + serialNumber and the fallback identifier is the
|
|
* subjectKeyIdentifier. If both are given, the lookup is by the former, but
|
|
* the latter must also match.
|
|
*/
|
|
struct key *x509_request_asymmetric_key(struct key *keyring,
|
|
const struct asymmetric_key_id *id,
|
|
const struct asymmetric_key_id *skid,
|
|
bool partial)
|
|
{
|
|
struct key *key;
|
|
key_ref_t ref;
|
|
const char *lookup;
|
|
char *req, *p;
|
|
int len;
|
|
|
|
if (id) {
|
|
lookup = id->data;
|
|
len = id->len;
|
|
} else {
|
|
lookup = skid->data;
|
|
len = skid->len;
|
|
}
|
|
|
|
/* Construct an identifier "id:<keyid>". */
|
|
p = req = kmalloc(2 + 1 + len * 2 + 1, GFP_KERNEL);
|
|
if (!req)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (partial) {
|
|
*p++ = 'i';
|
|
*p++ = 'd';
|
|
} else {
|
|
*p++ = 'e';
|
|
*p++ = 'x';
|
|
}
|
|
*p++ = ':';
|
|
p = bin2hex(p, lookup, len);
|
|
*p = 0;
|
|
|
|
pr_debug("Look up: \"%s\"\n", req);
|
|
|
|
ref = keyring_search(make_key_ref(keyring, 1),
|
|
&key_type_asymmetric, req);
|
|
if (IS_ERR(ref))
|
|
pr_debug("Request for key '%s' err %ld\n", req, PTR_ERR(ref));
|
|
kfree(req);
|
|
|
|
if (IS_ERR(ref)) {
|
|
switch (PTR_ERR(ref)) {
|
|
/* Hide some search errors */
|
|
case -EACCES:
|
|
case -ENOTDIR:
|
|
case -EAGAIN:
|
|
return ERR_PTR(-ENOKEY);
|
|
default:
|
|
return ERR_CAST(ref);
|
|
}
|
|
}
|
|
|
|
key = key_ref_to_ptr(ref);
|
|
if (id && skid) {
|
|
const struct asymmetric_key_ids *kids = asymmetric_key_ids(key);
|
|
if (!kids->id[1]) {
|
|
pr_debug("issuer+serial match, but expected SKID missing\n");
|
|
goto reject;
|
|
}
|
|
if (!asymmetric_key_id_same(skid, kids->id[1])) {
|
|
pr_debug("issuer+serial match, but SKID does not\n");
|
|
goto reject;
|
|
}
|
|
}
|
|
|
|
pr_devel("<==%s() = 0 [%x]\n", __func__, key_serial(key));
|
|
return key;
|
|
|
|
reject:
|
|
key_put(key);
|
|
return ERR_PTR(-EKEYREJECTED);
|
|
}
|
|
EXPORT_SYMBOL_GPL(x509_request_asymmetric_key);
|
|
|
|
/*
|
|
* Set up the signature parameters in an X.509 certificate. This involves
|
|
* digesting the signed data and extracting the signature.
|
|
*/
|
|
int x509_get_sig_params(struct x509_certificate *cert)
|
|
{
|
|
struct public_key_signature *sig = cert->sig;
|
|
struct crypto_shash *tfm;
|
|
struct shash_desc *desc;
|
|
size_t desc_size;
|
|
int ret;
|
|
|
|
pr_devel("==>%s()\n", __func__);
|
|
|
|
if (!cert->pub->pkey_algo)
|
|
cert->unsupported_key = true;
|
|
|
|
if (!sig->pkey_algo)
|
|
cert->unsupported_sig = true;
|
|
|
|
/* We check the hash if we can - even if we can't then verify it */
|
|
if (!sig->hash_algo) {
|
|
cert->unsupported_sig = true;
|
|
return 0;
|
|
}
|
|
|
|
sig->s = kmemdup(cert->raw_sig, cert->raw_sig_size, GFP_KERNEL);
|
|
if (!sig->s)
|
|
return -ENOMEM;
|
|
|
|
sig->s_size = cert->raw_sig_size;
|
|
|
|
/* Allocate the hashing algorithm we're going to need and find out how
|
|
* big the hash operational data will be.
