linux/drivers/misc/habanalabs/gaudi/gaudi_coresight.c
Omer Shpigelman 79fc7a9fff habanalabs: add gaudi profiler module
Add the GAUDI code to initialize the ASIC's profiler. The profile receives
its initialization values from the user, same as in Goya, but the code to
initialize is in the driver because the configuration space of the
device is not directly exposed to the user.

Signed-off-by: Omer Shpigelman <oshpigelman@habana.ai>
Reviewed-by: Oded Gabbay <oded.gabbay@gmail.com>
Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com>
2020-05-19 14:48:41 +03:00

885 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2016-2018 HabanaLabs, Ltd.
* All Rights Reserved.
*/
#include "gaudiP.h"
#include "include/gaudi/gaudi_coresight.h"
#include "include/gaudi/asic_reg/gaudi_regs.h"
#include "include/gaudi/gaudi_masks.h"
#include <uapi/misc/habanalabs.h>
#include <linux/coresight.h>
#define SPMU_SECTION_SIZE MME0_ACC_SPMU_MAX_OFFSET
#define SPMU_EVENT_TYPES_OFFSET 0x400
#define SPMU_MAX_COUNTERS 6
static u64 debug_stm_regs[GAUDI_STM_LAST + 1] = {
[GAUDI_STM_MME0_ACC] = mmMME0_ACC_STM_BASE,
[GAUDI_STM_MME0_SBAB] = mmMME0_SBAB_STM_BASE,
[GAUDI_STM_MME0_CTRL] = mmMME0_CTRL_STM_BASE,
[GAUDI_STM_MME1_ACC] = mmMME1_ACC_STM_BASE,
[GAUDI_STM_MME1_SBAB] = mmMME1_SBAB_STM_BASE,
[GAUDI_STM_MME1_CTRL] = mmMME1_CTRL_STM_BASE,
[GAUDI_STM_MME2_ACC] = mmMME2_ACC_STM_BASE,
[GAUDI_STM_MME2_SBAB] = mmMME2_SBAB_STM_BASE,
[GAUDI_STM_MME2_CTRL] = mmMME2_CTRL_STM_BASE,
[GAUDI_STM_MME3_ACC] = mmMME3_ACC_STM_BASE,
[GAUDI_STM_MME3_SBAB] = mmMME3_SBAB_STM_BASE,
[GAUDI_STM_MME3_CTRL] = mmMME3_CTRL_STM_BASE,
[GAUDI_STM_DMA_IF_W_S] = mmDMA_IF_W_S_STM_BASE,
[GAUDI_STM_DMA_IF_E_S] = mmDMA_IF_E_S_STM_BASE,
[GAUDI_STM_DMA_IF_W_N] = mmDMA_IF_W_N_STM_BASE,
[GAUDI_STM_DMA_IF_E_N] = mmDMA_IF_E_N_STM_BASE,
[GAUDI_STM_CPU] = mmCPU_STM_BASE,
[GAUDI_STM_DMA_CH_0_CS] = mmDMA_CH_0_CS_STM_BASE,
[GAUDI_STM_DMA_CH_1_CS] = mmDMA_CH_1_CS_STM_BASE,
[GAUDI_STM_DMA_CH_2_CS] = mmDMA_CH_2_CS_STM_BASE,
[GAUDI_STM_DMA_CH_3_CS] = mmDMA_CH_3_CS_STM_BASE,
[GAUDI_STM_DMA_CH_4_CS] = mmDMA_CH_4_CS_STM_BASE,
[GAUDI_STM_DMA_CH_5_CS] = mmDMA_CH_5_CS_STM_BASE,
[GAUDI_STM_DMA_CH_6_CS] = mmDMA_CH_6_CS_STM_BASE,
[GAUDI_STM_DMA_CH_7_CS] = mmDMA_CH_7_CS_STM_BASE,
[GAUDI_STM_PCIE] = mmPCIE_STM_BASE,
[GAUDI_STM_MMU_CS] = mmMMU_CS_STM_BASE,
[GAUDI_STM_PSOC] = mmPSOC_STM_BASE,
[GAUDI_STM_NIC0_0] = mmSTM_0_NIC0_DBG_BASE,
[GAUDI_STM_NIC0_1] = mmSTM_1_NIC0_DBG_BASE,
[GAUDI_STM_NIC1_0] = mmSTM_0_NIC1_DBG_BASE,
[GAUDI_STM_NIC1_1] = mmSTM_1_NIC1_DBG_BASE,
[GAUDI_STM_NIC2_0] = mmSTM_0_NIC2_DBG_BASE,
[GAUDI_STM_NIC2_1] = mmSTM_1_NIC2_DBG_BASE,
[GAUDI_STM_NIC3_0] = mmSTM_0_NIC3_DBG_BASE,
[GAUDI_STM_NIC3_1] = mmSTM_1_NIC3_DBG_BASE,
[GAUDI_STM_NIC4_0] = mmSTM_0_NIC4_DBG_BASE,
[GAUDI_STM_NIC4_1] = mmSTM_1_NIC4_DBG_BASE,
[GAUDI_STM_TPC0_EML] = mmTPC0_EML_STM_BASE,
[GAUDI_STM_TPC1_EML] = mmTPC1_EML_STM_BASE,
[GAUDI_STM_TPC2_EML] = mmTPC2_EML_STM_BASE,
[GAUDI_STM_TPC3_EML] = mmTPC3_EML_STM_BASE,
[GAUDI_STM_TPC4_EML] = mmTPC4_EML_STM_BASE,
[GAUDI_STM_TPC5_EML] = mmTPC5_EML_STM_BASE,
[GAUDI_STM_TPC6_EML] = mmTPC6_EML_STM_BASE,
[GAUDI_STM_TPC7_EML] = mmTPC7_EML_STM_BASE
};
static u64 debug_etf_regs[GAUDI_ETF_LAST + 1] = {
[GAUDI_ETF_MME0_ACC] = mmMME0_ACC_ETF_BASE,
[GAUDI_ETF_MME0_SBAB] = mmMME0_SBAB_ETF_BASE,
[GAUDI_ETF_MME0_CTRL] = mmMME0_CTRL_ETF_BASE,
[GAUDI_ETF_MME1_ACC] = mmMME1_ACC_ETF_BASE,
[GAUDI_ETF_MME1_SBAB] = mmMME1_SBAB_ETF_BASE,
[GAUDI_ETF_MME1_CTRL] = mmMME1_CTRL_ETF_BASE,
