linux/kernel/bpf/helpers.c
Dave Marchevsky 7793fc3bab bpf: Make bpf_refcount_acquire fallible for non-owning refs
This patch fixes an incorrect assumption made in the original
bpf_refcount series [0], specifically that the BPF program calling
bpf_refcount_acquire on some node can always guarantee that the node is
alive. In that series, the patch adding failure behavior to rbtree_add
and list_push_{front, back} breaks this assumption for non-owning
references.

Consider the following program:

  n = bpf_kptr_xchg(&mapval, NULL);
  /* skip error checking */

  bpf_spin_lock(&l);
  if(bpf_rbtree_add(&t, &n->rb, less)) {
    bpf_refcount_acquire(n);
    /* Failed to add, do something else with the node */
  }
  bpf_spin_unlock(&l);

It's incorrect to assume that bpf_refcount_acquire will always succeed in this
scenario. bpf_refcount_acquire is being called in a critical section
here, but the lock being held is associated with rbtree t, which isn't
necessarily the lock associated with the tree that the node is already
in. So after bpf_rbtree_add fails to add the node and calls bpf_obj_drop
in it, the program has no ownership of the node's lifetime. Therefore
the node's refcount can be decr'd to 0 at any time after the failing
rbtree_add. If this happens before the refcount_acquire above, the node
might be free'd, and regardless refcount_acquire will be incrementing a
0 refcount.

Later patches in the series exercise this scenario, resulting in the
expected complaint from the kernel (without this patch's changes):

  refcount_t: addition on 0; use-after-free.
  WARNING: CPU: 1 PID: 207 at lib/refcount.c:25 refcount_warn_saturate+0xbc/0x110
  Modules linked in: bpf_testmod(O)
  CPU: 1 PID: 207 Comm: test_progs Tainted: G           O       6.3.0-rc7-02231-g723de1a718a2-dirty #371
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014
  RIP: 0010:refcount_warn_saturate+0xbc/0x110
  Code: 6f 64 f6 02 01 e8 84 a3 5c ff 0f 0b eb 9d 80 3d 5e 64 f6 02 00 75 94 48 c7 c7 e0 13 d2 82 c6 05 4e 64 f6 02 01 e8 64 a3 5c ff <0f> 0b e9 7a ff ff ff 80 3d 38 64 f6 02 00 0f 85 6d ff ff ff 48 c7
  RSP: 0018:ffff88810b9179b0 EFLAGS: 00010082
  RAX: 0000000000000000 RBX: 0000000000000002 RCX: 0000000000000000
  RDX: 0000000000000202 RSI: 0000000000000008 RDI: ffffffff857c3680
  RBP: ffff88810027d3c0 R08: ffffffff8125f2a4 R09: ffff88810b9176e7
  R10: ffffed1021722edc R11: 746e756f63666572 R12: ffff88810027d388
  R13: ffff88810027d3c0 R14: ffffc900005fe030 R15: ffffc900005fe048
  FS:  00007fee0584a700(0000) GS:ffff88811b280000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00005634a96f6c58 CR3: 0000000108ce9002 CR4: 0000000000770ee0
  DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  PKRU: 55555554
  Call Trace:
   <TASK>
   bpf_refcount_acquire_impl+0xb5/0xc0

  (rest of output snipped)

The patch addresses this by changing bpf_refcount_acquire_impl to use
refcount_inc_not_zero instead of refcount_inc and marking
bpf_refcount_acquire KF_RET_NULL.

For owning references, though, we know the above scenario is not possible
and thus that bpf_refcount_acquire will always succeed. Some verifier
bookkeeping is added to track "is input owning ref?" for bpf_refcount_acquire
calls and return false from is_kfunc_ret_null for bpf_refcount_acquire on
owning refs despite it being marked KF_RET_NULL.

Existing selftests using bpf_refcount_acquire are modified where
necessary to NULL-check its return value.

  [0]: https://lore.kernel.org/bpf/20230415201811.343116-1-davemarchevsky@fb.com/

Fixes: d2dcc67df910 ("bpf: Migrate bpf_rbtree_add and bpf_list_push_{front,back} to possibly fail")
Reported-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230602022647.1571784-5-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-06-05 13:17:20 -07:00