|
|
*/
|
|
tfm = crypto_alloc_shash(sig->hash_algo, 0, 0);
|
|
if (IS_ERR(tfm)) {
|
|
if (PTR_ERR(tfm) == -ENOENT) {
|
|
cert->unsupported_sig = true;
|
|
return 0;
|
|
}
|
|
return PTR_ERR(tfm);
|
|
}
|
|
|
|
desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
|
|
sig->digest_size = crypto_shash_digestsize(tfm);
|
|
|
|
ret = -ENOMEM;
|
|
sig->digest = kmalloc(sig->digest_size, GFP_KERNEL);
|
|
if (!sig->digest)
|
|
goto error;
|
|
|
|
desc = kzalloc(desc_size, GFP_KERNEL);
|
|
if (!desc)
|
|
goto error;
|
|
|
|
desc->tfm = tfm;
|
|
desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
|
|
|
|
ret = crypto_shash_init(desc);
|
|
if (ret < 0)
|
|
goto error_2;
|
|
might_sleep();
|
|
ret = crypto_shash_finup(desc, cert->tbs, cert->tbs_size, sig->digest);
|
|
|
|
error_2:
|
|
kfree(desc);
|
|
error:
|
|
crypto_free_shash(tfm);
|
|
pr_devel("<==%s() = %d\n", __func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Check for self-signedness in an X.509 cert and if found, check the signature
|
|
* immediately if we can.
|
|
*/
|
|
int x509_check_for_self_signed(struct x509_certificate *cert)
|
|
{
|
|
int ret = 0;
|
|
|
|
pr_devel("==>%s()\n", __func__);
|
|
|
|
if (cert->sig->auth_ids[0] || cert->sig->auth_ids[1]) {
|
|
/* If the AKID is present it may have one or two parts. If
|
|
* both are supplied, both must match.
|
|
*/
|
|
bool a = asymmetric_key_id_same(cert->skid, cert->sig->auth_ids[1]);
|
|
bool b = asymmetric_key_id_same(cert->id, cert->sig->auth_ids[0]);
|
|
|
|
if (!a && !b)
|
|
goto not_self_signed;
|
|
|
|
ret = -EKEYREJECTED;
|
|
if (((a && !b) || (b && !a)) &&
|
|
cert->sig->auth_ids[0] && cert->sig->auth_ids[1])
|
|
goto out;
|
|
}
|
|
|
|
ret = public_key_verify_signature(cert->pub, cert->sig);
|
|
if (ret < 0) {
|
|
if (ret == -ENOPKG) {
|
|
cert->unsupported_sig = true;
|
|
ret = 0;
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
pr_devel("Cert Self-signature verified");
|
|
cert->self_signed = true;
|
|
|
|
out:
|
|
pr_devel("<==%s() = %d\n", __func__, ret);
|
|
return ret;
|
|
|
|
not_self_signed:
|
|
pr_devel("<==%s() = 0 [not]\n", __func__);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check the new certificate against the ones in the trust keyring. If one of
|
|
* those is the signing key and validates the new certificate, then mark the
|
|
* new certificate as being trusted.
|
|
*
|
|
* Return 0 if the new certificate was successfully validated, 1 if we couldn't
|
|
* find a matching parent certificate in the trusted list and an error if there
|
|
* is a matching certificate but the signature check fails.
|
|
*/
|
|
static int x509_validate_trust(struct x509_certificate *cert,
|
|
struct key *trust_keyring)
|
|
{
|
|
struct public_key_signature *sig = cert->sig;
|
|
struct key *key;
|
|
int ret = 1;
|
|
|
|
if (!sig->auth_ids[0] && !sig->auth_ids[1])
|
|
return 1;
|
|
|
|
if (!trust_keyring)
|
|
return -EOPNOTSUPP;
|
|
if (ca_keyid && !asymmetric_key_id_partial(sig->auth_ids[1], ca_keyid))
|
|
return -EPERM;
|
|
if (cert->unsupported_sig)
|
|
return -ENOPKG;
|
|
|
|
key = x509_request_asymmetric_key(trust_keyring,
|
|
sig->auth_ids[0], sig->auth_ids[1],
|
|
false);
|
|
if (IS_ERR(key))
|
|
return PTR_ERR(key);
|
|
|
|
if (!use_builtin_keys ||
|
|
test_bit(KEY_FLAG_BUILTIN, &key->flags)) {
|
|
ret = public_key_verify_signature(
|
|
key->payload.data[asym_crypto], cert->sig);
|
|
if (ret == -ENOPKG)
|
|
cert->unsupported_sig = true;
|
|
}
|
|
key_put(key);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Attempt to parse a data blob for a key as an X509 certificate.