[GAUDI_ETF_MME2_ACC] = mmMME2_MME2_ACC_ETF_BASE,
[GAUDI_ETF_MME2_SBAB] = mmMME2_SBAB_ETF_BASE,
[GAUDI_ETF_MME2_CTRL] = mmMME2_CTRL_ETF_BASE,
[GAUDI_ETF_MME3_ACC] = mmMME3_ACC_ETF_BASE,
[GAUDI_ETF_MME3_SBAB] = mmMME3_SBAB_ETF_BASE,
[GAUDI_ETF_MME3_CTRL] = mmMME3_CTRL_ETF_BASE,
[GAUDI_ETF_DMA_IF_W_S] = mmDMA_IF_W_S_ETF_BASE,
[GAUDI_ETF_DMA_IF_E_S] = mmDMA_IF_E_S_ETF_BASE,
[GAUDI_ETF_DMA_IF_W_N] = mmDMA_IF_W_N_ETF_BASE,
[GAUDI_ETF_DMA_IF_E_N] = mmDMA_IF_E_N_ETF_BASE,
[GAUDI_ETF_CPU_0] = mmCPU_ETF_0_BASE,
[GAUDI_ETF_CPU_1] = mmCPU_ETF_1_BASE,
[GAUDI_ETF_CPU_TRACE] = mmCPU_ETF_TRACE_BASE,
[GAUDI_ETF_DMA_CH_0_CS] = mmDMA_CH_0_CS_ETF_BASE,
[GAUDI_ETF_DMA_CH_1_CS] = mmDMA_CH_1_CS_ETF_BASE,
[GAUDI_ETF_DMA_CH_2_CS] = mmDMA_CH_2_CS_ETF_BASE,
[GAUDI_ETF_DMA_CH_3_CS] = mmDMA_CH_3_CS_ETF_BASE,
[GAUDI_ETF_DMA_CH_4_CS] = mmDMA_CH_4_CS_ETF_BASE,
[GAUDI_ETF_DMA_CH_5_CS] = mmDMA_CH_5_CS_ETF_BASE,
[GAUDI_ETF_DMA_CH_6_CS] = mmDMA_CH_6_CS_ETF_BASE,
[GAUDI_ETF_DMA_CH_7_CS] = mmDMA_CH_7_CS_ETF_BASE,
[GAUDI_ETF_PCIE] = mmPCIE_ETF_BASE,
[GAUDI_ETF_MMU_CS] = mmMMU_CS_ETF_BASE,
[GAUDI_ETF_PSOC] = mmPSOC_ETF_BASE,
[GAUDI_ETF_NIC0_0] = mmETF_0_NIC0_DBG_BASE,
[GAUDI_ETF_NIC0_1] = mmETF_1_NIC0_DBG_BASE,
[GAUDI_ETF_NIC1_0] = mmETF_0_NIC1_DBG_BASE,
[GAUDI_ETF_NIC1_1] = mmETF_1_NIC1_DBG_BASE,
[GAUDI_ETF_NIC2_0] = mmETF_0_NIC2_DBG_BASE,
[GAUDI_ETF_NIC2_1] = mmETF_1_NIC2_DBG_BASE,
[GAUDI_ETF_NIC3_0] = mmETF_0_NIC3_DBG_BASE,
[GAUDI_ETF_NIC3_1] = mmETF_1_NIC3_DBG_BASE,
[GAUDI_ETF_NIC4_0] = mmETF_0_NIC4_DBG_BASE,
[GAUDI_ETF_NIC4_1] = mmETF_1_NIC4_DBG_BASE,
[GAUDI_ETF_TPC0_EML] = mmTPC0_EML_ETF_BASE,
[GAUDI_ETF_TPC1_EML] = mmTPC1_EML_ETF_BASE,
[GAUDI_ETF_TPC2_EML] = mmTPC2_EML_ETF_BASE,
[GAUDI_ETF_TPC3_EML] = mmTPC3_EML_ETF_BASE,
[GAUDI_ETF_TPC4_EML] = mmTPC4_EML_ETF_BASE,
[GAUDI_ETF_TPC5_EML] = mmTPC5_EML_ETF_BASE,
[GAUDI_ETF_TPC6_EML] = mmTPC6_EML_ETF_BASE,
[GAUDI_ETF_TPC7_EML] = mmTPC7_EML_ETF_BASE
};
static u64 debug_funnel_regs[GAUDI_FUNNEL_LAST + 1] = {
[GAUDI_FUNNEL_MME0_ACC] = mmMME0_ACC_FUNNEL_BASE,
[GAUDI_FUNNEL_MME1_ACC] = mmMME1_ACC_FUNNEL_BASE,
[GAUDI_FUNNEL_MME2_ACC] = mmMME2_ACC_FUNNEL_BASE,
[GAUDI_FUNNEL_MME3_ACC] = mmMME3_ACC_FUNNEL_BASE,
[GAUDI_FUNNEL_SRAM_Y0_X0] = mmSRAM_Y0_X0_FUNNEL_BASE,
[GAUDI_FUNNEL_SRAM_Y0_X1] = mmSRAM_Y0_X1_FUNNEL_BASE,
[GAUDI_FUNNEL_SRAM_Y0_X2] = mmSRAM_Y0_X2_FUNNEL_BASE,
[GAUDI_FUNNEL_SRAM_Y0_X3] = mmSRAM_Y0_X3_FUNNEL_BASE,
[GAUDI_FUNNEL_SRAM_Y0_X4] = mmSRAM_Y0_X4_FUNNEL_BASE,
[GAUDI_FUNNEL_SRAM_Y0_X5] = mmSRAM_Y0_X5_FUNNEL_BASE,
[GAUDI_FUNNEL_SRAM_Y0_X6] = mmSRAM_Y0_X6_FUNNEL_BASE,
[GAUDI_FUNNEL_SRAM_Y0_X7] = mmSRAM_Y0_X7_FUNNEL_BASE,
[GAUDI_FUNNEL_SRAM_Y1_X0] = mmSRAM_Y1_X0_FUNNEL_BASE,
[GAUDI_FUNNEL_SRAM_Y1_X1] = mmSRAM_Y1_X1_FUNNEL_BASE,
[GAUDI_FUNNEL_SRAM_Y1_X2] = mmSRAM_Y1_X2_FUNNEL_BASE,
[GAUDI_FUNNEL_SRAM_Y1_X3] = mmSRAM_Y1_X3_FUNNEL_BASE,
[GAUDI_FUNNEL_SRAM_Y1_X4] = mmSRAM_Y1_X4_FUNNEL_BASE,
[GAUDI_FUNNEL_SRAM_Y1_X5] = mmSRAM_Y1_X5_FUNNEL_BASE,
[GAUDI_FUNNEL_SRAM_Y1_X6] = mmSRAM_Y1_X6_FUNNEL_BASE,
[GAUDI_FUNNEL_SRAM_Y1_X7] = mmSRAM_Y1_X7_FUNNEL_BASE,
[GAUDI_FUNNEL_SRAM_Y2_X0] = mmSRAM_Y2_X0_FUNNEL_BASE,
[GAUDI_FUNNEL_SRAM_Y2_X1] = mmSRAM_Y2_X1_FUNNEL_BASE,
[GAUDI_FUNNEL_SRAM_Y2_X2] = mmSRAM_Y2_X2_FUNNEL_BASE,
[GAUDI_FUNNEL_SRAM_Y2_X3] = mmSRAM_Y2_X3_FUNNEL_BASE,
[GAUDI_FUNNEL_SRAM_Y2_X4] = mmSRAM_Y2_X4_FUNNEL_BASE,
[GAUDI_FUNNEL_SRAM_Y2_X5] = mmSRAM_Y2_X5_FUNNEL_BASE,
[GAUDI_FUNNEL_SRAM_Y2_X6] = mmSRAM_Y2_X6_FUNNEL_BASE,
[GAUDI_FUNNEL_SRAM_Y2_X7] = mmSRAM_Y2_X7_FUNNEL_BASE,
