2ca3129e80
Separate the macros for KVM's shadow PTEs (SPTE) from guest 64-bit PTEs (PT64). SPTE and PT64 are _mostly_ the same, but the few differences are quite critical, e.g. *_BASE_ADDR_MASK must differentiate between host and guest physical address spaces, and SPTE_PERM_MASK (was PT64_PERM_MASK) is very much specific to SPTEs. Opportunistically (and temporarily) move most guest macros into paging.h to clearly associate them with shadow paging, and to ensure that they're not used as of this commit. A future patch will eliminate them entirely. Sadly, PT32_LEVEL_BITS is left behind in mmu_internal.h because it's needed for the quadrant calculation in kvm_mmu_get_page(). The quadrant calculation is hot enough (when using shadow paging with 32-bit guests) that adding a per-context helper is undesirable, and burying the computation in paging_tmpl.h with a forward declaration isn't exactly an improvement. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20220614233328.3896033-6-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
280 lines
8.7 KiB
C
280 lines
8.7 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef __KVM_X86_MMU_H
|
|
#define __KVM_X86_MMU_H
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include "kvm_cache_regs.h"
|
|
#include "cpuid.h"
|
|
|
|
#define PT_WRITABLE_SHIFT 1
|
|
#define PT_USER_SHIFT 2
|
|
|
|
#define PT_PRESENT_MASK (1ULL << 0)
|
|
#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
|
|
#define PT_USER_MASK (1ULL << PT_USER_SHIFT)
|
|
#define PT_PWT_MASK (1ULL << 3)
|
|
#define PT_PCD_MASK (1ULL << 4)
|
|
#define PT_ACCESSED_SHIFT 5
|
|
#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
|
|
#define PT_DIRTY_SHIFT 6
|
|
#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
|
|
#define PT_PAGE_SIZE_SHIFT 7
|
|
#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
|
|
#define PT_PAT_MASK (1ULL << 7)
|
|
#define PT_GLOBAL_MASK (1ULL << 8)
|
|
#define PT64_NX_SHIFT 63
|
|
#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
|
|
|
|
#define PT_PAT_SHIFT 7
|
|
#define PT_DIR_PAT_SHIFT 12
|
|
#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
|
|
|
|
#define PT64_ROOT_5LEVEL 5
|
|
#define PT64_ROOT_4LEVEL 4
|
|
#define PT32_ROOT_LEVEL 2
|
|
#define PT32E_ROOT_LEVEL 3
|
|
|
|
#define KVM_MMU_CR4_ROLE_BITS (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_LA57 | \
|
|
X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE)
|
|
|
|
#define KVM_MMU_CR0_ROLE_BITS (X86_CR0_PG | X86_CR0_WP)
|
|
#define KVM_MMU_EFER_ROLE_BITS (EFER_LME | EFER_NX)
|
|
|
|
static __always_inline u64 rsvd_bits(int s, int e)
|
|
{
|
|
BUILD_BUG_ON(__builtin_constant_p(e) && __builtin_constant_p(s) && e < s);
|
|
|
|
if (__builtin_constant_p(e))
|
|
BUILD_BUG_ON(e > 63);
|
|
else
|
|
e &= 63;
|
|
|
|
if (e < s)
|
|
return 0;
|
|
|
|
return ((2ULL << (e - s)) - 1) << s;
|
|
}
|
|
|
|
/*
|
|
* The number of non-reserved physical address bits irrespective of features
|
|
* that repurpose legal bits, e.g. MKTME.
|
|
*/
|
|
extern u8 __read_mostly shadow_phys_bits;
|
|
|
|
static inline gfn_t kvm_mmu_max_gfn(void)
|
|
{
|
|
/*
|
|
* Note that this uses the host MAXPHYADDR, not the guest's.