|
|
*/
|
|
static int x509_key_preparse(struct key_preparsed_payload *prep)
|
|
{
|
|
struct asymmetric_key_ids *kids;
|
|
struct x509_certificate *cert;
|
|
const char *q;
|
|
size_t srlen, sulen;
|
|
char *desc = NULL, *p;
|
|
int ret;
|
|
|
|
cert = x509_cert_parse(prep->data, prep->datalen);
|
|
if (IS_ERR(cert))
|
|
return PTR_ERR(cert);
|
|
|
|
pr_devel("Cert Issuer: %s\n", cert->issuer);
|
|
pr_devel("Cert Subject: %s\n", cert->subject);
|
|
|
|
if (cert->unsupported_key) {
|
|
ret = -ENOPKG;
|
|
goto error_free_cert;
|
|
}
|
|
|
|
pr_devel("Cert Key Algo: %s\n", cert->pub->pkey_algo);
|
|
pr_devel("Cert Valid period: %lld-%lld\n", cert->valid_from, cert->valid_to);
|
|
|
|
cert->pub->id_type = "X509";
|
|
|
|
/* See if we can derive the trustability of this certificate.
|
|
*
|
|
* When it comes to self-signed certificates, we cannot evaluate
|
|
* trustedness except by the fact that we obtained it from a trusted
|
|
* location. So we just rely on x509_validate_trust() failing in this
|
|
* case.
|
|
*
|
|
* Note that there's a possibility of a self-signed cert matching a
|
|
* cert that we have (most likely a duplicate that we already trust) -
|
|
* in which case it will be marked trusted.
|
|
*/
|
|
if (cert->unsupported_sig || cert->self_signed) {
|
|
public_key_signature_free(cert->sig);
|
|
cert->sig = NULL;
|
|
} else {
|
|
pr_devel("Cert Signature: %s + %s\n",
|
|
cert->sig->pkey_algo, cert->sig->hash_algo);
|
|
|
|
ret = x509_validate_trust(cert, get_system_trusted_keyring());
|
|
if (ret)
|
|
ret = x509_validate_trust(cert, get_ima_mok_keyring());
|
|
if (ret == -EKEYREJECTED)
|
|
goto error_free_cert;
|
|
if (!ret)
|
|
prep->trusted = true;
|
|
}
|
|
|
|
/* Propose a description */
|
|
sulen = strlen(cert->subject);
|
|
if (cert->raw_skid) {
|
|
srlen = cert->raw_skid_size;
|
|
q = cert->raw_skid;
|
|
} else {
|
|
srlen = cert->raw_serial_size;
|
|
q = cert->raw_serial;
|
|
}
|
|
|
|
ret = -ENOMEM;
|
|
desc = kmalloc(sulen + 2 + srlen * 2 + 1, GFP_KERNEL);
|
|
if (!desc)
|
|
goto error_free_cert;
|
|
p = memcpy(desc, cert->subject, sulen);
|
|
p += sulen;
|
|
*p++ = ':';
|
|
*p++ = ' ';
|
|
p = bin2hex(p, q, srlen);
|
|
*p = 0;
|
|
|
|
kids = kmalloc(sizeof(struct asymmetric_key_ids), GFP_KERNEL);
|
|
if (!kids)
|
|
goto error_free_desc;
|
|
kids->id[0] = cert->id;
|
|
kids->id[1] = cert->skid;
|
|
|
|
/* We're pinning the module by being linked against it */
|
|
__module_get(public_key_subtype.owner);
|
|
prep->payload.data[asym_subtype] = &public_key_subtype;
|
|
prep->payload.data[asym_key_ids] = kids;
|
|
prep->payload.data[asym_crypto] = cert->pub;
|
|
prep->payload.data[asym_auth] = cert->sig;
|
|
prep->description = desc;
|
|
prep->quotalen = 100;
|
|
|
|
/* We've finished with the certificate */
|
|
cert->pub = NULL;
|
|
cert->id = NULL;
|
|
cert->skid = NULL;
|
|
cert->sig = NULL;
|
|
desc = NULL;
|
|
ret = 0;
|
|
|
|
error_free_desc:
|
|
kfree(desc);
|
|
error_free_cert:
|
|
x509_free_certificate(cert);
|
|
return ret;
|
|
}
|
|
|
|
static struct asymmetric_key_parser x509_key_parser = {
|
|
.owner = THIS_MODULE,
|
|
.name = "x509",
|
|
.parse = x509_key_preparse,
|
|
};
|
|
|
|
/*
|
|
* Module stuff
|
|
*/
|
|
static int __init x509_key_init(void)
|
|
{
|
|
return register_asymmetric_key_parser(&x509_key_parser);
|
|
}
|
|
|
|
static void __exit x509_key_exit(void)
|
|
{
|
|
unregister_asymmetric_key_parser(&x509_key_parser);
|
|
}
|
|
|
|
module_init(x509_key_init);
|
|
module_exit(x509_key_exit);
|
|
|
|
MODULE_DESCRIPTION("X.509 certificate parser");
|
|
MODULE_LICENSE("GPL");
|