[GAUDI_FUNNEL_SRAM_Y3_X0] = mmSRAM_Y3_X0_FUNNEL_BASE,
[GAUDI_FUNNEL_SRAM_Y3_X1] = mmSRAM_Y3_X1_FUNNEL_BASE,
[GAUDI_FUNNEL_SRAM_Y3_X2] = mmSRAM_Y3_X2_FUNNEL_BASE,
[GAUDI_FUNNEL_SRAM_Y3_X4] = mmSRAM_Y3_X4_FUNNEL_BASE,
[GAUDI_FUNNEL_SRAM_Y3_X3] = mmSRAM_Y3_X3_FUNNEL_BASE,
[GAUDI_FUNNEL_SRAM_Y3_X5] = mmSRAM_Y3_X5_FUNNEL_BASE,
[GAUDI_FUNNEL_SRAM_Y3_X6] = mmSRAM_Y3_X6_FUNNEL_BASE,
[GAUDI_FUNNEL_SRAM_Y3_X7] = mmSRAM_Y3_X7_FUNNEL_BASE,
[GAUDI_FUNNEL_SIF_0] = mmSIF_FUNNEL_0_BASE,
[GAUDI_FUNNEL_SIF_1] = mmSIF_FUNNEL_1_BASE,
[GAUDI_FUNNEL_SIF_2] = mmSIF_FUNNEL_2_BASE,
[GAUDI_FUNNEL_SIF_3] = mmSIF_FUNNEL_3_BASE,
[GAUDI_FUNNEL_SIF_4] = mmSIF_FUNNEL_4_BASE,
[GAUDI_FUNNEL_SIF_5] = mmSIF_FUNNEL_5_BASE,
[GAUDI_FUNNEL_SIF_6] = mmSIF_FUNNEL_6_BASE,
[GAUDI_FUNNEL_SIF_7] = mmSIF_FUNNEL_7_BASE,
[GAUDI_FUNNEL_NIF_0] = mmNIF_FUNNEL_0_BASE,
[GAUDI_FUNNEL_NIF_1] = mmNIF_FUNNEL_1_BASE,
[GAUDI_FUNNEL_NIF_2] = mmNIF_FUNNEL_2_BASE,
[GAUDI_FUNNEL_NIF_3] = mmNIF_FUNNEL_3_BASE,
[GAUDI_FUNNEL_NIF_4] = mmNIF_FUNNEL_4_BASE,
[GAUDI_FUNNEL_NIF_5] = mmNIF_FUNNEL_5_BASE,
[GAUDI_FUNNEL_NIF_6] = mmNIF_FUNNEL_6_BASE,
[GAUDI_FUNNEL_NIF_7] = mmNIF_FUNNEL_7_BASE,
[GAUDI_FUNNEL_DMA_IF_W_S] = mmDMA_IF_W_S_FUNNEL_BASE,
[GAUDI_FUNNEL_DMA_IF_E_S] = mmDMA_IF_E_S_FUNNEL_BASE,
[GAUDI_FUNNEL_DMA_IF_W_N] = mmDMA_IF_W_N_FUNNEL_BASE,
[GAUDI_FUNNEL_DMA_IF_E_N] = mmDMA_IF_E_N_FUNNEL_BASE,
[GAUDI_FUNNEL_CPU] = mmCPU_FUNNEL_BASE,
[GAUDI_FUNNEL_NIC_TPC_W_S] = mmNIC_TPC_FUNNEL_W_S_BASE,
[GAUDI_FUNNEL_NIC_TPC_E_S] = mmNIC_TPC_FUNNEL_E_S_BASE,
[GAUDI_FUNNEL_NIC_TPC_W_N] = mmNIC_TPC_FUNNEL_W_N_BASE,
[GAUDI_FUNNEL_NIC_TPC_E_N] = mmNIC_TPC_FUNNEL_E_N_BASE,
[GAUDI_FUNNEL_PCIE] = mmPCIE_FUNNEL_BASE,
[GAUDI_FUNNEL_PSOC] = mmPSOC_FUNNEL_BASE,
[GAUDI_FUNNEL_NIC0] = mmFUNNEL_NIC0_DBG_BASE,
[GAUDI_FUNNEL_NIC1] = mmFUNNEL_NIC1_DBG_BASE,
[GAUDI_FUNNEL_NIC2] = mmFUNNEL_NIC2_DBG_BASE,
[GAUDI_FUNNEL_NIC3] = mmFUNNEL_NIC3_DBG_BASE,
[GAUDI_FUNNEL_NIC4] = mmFUNNEL_NIC4_DBG_BASE,
[GAUDI_FUNNEL_TPC0_EML] = mmTPC0_EML_FUNNEL_BASE,
[GAUDI_FUNNEL_TPC1_EML] = mmTPC1_EML_FUNNEL_BASE,
[GAUDI_FUNNEL_TPC2_EML] = mmTPC2_EML_FUNNEL_BASE,
[GAUDI_FUNNEL_TPC3_EML] = mmTPC3_EML_FUNNEL_BASE,
[GAUDI_FUNNEL_TPC4_EML] = mmTPC4_EML_FUNNEL_BASE,
[GAUDI_FUNNEL_TPC5_EML] = mmTPC5_EML_FUNNEL_BASE,
[GAUDI_FUNNEL_TPC6_EML] = mmTPC6_EML_FUNNEL_BASE,
[GAUDI_FUNNEL_TPC7_EML] = mmTPC7_EML_FUNNEL_BASE
};
static u64 debug_bmon_regs[GAUDI_BMON_LAST + 1] = {
[GAUDI_BMON_MME0_ACC_0] = mmMME0_ACC_BMON0_BASE,
[GAUDI_BMON_MME0_SBAB_0] = mmMME0_SBAB_BMON0_BASE,
[GAUDI_BMON_MME0_SBAB_1] = mmMME0_SBAB_BMON1_BASE,
[GAUDI_BMON_MME0_CTRL_0] = mmMME0_CTRL_BMON0_BASE,
[GAUDI_BMON_MME0_CTRL_1] = mmMME0_CTRL_BMON1_BASE,
[GAUDI_BMON_MME1_ACC_0] = mmMME1_ACC_BMON0_BASE,
[GAUDI_BMON_MME1_SBAB_0] = mmMME1_SBAB_BMON0_BASE,
[GAUDI_BMON_MME1_SBAB_1] = mmMME1_SBAB_BMON1_BASE,
[GAUDI_BMON_MME1_CTRL_0] = mmMME1_CTRL_BMON0_BASE,
[GAUDI_BMON_MME1_CTRL_1] = mmMME1_CTRL_BMON1_BASE,
[GAUDI_BMON_MME2_ACC_0] = mmMME2_ACC_BMON0_BASE,
[GAUDI_BMON_MME2_SBAB_0] = mmMME2_SBAB_BMON0_BASE,
[GAUDI_BMON_MME2_SBAB_1] = mmMME2_SBAB_BMON1_BASE,
[GAUDI_BMON_MME2_CTRL_0] = mmMME2_CTRL_BMON0_BASE,
[GAUDI_BMON_MME2_CTRL_1] = mmMME2_CTRL_BMON1_BASE,
[GAUDI_BMON_MME3_ACC_0] = mmMME3_ACC_BMON0_BASE,
[GAUDI_BMON_MME3_SBAB_0] = mmMME3_SBAB_BMON0_BASE,
[GAUDI_BMON_MME3_SBAB_1] = mmMME3_SBAB_BMON1_BASE,
[GAUDI_BMON_MME3_CTRL_0] = mmMME3_CTRL_BMON0_BASE,
[GAUDI_BMON_MME3_CTRL_1] = mmMME3_CTRL_BMON1_BASE,
