linux/drivers/mtd/nand/raw/orion_nand.c
Miquel Raynal 194ac63de6 mtd: rawnand: orion: Keep the driver compatible with on-die ECC engines
Following the introduction of the generic ECC engine infrastructure, it
was necessary to reorganize the code and move the ECC configuration in
the ->attach_chip() hook. Failing to do that properly lead to a first
series of fixes supposed to stabilize the situation. Unfortunately, this
only fixed the use of software ECC engines, preventing any other kind of
engine to be used, including on-die ones.

It is now time to (finally) fix the situation by ensuring that we still
provide a default (eg. software ECC) but will still support different
ECC engines such as on-die ECC engines if properly described in the
device tree.

There are no changes needed on the core side in order to do this, but we
just need to leverage the logic there which allows:
1- a subsystem default (set to Host engines in the raw NAND world)
2- a driver specific default (here set to software ECC engines)
3- any type of engine requested by the user (ie. described in the DT)

As the raw NAND subsystem has not yet been fully converted to the ECC
engine infrastructure, in order to provide a default ECC engine for this
driver we need to set chip->ecc.engine_type *before* calling
nand_scan(). During the initialization step, the core will consider this
entry as the default engine for this driver. This value may of course
be overloaded by the user if the usual DT properties are provided.

Fixes: 553508cec2e8 ("mtd: rawnand: orion: Move the ECC initialization to ->attach_chip()")
Cc: stable@vger.kernel.org
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20210928222258.199726-6-miquel.raynal@bootlin.com
2021-10-15 12:21:22 +02:00