|
|
* EPT/NPT cannot support GPAs that would exceed host.MAXPHYADDR;
|
|
* assuming KVM is running on bare metal, guest accesses beyond
|
|
* host.MAXPHYADDR will hit a #PF(RSVD) and never cause a vmexit
|
|
* (either EPT Violation/Misconfig or #NPF), and so KVM will never
|
|
* install a SPTE for such addresses. If KVM is running as a VM
|
|
* itself, on the other hand, it might see a MAXPHYADDR that is less
|
|
* than hardware's real MAXPHYADDR. Using the host MAXPHYADDR
|
|
* disallows such SPTEs entirely and simplifies the TDP MMU.
|
|
*/
|
|
int max_gpa_bits = likely(tdp_enabled) ? shadow_phys_bits : 52;
|
|
|
|
return (1ULL << (max_gpa_bits - PAGE_SHIFT)) - 1;
|
|
}
|
|
|
|
static inline u8 kvm_get_shadow_phys_bits(void)
|
|
{
|
|
/*
|
|
* boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
|
|
* in CPU detection code, but the processor treats those reduced bits as
|
|
* 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
|
|
* the physical address bits reported by CPUID.
|
|
*/
|
|
if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
|
|
return cpuid_eax(0x80000008) & 0xff;
|
|
|
|
/*
|
|
* Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
|
|
* custom CPUID. Proceed with whatever the kernel found since these features
|
|
* aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
|
|
*/
|
|
return boot_cpu_data.x86_phys_bits;
|
|
}
|
|
|
|
void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask);
|
|
void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask);
|
|
void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only);
|
|
|
|
void kvm_init_mmu(struct kvm_vcpu *vcpu);
|
|
void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
|
|
unsigned long cr4, u64 efer, gpa_t nested_cr3);
|
|
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
|
|
int huge_page_level, bool accessed_dirty,
|
|
gpa_t new_eptp);
|
|
bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
|
|
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
|
|
u64 fault_address, char *insn, int insn_len);
|
|
|
|
int kvm_mmu_load(struct kvm_vcpu *vcpu);
|
|
void kvm_mmu_unload(struct kvm_vcpu *vcpu);
|
|
void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu);
|
|
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
|
|
void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu);
|
|
|
|
static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (likely(vcpu->arch.mmu->root.hpa != INVALID_PAGE))
|
|
return 0;
|
|
|
|
return kvm_mmu_load(vcpu);
|
|
}
|
|
|
|
static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
|
|
{
|
|
BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
|
|
|
|
return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)
|
|
? cr3 & X86_CR3_PCID_MASK
|
|
: 0;
|
|
}
|
|
|
|
static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
|
|
{
|
|
return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
|
|
}
|
|
|
|
static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 root_hpa = vcpu->arch.mmu->root.hpa;
|
|
|
|
if (!VALID_PAGE(root_hpa))
|
|
return;
|
|
|
|
static_call(kvm_x86_load_mmu_pgd)(vcpu, root_hpa,
|
|
vcpu->arch.mmu->root_role.level);
|
|
}
|
|
|
|
/*
|
|
* Check if a given access (described through the I/D, W/R and U/S bits of a
|
|
* page fault error code pfec) causes a permission fault with the given PTE
|
|
* access rights (in ACC_* format).
|
|
*
|
|
* Return zero if the access does not fault; return the page fault error code
|
|
* if the access faults.
|
|
*/
|
|
static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
|
|
unsigned pte_access, unsigned pte_pkey,
|
|
u64 access)
|
|
{
|
|
/* strip nested paging fault error codes */
|
|
unsigned int pfec = access;
|
|
unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
|
|
|
|
/*
|
|
* For explicit supervisor accesses, SMAP is disabled if EFLAGS.AC = 1.
|
|
* For implicit supervisor accesses, SMAP cannot be overridden.
|
|
*
|
|
* SMAP works on supervisor accesses only, and not_smap can
|
|
* be set or not set when user access with neither has any bearing
|
|
* on the result.