[GAUDI_BMON_DMA_IF_W_S_SOB_WR] = mmDMA_IF_W_S_SOB_WR_BMON_BASE,
[GAUDI_BMON_DMA_IF_W_S_0_WR] = mmDMA_IF_W_S_HBM0_WR_BMON_BASE,
[GAUDI_BMON_DMA_IF_W_S_0_RD] = mmDMA_IF_W_S_HBM0_RD_BMON_BASE,
[GAUDI_BMON_DMA_IF_W_S_1_WR] = mmDMA_IF_W_S_HBM1_WR_BMON_BASE,
[GAUDI_BMON_DMA_IF_W_S_1_RD] = mmDMA_IF_W_S_HBM1_RD_BMON_BASE,
[GAUDI_BMON_DMA_IF_E_S_SOB_WR] = mmDMA_IF_E_S_SOB_WR_BMON_BASE,
[GAUDI_BMON_DMA_IF_E_S_0_WR] = mmDMA_IF_E_S_HBM0_WR_BMON_BASE,
[GAUDI_BMON_DMA_IF_E_S_0_RD] = mmDMA_IF_E_S_HBM0_RD_BMON_BASE,
[GAUDI_BMON_DMA_IF_E_S_1_WR] = mmDMA_IF_E_S_HBM1_WR_BMON_BASE,
[GAUDI_BMON_DMA_IF_E_S_1_RD] = mmDMA_IF_E_S_HBM1_RD_BMON_BASE,
[GAUDI_BMON_DMA_IF_W_N_SOB_WR] = mmDMA_IF_W_N_SOB_WR_BMON_BASE,
[GAUDI_BMON_DMA_IF_W_N_HBM0_WR] = mmDMA_IF_W_N_HBM0_WR_BMON_BASE,
[GAUDI_BMON_DMA_IF_W_N_HBM0_RD] = mmDMA_IF_W_N_HBM0_RD_BMON_BASE,
[GAUDI_BMON_DMA_IF_W_N_HBM1_WR] = mmDMA_IF_W_N_HBM1_WR_BMON_BASE,
[GAUDI_BMON_DMA_IF_W_N_HBM1_RD] = mmDMA_IF_W_N_HBM1_RD_BMON_BASE,
[GAUDI_BMON_DMA_IF_E_N_SOB_WR] = mmDMA_IF_E_N_SOB_WR_BMON_BASE,
[GAUDI_BMON_DMA_IF_E_N_HBM0_WR] = mmDMA_IF_E_N_HBM0_WR_BMON_BASE,
[GAUDI_BMON_DMA_IF_E_N_HBM0_RD] = mmDMA_IF_E_N_HBM0_RD_BMON_BASE,
[GAUDI_BMON_DMA_IF_E_N_HBM1_WR] = mmDMA_IF_E_N_HBM1_WR_BMON_BASE,
[GAUDI_BMON_DMA_IF_E_N_HBM1_RD] = mmDMA_IF_E_N_HBM1_RD_BMON_BASE,
[GAUDI_BMON_CPU_WR] = mmCPU_WR_BMON_BASE,
[GAUDI_BMON_CPU_RD] = mmCPU_RD_BMON_BASE,
[GAUDI_BMON_DMA_CH_0_0] = mmDMA_CH_0_BMON_0_BASE,
[GAUDI_BMON_DMA_CH_0_1] = mmDMA_CH_0_BMON_1_BASE,
[GAUDI_BMON_DMA_CH_1_0] = mmDMA_CH_1_BMON_0_BASE,
[GAUDI_BMON_DMA_CH_1_1] = mmDMA_CH_1_BMON_1_BASE,
[GAUDI_BMON_DMA_CH_2_0] = mmDMA_CH_2_BMON_0_BASE,
[GAUDI_BMON_DMA_CH_2_1] = mmDMA_CH_2_BMON_1_BASE,
[GAUDI_BMON_DMA_CH_3_0] = mmDMA_CH_3_BMON_0_BASE,
[GAUDI_BMON_DMA_CH_3_1] = mmDMA_CH_3_BMON_1_BASE,
[GAUDI_BMON_DMA_CH_4_0] = mmDMA_CH_4_BMON_0_BASE,
[GAUDI_BMON_DMA_CH_4_1] = mmDMA_CH_4_BMON_1_BASE,
[GAUDI_BMON_DMA_CH_5_0] = mmDMA_CH_5_BMON_0_BASE,
[GAUDI_BMON_DMA_CH_5_1] = mmDMA_CH_5_BMON_1_BASE,
[GAUDI_BMON_DMA_CH_6_0] = mmDMA_CH_6_BMON_0_BASE,
[GAUDI_BMON_DMA_CH_6_1] = mmDMA_CH_6_BMON_1_BASE,
[GAUDI_BMON_DMA_CH_7_0] = mmDMA_CH_7_BMON_0_BASE,
[GAUDI_BMON_DMA_CH_7_1] = mmDMA_CH_7_BMON_1_BASE,
[GAUDI_BMON_PCIE_MSTR_WR] = mmPCIE_BMON_MSTR_WR_BASE,
[GAUDI_BMON_PCIE_MSTR_RD] = mmPCIE_BMON_MSTR_RD_BASE,
[GAUDI_BMON_PCIE_SLV_WR] = mmPCIE_BMON_SLV_WR_BASE,
[GAUDI_BMON_PCIE_SLV_RD] = mmPCIE_BMON_SLV_RD_BASE,
[GAUDI_BMON_MMU_0] = mmMMU_BMON_0_BASE,
[GAUDI_BMON_MMU_1] = mmMMU_BMON_1_BASE,
[GAUDI_BMON_NIC0_0] = mmBMON0_NIC0_DBG_BASE,
[GAUDI_BMON_NIC0_1] = mmBMON1_NIC0_DBG_BASE,
[GAUDI_BMON_NIC0_2] = mmBMON2_NIC0_DBG_BASE,
[GAUDI_BMON_NIC0_3] = mmBMON3_NIC0_DBG_BASE,
[GAUDI_BMON_NIC0_4] = mmBMON4_NIC0_DBG_BASE,
[GAUDI_BMON_NIC1_0] = mmBMON0_NIC1_DBG_BASE,
[GAUDI_BMON_NIC1_1] = mmBMON1_NIC1_DBG_BASE,
[GAUDI_BMON_NIC1_2] = mmBMON2_NIC1_DBG_BASE,
[GAUDI_BMON_NIC1_3] = mmBMON3_NIC1_DBG_BASE,
[GAUDI_BMON_NIC1_4] = mmBMON4_NIC1_DBG_BASE,
[GAUDI_BMON_NIC2_0] = mmBMON0_NIC2_DBG_BASE,
[GAUDI_BMON_NIC2_1] = mmBMON1_NIC2_DBG_BASE,
[GAUDI_BMON_NIC2_2] = mmBMON2_NIC2_DBG_BASE,
[GAUDI_BMON_NIC2_3] = mmBMON3_NIC2_DBG_BASE,
[GAUDI_BMON_NIC2_4] = mmBMON4_NIC2_DBG_BASE,
[GAUDI_BMON_NIC3_0] = mmBMON0_NIC3_DBG_BASE,
[GAUDI_BMON_NIC3_1] = mmBMON1_NIC3_DBG_BASE,
[GAUDI_BMON_NIC3_2] = mmBMON2_NIC3_DBG_BASE,
[GAUDI_BMON_NIC3_3] = mmBMON3_NIC3_DBG_BASE,
[GAUDI_BMON_NIC3_4] = mmBMON4_NIC3_DBG_BASE,
[GAUDI_BMON_NIC4_0] = mmBMON0_NIC4_DBG_BASE,
[GAUDI_BMON_NIC4_1] = mmBMON1_NIC4_DBG_BASE,