255 lines
5.9 KiB
C

/*
* NAND support for Marvell Orion SoC platforms
*
* Tzachi Perelstein <tzachi@marvell.com>
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/partitions.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/sizes.h>
#include <linux/platform_data/mtd-orion_nand.h>
struct orion_nand_info {
struct nand_controller controller;
struct nand_chip chip;
struct clk *clk;
};
static void orion_nand_cmd_ctrl(struct nand_chip *nc, int cmd,
unsigned int ctrl)
{
struct orion_nand_data *board = nand_get_controller_data(nc);
u32 offs;
if (cmd == NAND_CMD_NONE)
return;
if (ctrl & NAND_CLE)
offs = (1 << board->cle);
else if (ctrl & NAND_ALE)
offs = (1 << board->ale);
else
return;
if (nc->options & NAND_BUSWIDTH_16)
offs <<= 1;
writeb(cmd, nc->legacy.IO_ADDR_W + offs);
}
static void orion_nand_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
{
void __iomem *io_base = chip->legacy.IO_ADDR_R;
#if defined(__LINUX_ARM_ARCH__) && __LINUX_ARM_ARCH__ >= 5
uint64_t *buf64;
#endif
int i = 0;
while (len && (unsigned long)buf & 7) {
*buf++ = readb(io_base);
len--;
}
#if defined(__LINUX_ARM_ARCH__) && __LINUX_ARM_ARCH__ >= 5
buf64 = (uint64_t *)buf;
while (i < len/8) {
/*
* Since GCC has no proper constraint (PR 43518)
* force x variable to r2/r3 registers as ldrd instruction
* requires first register to be even.
*/
register uint64_t x asm ("r2");
asm volatile ("ldrd\t%0, [%1]" : "=&r" (x) : "r" (io_base));
buf64[i++] = x;
}
i *= 8;
#else
readsl(io_base, buf, len/4);
i = len / 4 * 4;
#endif
while (i < len)
buf[i++] = readb(io_base);
}
static int orion_nand_attach_chip(struct nand_chip *chip)
{
if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN)
chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
return 0;
}
static const struct nand_controller_ops orion_nand_ops = {
.attach_chip = orion_nand_attach_chip,
};
static int __init orion_nand_probe(struct platform_device *pdev)
{
struct orion_nand_info *info;
struct mtd_info *mtd;
struct nand_chip *nc;
struct orion_nand_data *board;
struct resource *res;
void __iomem *io_base;
int ret = 0;
u32 val = 0;
info = devm_kzalloc(&pdev->dev,
sizeof(struct orion_nand_info),
GFP_KERNEL);
if (!info)
return -ENOMEM;
nc = &info->chip;
mtd = nand_to_mtd(nc);
nand_controller_init(&info->controller);
info->controller.ops = &orion_nand_ops;
nc->controller = &info->controller;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
io_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(io_base))
return PTR_ERR(io_base);
if (pdev->dev.of_node) {
board = devm_kzalloc(&pdev->dev, sizeof(struct orion_nand_data),
GFP_KERNEL);
if (!board)
return -ENOMEM;
if (!of_property_read_u32(pdev->dev.of_node, "cle", &val))
board->cle = (u8)val;
else
board->cle = 0;
if (!of_property_read_u32(pdev->dev.of_node, "ale", &val))
board->ale = (u8)val;
else
board->ale = 1;
if (!of_property_read_u32(pdev->dev.of_node,
"bank-width", &val))
board->width = (u8)val * 8;
else
board->width = 8;
if (!of_property_read_u32(pdev->dev.of_node,
"chip-delay", &val))
board->chip_delay = (u8)val;
} else {
board = dev_get_platdata(&pdev->dev);
}
mtd->dev.parent = &pdev->dev;
nand_set_controller_data(nc, board);
nand_set_flash_node(nc, pdev->dev.of_node);
nc->legacy.IO_ADDR_R = nc->legacy.IO_ADDR_W = io_base;
nc->legacy.cmd_ctrl = orion_nand_cmd_ctrl;
nc->legacy.read_buf = orion_nand_read_buf;
if (board->chip_delay)
nc->legacy.chip_delay = board->chip_delay;
WARN(board->width > 16,
"%d bit bus width out of range",
board->width);
if (board->width == 16)
nc->options |= NAND_BUSWIDTH_16;
platform_set_drvdata(pdev, info);
/* Not all platforms can gate the clock, so it is not
an error if the clock does not exists. */
info->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(info->clk)) {
ret = PTR_ERR(info->clk);
if (ret == -ENOENT) {
info->clk = NULL;
} else {
dev_err(&pdev->dev, "failed to get clock!\n");
return ret;
}
}
ret = clk_prepare_enable(info->clk);
if (ret) {
dev_err(&pdev->dev, "failed to prepare clock!\n");
return ret;
}
/*
* This driver assumes that the default ECC engine should be TYPE_SOFT.
* Set ->engine_type before registering the NAND devices in order to
* provide a driver specific default value.
*/
nc->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
ret = nand_scan(nc, 1);
if (ret)
goto no_dev;
mtd->name = "orion_nand";
ret = mtd_device_register(mtd, board->parts, board->nr_parts);
if (ret) {
nand_cleanup(nc);
goto no_dev;
}
return 0;
no_dev:
clk_disable_unprepare(info->clk);
return ret;
}
static int orion_nand_remove(struct platform_device *pdev)
{
struct orion_nand_info *info = platform_get_drvdata(pdev);
struct nand_chip *chip = &info->chip;
int ret;
ret = mtd_device_unregister(nand_to_mtd(chip));
WARN_ON(ret);
nand_cleanup(chip);
clk_disable_unprepare(info->clk);
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id orion_nand_of_match_table[] = {
{ .compatible = "marvell,orion-nand", },
{},
};
MODULE_DEVICE_TABLE(of, orion_nand_of_match_table);
#endif
static struct platform_driver orion_nand_driver = {
.remove = orion_nand_remove,
.driver = {
.name = "orion_nand",
.of_match_table = of_match_ptr(orion_nand_of_match_table),
},
};
module_platform_driver_probe(orion_nand_driver, orion_nand_probe);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Tzachi Perelstein");
MODULE_DESCRIPTION("NAND glue for Orion platforms");
MODULE_ALIAS("platform:orion_nand");