|
|
*
|
|
* We put the SMAP checking bit in place of the PFERR_RSVD_MASK bit;
|
|
* this bit will always be zero in pfec, but it will be one in index
|
|
* if SMAP checks are being disabled.
|
|
*/
|
|
u64 implicit_access = access & PFERR_IMPLICIT_ACCESS;
|
|
bool not_smap = ((rflags & X86_EFLAGS_AC) | implicit_access) == X86_EFLAGS_AC;
|
|
int index = (pfec + (not_smap << PFERR_RSVD_BIT)) >> 1;
|
|
bool fault = (mmu->permissions[index] >> pte_access) & 1;
|
|
u32 errcode = PFERR_PRESENT_MASK;
|
|
|
|
WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
|
|
if (unlikely(mmu->pkru_mask)) {
|
|
u32 pkru_bits, offset;
|
|
|
|
/*
|
|
* PKRU defines 32 bits, there are 16 domains and 2
|
|
* attribute bits per domain in pkru. pte_pkey is the
|
|
* index of the protection domain, so pte_pkey * 2 is
|
|
* is the index of the first bit for the domain.
|
|
*/
|
|
pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
|
|
|
|
/* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
|
|
offset = (pfec & ~1) +
|
|
((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
|
|
|
|
pkru_bits &= mmu->pkru_mask >> offset;
|
|
errcode |= -pkru_bits & PFERR_PK_MASK;
|
|
fault |= (pkru_bits != 0);
|
|
}
|
|
|
|
return -(u32)fault & errcode;
|
|
}
|
|
|
|
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
|
|
|
|
int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
|
|
|
|
int kvm_mmu_post_init_vm(struct kvm *kvm);
|
|
void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
|
|
|
|
static inline bool kvm_shadow_root_allocated(struct kvm *kvm)
|
|
{
|
|
/*
|
|
* Read shadow_root_allocated before related pointers. Hence, threads
|
|
* reading shadow_root_allocated in any lock context are guaranteed to
|
|
* see the pointers. Pairs with smp_store_release in
|
|
* mmu_first_shadow_root_alloc.
|
|
*/
|
|
return smp_load_acquire(&kvm->arch.shadow_root_allocated);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
static inline bool is_tdp_mmu_enabled(struct kvm *kvm) { return kvm->arch.tdp_mmu_enabled; }
|
|
#else
|
|
static inline bool is_tdp_mmu_enabled(struct kvm *kvm) { return false; }
|
|
#endif
|
|
|
|
static inline bool kvm_memslots_have_rmaps(struct kvm *kvm)
|
|
{
|
|
return !is_tdp_mmu_enabled(kvm) || kvm_shadow_root_allocated(kvm);
|
|
}
|
|
|
|
static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)
|
|
{
|
|
/* KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K) must be 0. */
|
|
return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
|
|
(base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
|
|
}
|
|
|
|
static inline unsigned long
|
|
__kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, unsigned long npages,
|
|
int level)
|
|
{
|
|
return gfn_to_index(slot->base_gfn + npages - 1,
|
|
slot->base_gfn, level) + 1;
|
|
}
|
|
|
|
static inline unsigned long
|
|
kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, int level)
|
|
{
|
|
return __kvm_mmu_slot_lpages(slot, slot->npages, level);
|
|
}
|
|
|
|
static inline void kvm_update_page_stats(struct kvm *kvm, int level, int count)
|
|
{
|
|
atomic64_add(count, &kvm->stat.pages[level - 1]);
|
|
}
|
|
|
|
gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
|
|
struct x86_exception *exception);
|
|
|
|
static inline gpa_t kvm_translate_gpa(struct kvm_vcpu *vcpu,
|
|
struct kvm_mmu *mmu,
|
|
gpa_t gpa, u64 access,
|
|
struct x86_exception *exception)
|
|
{
|
|
if (mmu != &vcpu->arch.nested_mmu)
|
|
return gpa;
|
|
return translate_nested_gpa(vcpu, gpa, access, exception);
|
|
}
|
|
#endif
|