[GAUDI_BMON_NIC4_2] = mmBMON2_NIC4_DBG_BASE,
[GAUDI_BMON_NIC4_3] = mmBMON3_NIC4_DBG_BASE,
[GAUDI_BMON_NIC4_4] = mmBMON4_NIC4_DBG_BASE,
[GAUDI_BMON_TPC0_EML_0] = mmTPC0_EML_BUSMON_0_BASE,
[GAUDI_BMON_TPC0_EML_1] = mmTPC0_EML_BUSMON_1_BASE,
[GAUDI_BMON_TPC0_EML_2] = mmTPC0_EML_BUSMON_2_BASE,
[GAUDI_BMON_TPC0_EML_3] = mmTPC0_EML_BUSMON_3_BASE,
[GAUDI_BMON_TPC1_EML_0] = mmTPC1_EML_BUSMON_0_BASE,
[GAUDI_BMON_TPC1_EML_1] = mmTPC1_EML_BUSMON_1_BASE,
[GAUDI_BMON_TPC1_EML_2] = mmTPC1_EML_BUSMON_2_BASE,
[GAUDI_BMON_TPC1_EML_3] = mmTPC1_EML_BUSMON_3_BASE,
[GAUDI_BMON_TPC2_EML_0] = mmTPC2_EML_BUSMON_0_BASE,
[GAUDI_BMON_TPC2_EML_1] = mmTPC2_EML_BUSMON_1_BASE,
[GAUDI_BMON_TPC2_EML_2] = mmTPC2_EML_BUSMON_2_BASE,
[GAUDI_BMON_TPC2_EML_3] = mmTPC2_EML_BUSMON_3_BASE,
[GAUDI_BMON_TPC3_EML_0] = mmTPC3_EML_BUSMON_0_BASE,
[GAUDI_BMON_TPC3_EML_1] = mmTPC3_EML_BUSMON_1_BASE,
[GAUDI_BMON_TPC3_EML_2] = mmTPC3_EML_BUSMON_2_BASE,
[GAUDI_BMON_TPC3_EML_3] = mmTPC3_EML_BUSMON_3_BASE,
[GAUDI_BMON_TPC4_EML_0] = mmTPC4_EML_BUSMON_0_BASE,
[GAUDI_BMON_TPC4_EML_1] = mmTPC4_EML_BUSMON_1_BASE,
[GAUDI_BMON_TPC4_EML_2] = mmTPC4_EML_BUSMON_2_BASE,
[GAUDI_BMON_TPC4_EML_3] = mmTPC4_EML_BUSMON_3_BASE,
[GAUDI_BMON_TPC5_EML_0] = mmTPC5_EML_BUSMON_0_BASE,
[GAUDI_BMON_TPC5_EML_1] = mmTPC5_EML_BUSMON_1_BASE,
[GAUDI_BMON_TPC5_EML_2] = mmTPC5_EML_BUSMON_2_BASE,
[GAUDI_BMON_TPC5_EML_3] = mmTPC5_EML_BUSMON_3_BASE,
[GAUDI_BMON_TPC6_EML_0] = mmTPC6_EML_BUSMON_0_BASE,
[GAUDI_BMON_TPC6_EML_1] = mmTPC6_EML_BUSMON_1_BASE,
[GAUDI_BMON_TPC6_EML_2] = mmTPC6_EML_BUSMON_2_BASE,
[GAUDI_BMON_TPC6_EML_3] = mmTPC6_EML_BUSMON_3_BASE,
[GAUDI_BMON_TPC7_EML_0] = mmTPC7_EML_BUSMON_0_BASE,
[GAUDI_BMON_TPC7_EML_1] = mmTPC7_EML_BUSMON_1_BASE,
[GAUDI_BMON_TPC7_EML_2] = mmTPC7_EML_BUSMON_2_BASE,
[GAUDI_BMON_TPC7_EML_3] = mmTPC7_EML_BUSMON_3_BASE
};
static u64 debug_spmu_regs[GAUDI_SPMU_LAST + 1] = {
[GAUDI_SPMU_MME0_ACC] = mmMME0_ACC_SPMU_BASE,
[GAUDI_SPMU_MME0_SBAB] = mmMME0_SBAB_SPMU_BASE,
[GAUDI_SPMU_MME0_CTRL] = mmMME0_CTRL_SPMU_BASE,
[GAUDI_SPMU_MME1_ACC] = mmMME1_ACC_SPMU_BASE,
[GAUDI_SPMU_MME1_SBAB] = mmMME1_SBAB_SPMU_BASE,
[GAUDI_SPMU_MME1_CTRL] = mmMME1_CTRL_SPMU_BASE,
[GAUDI_SPMU_MME2_MME2_ACC] = mmMME2_ACC_SPMU_BASE,
[GAUDI_SPMU_MME2_SBAB] = mmMME2_SBAB_SPMU_BASE,
[GAUDI_SPMU_MME2_CTRL] = mmMME2_CTRL_SPMU_BASE,
[GAUDI_SPMU_MME3_ACC] = mmMME3_ACC_SPMU_BASE,
[GAUDI_SPMU_MME3_SBAB] = mmMME3_SBAB_SPMU_BASE,
[GAUDI_SPMU_MME3_CTRL] = mmMME3_CTRL_SPMU_BASE,
[GAUDI_SPMU_DMA_CH_0_CS] = mmDMA_CH_0_CS_SPMU_BASE,
[GAUDI_SPMU_DMA_CH_1_CS] = mmDMA_CH_1_CS_SPMU_BASE,
[GAUDI_SPMU_DMA_CH_2_CS] = mmDMA_CH_2_CS_SPMU_BASE,
[GAUDI_SPMU_DMA_CH_3_CS] = mmDMA_CH_3_CS_SPMU_BASE,
[GAUDI_SPMU_DMA_CH_4_CS] = mmDMA_CH_4_CS_SPMU_BASE,
[GAUDI_SPMU_DMA_CH_5_CS] = mmDMA_CH_5_CS_SPMU_BASE,
[GAUDI_SPMU_DMA_CH_6_CS] = mmDMA_CH_6_CS_SPMU_BASE,
[GAUDI_SPMU_DMA_CH_7_CS] = mmDMA_CH_7_CS_SPMU_BASE,
[GAUDI_SPMU_PCIE] = mmPCIE_SPMU_BASE,
[GAUDI_SPMU_MMU_CS] = mmMMU_CS_SPMU_BASE,
[GAUDI_SPMU_NIC0_0] = mmSPMU_0_NIC0_DBG_BASE,
[GAUDI_SPMU_NIC0_1] = mmSPMU_1_NIC0_DBG_BASE,
[GAUDI_SPMU_NIC1_0] = mmSPMU_0_NIC1_DBG_BASE,
[GAUDI_SPMU_NIC1_1] = mmSPMU_1_NIC1_DBG_BASE,
[GAUDI_SPMU_NIC2_0] = mmSPMU_0_NIC2_DBG_BASE,
[GAUDI_SPMU_NIC2_1] = mmSPMU_1_NIC2_DBG_BASE,
[GAUDI_SPMU_NIC3_0] = mmSPMU_0_NIC3_DBG_BASE,
[GAUDI_SPMU_NIC3_1] = mmSPMU_1_NIC3_DBG_BASE,
[GAUDI_SPMU_NIC4_0] = mmSPMU_0_NIC4_DBG_BASE,
[GAUDI_SPMU_NIC4_1] = mmSPMU_1_NIC4_DBG_BASE,
[GAUDI_SPMU_TPC0_EML] = mmTPC0_EML_SPMU_BASE,
[GAUDI_SPMU_TPC1_EML] = mmTPC1_EML_SPMU_BASE,
[GAUDI_SPMU_TPC2_EML] = mmTPC2_EML_SPMU_BASE,
[GAUDI_SPMU_TPC3_EML] = mmTPC3_EML_SPMU_BASE,
[GAUDI_SPMU_TPC4_EML] = mmTPC4_EML_SPMU_BASE,
[GAUDI_SPMU_TPC5_EML] = mmTPC5_EML_SPMU_BASE,
[GAUDI_SPMU_TPC6_EML] = mmTPC6_EML_SPMU_BASE,
[GAUDI_SPMU_TPC7_EML] = mmTPC7_EML_SPMU_BASE
};
static int gaudi_coresight_timeout(struct hl_device *hdev, u64 addr,
int position, bool up)
{
int rc;
u32 val;
rc = hl_poll_timeout(
hdev,
addr,
val,
up ? val & BIT(position) : !(val & BIT(position)),
1000,
CORESIGHT_TIMEOUT_USEC);
if (rc) {
dev_err(hdev->dev,
"Timeout while waiting for coresight, addr: 0x%llx, position: %d, up: %d\n",
addr, position, up);
return -EFAULT;
}
return 0;
}
static int gaudi_config_stm(struct hl_device *hdev,
struct hl_debug_params *params)
{
struct hl_debug_params_stm *input;
u64 base_reg;
int rc;
if (params->reg_idx >= ARRAY_SIZE(debug_stm_regs)) {
dev_err(hdev->dev, "Invalid register index in STM\n");
return -EINVAL;
}
base_reg = debug_stm_regs[params->reg_idx] - CFG_BASE;
WREG32(base_reg + 0xFB0, CORESIGHT_UNLOCK);
if (params->enable) {
input = params->input;
if (!input)
return -EINVAL;
WREG32(base_reg + 0xE80, 0x80004);
WREG32(base_reg + 0xD64, 7);
WREG32(base_reg + 0xD60, 0);
WREG32(base_reg + 0xD00, lower_32_bits(input->he_mask));
WREG32(base_reg + 0xD60, 1);
WREG32(base_reg + 0xD00, upper_32_bits(input->he_mask));
WREG32(base_reg + 0xE70, 0x10);
WREG32(base_reg + 0xE60, 0);
WREG32(base_reg + 0xE00, lower_32_bits(input->sp_mask));
WREG32(base_reg + 0xEF4, input->id);
WREG32(base_reg + 0xDF4, 0x80);
WREG32(base_reg + 0xE8C, input->frequency);
WREG32(base_reg + 0xE90, 0x7FF);
/* SW-2176 - SW WA for HW bug */
if ((CFG_BASE + base_reg) >= mmDMA_CH_0_CS_STM_BASE &&
(CFG_BASE + base_reg) <= mmDMA_CH_7_CS_STM_BASE) {
WREG32(base_reg + 0xE68, 0xffff8005);
WREG32(base_reg + 0xE6C, 0x0);
}
WREG32(base_reg + 0xE80, 0x27 | (input->id << 16));
} else {
WREG32(base_reg + 0xE80, 4);
WREG32(base_reg + 0xD64, 0);
WREG32(base_reg + 0xD60, 1);
WREG32(base_reg + 0xD00, 0);
WREG32(base_reg + 0xD20, 0);
WREG32(base_reg + 0xD60, 0);
WREG32(base_reg + 0xE20, 0);
WREG32(base_reg + 0xE00, 0);
WREG32(base_reg + 0xDF4, 0x80);
WREG32(base_reg + 0xE70, 0);
WREG32(base_reg + 0xE60, 0);
WREG32(base_reg + 0xE64, 0);
WREG32(base_reg + 0xE8C, 0);
rc = gaudi_coresight_timeout(hdev, base_reg + 0xE80, 23, false);
if (rc) {
dev_err(hdev->dev,
"Failed to disable STM on timeout, error %d\n",
rc);
return rc;
}
WREG32(base_reg + 0xE80, 4);
}
return 0;
}
static int gaudi_config_etf(struct hl_device *hdev,
struct hl_debug_params *params)
{
struct hl_debug_params_etf *input;
u64 base_reg;
u32 val;
int rc;
if (params->reg_idx >= ARRAY_SIZE(debug_etf_regs)) {
dev_err(hdev->dev, "Invalid register index in ETF\n");
return -EINVAL;
}
base_reg = debug_etf_regs[params->reg_idx] - CFG_BASE;
WREG32(base_reg + 0xFB0, CORESIGHT_UNLOCK);
val = RREG32(base_reg + 0x304);
val |= 0x1000;
WREG32(base_reg + 0x304, val);
val |= 0x40;
WREG32(base_reg + 0x304, val);
rc = gaudi_coresight_timeout(hdev, base_reg + 0x304, 6, false);
if (rc) {
dev_err(hdev->dev,
"Failed to %s ETF on timeout, error %d\n",
params->enable ? "enable" : "disable", rc);
return rc;
}
rc = gaudi_coresight_timeout(hdev, base_reg + 0xC, 2, true);
if (rc) {
dev_err(hdev->dev,
"Failed to %s ETF on timeout, error %d\n",
params->enable ? "enable" : "disable", rc);
return rc;
}
WREG32(base_reg + 0x20, 0);
if (params->enable) {
input = params->input;
if (!input)
return -EINVAL;
WREG32(base_reg + 0x34, 0x3FFC);
WREG32(base_reg + 0x28, input->sink_mode);
WREG32(base_reg + 0x304, 0x4001);
WREG32(base_reg + 0x308, 0xA);
WREG32(base_reg + 0x20, 1);
} else {
WREG32(base_reg + 0x34, 0);
WREG32(base_reg + 0x28, 0);
WREG32(base_reg + 0x304, 0);
}
return 0;
}
static bool gaudi_etr_validate_address(struct hl_device *hdev, u64 addr,
u32 size, bool *is_host)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct gaudi_device *gaudi = hdev->asic_specific;
/* maximum address length is 50 bits */
if (addr >> 50) {
dev_err(hdev->dev,
"ETR buffer address shouldn't exceed 50 bits\n");
return false;
}
/* PMMU and HPMMU addresses are equal, check only one of them */
if ((gaudi->hw_cap_initialized & HW_CAP_MMU) &&
hl_mem_area_inside_range(addr, size,
prop->pmmu.start_addr,
prop->pmmu.end_addr)) {
*is_host = true;
return true;
}
if (hl_mem_area_inside_range(addr, size,
prop->dram_user_base_address,
prop->dram_end_address))
return true;
if (hl_mem_area_inside_range(addr, size,
prop->sram_user_base_address,
prop->sram_end_address))
return true;
if (!(gaudi->hw_cap_initialized & HW_CAP_MMU))
dev_err(hdev->dev, "ETR buffer should be in SRAM/DRAM\n");
return false;
}
static int gaudi_config_etr(struct hl_device *hdev,
struct hl_debug_params *params)
{
struct hl_debug_params_etr *input;
u64 msb;
u32 val;
int rc;
WREG32(mmPSOC_ETR_LAR, CORESIGHT_UNLOCK);
val = RREG32(mmPSOC_ETR_FFCR);
val |= 0x1000;
WREG32(mmPSOC_ETR_FFCR, val);
val |= 0x40;
WREG32(mmPSOC_ETR_FFCR, val);
rc = gaudi_coresight_timeout(hdev, mmPSOC_ETR_FFCR, 6, false);
if (rc) {
dev_err(hdev->dev, "Failed to %s ETR on timeout, error %d\n",
params->enable ? "enable" : "disable", rc);
return rc;
}
rc = gaudi_coresight_timeout(hdev, mmPSOC_ETR_STS, 2, true);
if (rc) {
dev_err(hdev->dev, "Failed to %s ETR on timeout, error %d\n",
params->enable ? "enable" : "disable", rc);
return rc;
}
WREG32(mmPSOC_ETR_CTL, 0);
if (params->enable) {
bool is_host = false;
input = params->input;
if (!input)
return -EINVAL;
if (input->buffer_size == 0) {
dev_err(hdev->dev,
"ETR buffer size should be bigger than 0\n");
return -EINVAL;
}
if (!gaudi_etr_validate_address(hdev,
input->buffer_address, input->buffer_size,
&is_host)) {
dev_err(hdev->dev, "ETR buffer address is invalid\n");
return -EINVAL;
}
msb = upper_32_bits(input->buffer_address) >> 8;
msb &= PSOC_GLOBAL_CONF_TRACE_ADDR_MSB_MASK;
WREG32(mmPSOC_GLOBAL_CONF_TRACE_ADDR, msb);
WREG32(mmPSOC_ETR_BUFWM, 0x3FFC);
WREG32(mmPSOC_ETR_RSZ, input->buffer_size);
WREG32(mmPSOC_ETR_MODE, input->sink_mode);
/* Workaround for H3 #HW-2075 bug: use small data chunks */
WREG32(mmPSOC_ETR_AXICTL, (is_host ? 0 : 0x700) |
PSOC_ETR_AXICTL_PROTCTRLBIT1_SHIFT);
WREG32(mmPSOC_ETR_DBALO,
lower_32_bits(input->buffer_address));
WREG32(mmPSOC_ETR_DBAHI,
upper_32_bits(input->buffer_address));
WREG32(mmPSOC_ETR_FFCR, 3);
WREG32(mmPSOC_ETR_PSCR, 0xA);
WREG32(mmPSOC_ETR_CTL, 1);
} else {
WREG32(mmPSOC_ETR_BUFWM, 0);
WREG32(mmPSOC_ETR_RSZ, 0x400);
WREG32(mmPSOC_ETR_DBALO, 0);
WREG32(mmPSOC_ETR_DBAHI, 0);
WREG32(mmPSOC_ETR_PSCR, 0);
WREG32(mmPSOC_ETR_MODE, 0);
WREG32(mmPSOC_ETR_FFCR, 0);
if (params->output_size >= sizeof(u64)) {
u32 rwp, rwphi;
/*
* The trace buffer address is 50 bits wide. The end of
* the buffer is set in the RWP register (lower 32
* bits), and in the RWPHI register (upper 8 bits).
* The 10 msb of the 50-bit address are stored in a
* global configuration register.
*/
rwp = RREG32(mmPSOC_ETR_RWP);
rwphi = RREG32(mmPSOC_ETR_RWPHI) & 0xff;
msb = RREG32(mmPSOC_GLOBAL_CONF_TRACE_ADDR) &
PSOC_GLOBAL_CONF_TRACE_ADDR_MSB_MASK;
*(u64 *) params->output = ((u64) msb << 40) |
((u64) rwphi << 32) | rwp;
}
}
return 0;
}
static int gaudi_config_funnel(struct hl_device *hdev,
struct hl_debug_params *params)
{
u64 base_reg;
if (params->reg_idx >= ARRAY_SIZE(debug_funnel_regs)) {
dev_err(hdev->dev, "Invalid register index in FUNNEL\n");
return -EINVAL;
}
base_reg = debug_funnel_regs[params->reg_idx] - CFG_BASE;
WREG32(base_reg + 0xFB0, CORESIGHT_UNLOCK);
WREG32(base_reg, params->enable ? 0x33F : 0);
return 0;
}
static int gaudi_config_bmon(struct hl_device *hdev,
struct hl_debug_params *params)
{
struct hl_debug_params_bmon *input;
u64 base_reg;
if (params->reg_idx >= ARRAY_SIZE(debug_bmon_regs)) {
dev_err(hdev->dev, "Invalid register index in BMON\n");
return -EINVAL;
}
base_reg = debug_bmon_regs[params->reg_idx] - CFG_BASE;
WREG32(base_reg + 0x104, 1);
if (params->enable) {
input = params->input;
if (!input)
return -EINVAL;
WREG32(base_reg + 0x200, lower_32_bits(input->start_addr0));
WREG32(base_reg + 0x204, upper_32_bits(input->start_addr0));
WREG32(base_reg + 0x208, lower_32_bits(input->addr_mask0));
WREG32(base_reg + 0x20C, upper_32_bits(input->addr_mask0));
WREG32(base_reg + 0x240, lower_32_bits(input->start_addr1));
WREG32(base_reg + 0x244, upper_32_bits(input->start_addr1));
WREG32(base_reg + 0x248, lower_32_bits(input->addr_mask1));
WREG32(base_reg + 0x24C, upper_32_bits(input->addr_mask1));
WREG32(base_reg + 0x224, 0);
WREG32(base_reg + 0x234, 0);
WREG32(base_reg + 0x30C, input->bw_win);
WREG32(base_reg + 0x308, input->win_capture);
WREG32(base_reg + 0x700, 0xA000B00 | (input->id << 12));
WREG32(base_reg + 0x708, 0xA000A00 | (input->id << 12));
WREG32(base_reg + 0x70C, 0xA000C00 | (input->id << 12));
WREG32(base_reg + 0x100, 0x11);
WREG32(base_reg + 0x304, 0x1);
} else {
WREG32(base_reg + 0x200, 0);
WREG32(base_reg + 0x204, 0);
WREG32(base_reg + 0x208, 0xFFFFFFFF);
WREG32(base_reg + 0x20C, 0xFFFFFFFF);
WREG32(base_reg + 0x240, 0);
WREG32(base_reg + 0x244, 0);
WREG32(base_reg + 0x248, 0xFFFFFFFF);
WREG32(base_reg + 0x24C, 0xFFFFFFFF);
WREG32(base_reg + 0x224, 0xFFFFFFFF);
WREG32(base_reg + 0x234, 0x1070F);
WREG32(base_reg + 0x30C, 0);
WREG32(base_reg + 0x308, 0xFFFF);
WREG32(base_reg + 0x700, 0xA000B00);
WREG32(base_reg + 0x708, 0xA000A00);
WREG32(base_reg + 0x70C, 0xA000C00);
WREG32(base_reg + 0x100, 1);
WREG32(base_reg + 0x304, 0);
WREG32(base_reg + 0x104, 0);
}
return 0;
}
static int gaudi_config_spmu(struct hl_device *hdev,
struct hl_debug_params *params)
{
u64 base_reg;
struct hl_debug_params_spmu *input = params->input;
u64 *output;
u32 output_arr_len;
u32 events_num;
u32 overflow_idx;
u32 cycle_cnt_idx;
int i;
if (params->reg_idx >= ARRAY_SIZE(debug_spmu_regs)) {
dev_err(hdev->dev, "Invalid register index in SPMU\n");
return -EINVAL;
}
base_reg = debug_spmu_regs[params->reg_idx] - CFG_BASE;
if (params->enable) {
input = params->input;
if (!input)
return -EINVAL;
if (input->event_types_num < 3) {
dev_err(hdev->dev,
"not enough event types values for SPMU enable\n");
return -EINVAL;
}
if (input->event_types_num > SPMU_MAX_COUNTERS) {
dev_err(hdev->dev,
"too many event types values for SPMU enable\n");
return -EINVAL;
}
WREG32(base_reg + 0xE04, 0x41013046);
WREG32(base_reg + 0xE04, 0x41013040);
for (i = 0 ; i < input->event_types_num ; i++)
WREG32(base_reg + SPMU_EVENT_TYPES_OFFSET + i * 4,
input->event_types[i]);
WREG32(base_reg + 0xE04, 0x41013041);
WREG32(base_reg + 0xC00, 0x8000003F);
} else {
output = params->output;
output_arr_len = params->output_size / 8;
events_num = output_arr_len - 2;
overflow_idx = output_arr_len - 2;
cycle_cnt_idx = output_arr_len - 1;
if (!output)
return -EINVAL;
if (output_arr_len < 3) {
dev_err(hdev->dev,
"not enough values for SPMU disable\n");
return -EINVAL;
}
if (events_num > SPMU_MAX_COUNTERS) {
dev_err(hdev->dev,
"too many events values for SPMU disable\n");
return -EINVAL;
}
WREG32(base_reg + 0xE04, 0x41013040);
for (i = 0 ; i < events_num ; i++)
output[i] = RREG32(base_reg + i * 8);
output[overflow_idx] = RREG32(base_reg + 0xCC0);
output[cycle_cnt_idx] = RREG32(base_reg + 0xFC);
output[cycle_cnt_idx] <<= 32;
output[cycle_cnt_idx] |= RREG32(base_reg + 0xF8);
WREG32(base_reg + 0xCC0, 0);
}
return 0;
}
int gaudi_debug_coresight(struct hl_device *hdev, void *data)
{
struct hl_debug_params *params = data;
int rc = 0;
switch (params->op) {
case HL_DEBUG_OP_STM:
rc = gaudi_config_stm(hdev, params);
break;
case HL_DEBUG_OP_ETF:
rc = gaudi_config_etf(hdev, params);
break;
case HL_DEBUG_OP_ETR:
rc = gaudi_config_etr(hdev, params);
break;
case HL_DEBUG_OP_FUNNEL:
rc = gaudi_config_funnel(hdev, params);
break;
case HL_DEBUG_OP_BMON:
rc = gaudi_config_bmon(hdev, params);
break;
case HL_DEBUG_OP_SPMU:
rc = gaudi_config_spmu(hdev, params);
break;
case HL_DEBUG_OP_TIMESTAMP:
/* Do nothing as this opcode is deprecated */
break;
default:
dev_err(hdev->dev, "Unknown coresight id %d\n", params->op);
return -EINVAL;
}
/* Perform read from the device to flush all configuration */
RREG32(mmPCIE_DBI_DEVICE_ID_VENDOR_ID_REG);
return rc;
}
void gaudi_halt_coresight(struct hl_device *hdev)
{
struct hl_debug_params params = {};
int i, rc;
for (i = GAUDI_ETF_FIRST ; i <= GAUDI_ETF_LAST ; i++) {
params.reg_idx = i;
rc = gaudi_config_etf(hdev, &params);
if (rc)
dev_err(hdev->dev, "halt ETF failed, %d/%d\n", rc, i);
}
rc = gaudi_config_etr(hdev, &params);
if (rc)
dev_err(hdev->dev, "halt ETR failed, %d\n", rc);
}