2496 lines
65 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
*/
#include <linux/bpf.h>
#include <linux/btf.h>
#include <linux/bpf-cgroup.h>
#include <linux/cgroup.h>
#include <linux/rcupdate.h>
#include <linux/random.h>
#include <linux/smp.h>
#include <linux/topology.h>
#include <linux/ktime.h>
#include <linux/sched.h>
#include <linux/uidgid.h>
#include <linux/filter.h>
#include <linux/ctype.h>
#include <linux/jiffies.h>
#include <linux/pid_namespace.h>
#include <linux/poison.h>
#include <linux/proc_ns.h>
#include <linux/sched/task.h>
#include <linux/security.h>
#include <linux/btf_ids.h>
#include <linux/bpf_mem_alloc.h>
#include "../../lib/kstrtox.h"
/* If kernel subsystem is allowing eBPF programs to call this function,
* inside its own verifier_ops->get_func_proto() callback it should return
* bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
*
* Different map implementations will rely on rcu in map methods
* lookup/update/delete, therefore eBPF programs must run under rcu lock
* if program is allowed to access maps, so check rcu_read_lock_held in
* all three functions.
*/
BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
{
WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
return (unsigned long) map->ops->map_lookup_elem(map, key);
}
const struct bpf_func_proto bpf_map_lookup_elem_proto = {
.func = bpf_map_lookup_elem,
.gpl_only = false,
.pkt_access = true,
.ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
.arg1_type = ARG_CONST_MAP_PTR,
.arg2_type = ARG_PTR_TO_MAP_KEY,
};
BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
void *, value, u64, flags)
{
WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
return map->ops->map_update_elem(map, key, value, flags);
}
const struct bpf_func_proto bpf_map_update_elem_proto = {
.func = bpf_map_update_elem,
.gpl_only = false,
.pkt_access = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_CONST_MAP_PTR,
.arg2_type = ARG_PTR_TO_MAP_KEY,
.arg3_type = ARG_PTR_TO_MAP_VALUE,
.arg4_type = ARG_ANYTHING,
};
BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
{
WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
return map->ops->map_delete_elem(map, key);
}
const struct bpf_func_proto bpf_map_delete_elem_proto = {
.func = bpf_map_delete_elem,
.gpl_only = false,
.pkt_access = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_CONST_MAP_PTR,
.arg2_type = ARG_PTR_TO_MAP_KEY,
};
BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
{
return map->ops->map_push_elem(map, value, flags);
}
const struct bpf_func_proto bpf_map_push_elem_proto = {
.func = bpf_map_push_elem,
.gpl_only = false,
.pkt_access = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_CONST_MAP_PTR,
.arg2_type = ARG_PTR_TO_MAP_VALUE,
.arg3_type = ARG_ANYTHING,
};
BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
{
return map->ops->map_pop_elem(map, value);
}
const struct bpf_func_proto bpf_map_pop_elem_proto = {
.func = bpf_map_pop_elem,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_CONST_MAP_PTR,
.arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
};
BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
{
return map->ops->map_peek_elem(map, value);
}
const struct bpf_func_proto bpf_map_peek_elem_proto = {
.func = bpf_map_peek_elem,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_CONST_MAP_PTR,
.arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
};
BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
{
WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
}
const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
.func = bpf_map_lookup_percpu_elem,
.gpl_only = false,
.pkt_access = true,
.ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
.arg1_type = ARG_CONST_MAP_PTR,
.arg2_type = ARG_PTR_TO_MAP_KEY,
.arg3_type = ARG_ANYTHING,
};
const struct bpf_func_proto bpf_get_prandom_u32_proto = {
.func = bpf_user_rnd_u32,
.gpl_only = false,
.ret_type = RET_INTEGER,
};
BPF_CALL_0(bpf_get_smp_processor_id)
{
return smp_processor_id();
}
const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
.func = bpf_get_smp_processor_id,
.gpl_only = false,
.ret_type = RET_INTEGER,
};
BPF_CALL_0(bpf_get_numa_node_id)
{
return numa_node_id();
}
const struct bpf_func_proto bpf_get_numa_node_id_proto = {
.func = bpf_get_numa_node_id,
.gpl_only = false,
.ret_type = RET_INTEGER,
};
BPF_CALL_0(bpf_ktime_get_ns)
{
/* NMI safe access to clock monotonic */
return ktime_get_mono_fast_ns();
}
const struct bpf_func_proto bpf_ktime_get_ns_proto = {
.func = bpf_ktime_get_ns,
.gpl_only = false,
.ret_type = RET_INTEGER,
};
BPF_CALL_0(bpf_ktime_get_boot_ns)
{
/* NMI safe access to clock boottime */
return ktime_get_boot_fast_ns();
}
const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
.func = bpf_ktime_get_boot_ns,
.gpl_only = false,
.ret_type = RET_INTEGER,
};
BPF_CALL_0(bpf_ktime_get_coarse_ns)
{
return ktime_get_coarse_ns();
}
const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
.func = bpf_ktime_get_coarse_ns,
.gpl_only = false,
.ret_type = RET_INTEGER,
};
BPF_CALL_0(bpf_ktime_get_tai_ns)
{
/* NMI safe access to clock tai */
return ktime_get_tai_fast_ns();
}
const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = {
.func = bpf_ktime_get_tai_ns,
.gpl_only = false,
.ret_type = RET_INTEGER,
};
BPF_CALL_0(bpf_get_current_pid_tgid)
{
struct task_struct *task = current;
if (unlikely(!task))
return -EINVAL;
return (u64) task->tgid << 32 | task->pid;
}
const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
.func = bpf_get_current_pid_tgid,
.gpl_only = false,
.ret_type = RET_INTEGER,
};
BPF_CALL_0(bpf_get_current_uid_gid)
{
struct task_struct *task = current;
kuid_t uid;
kgid_t gid;
if (unlikely(!task))
return -EINVAL;
current_uid_gid(&uid, &gid);
return (u64) from_kgid(&init_user_ns, gid) << 32 |
from_kuid(&init_user_ns, uid);
}
const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
.func = bpf_get_current_uid_gid,
.gpl_only = false,
.ret_type = RET_INTEGER,
};
BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
{
struct task_struct *task = current;
if (unlikely(!task))
goto err_clear;
/* Verifier guarantees that size > 0 */
strscpy_pad(buf, task->comm, size);
return 0;
err_clear:
memset(buf, 0, size);
return -EINVAL;
}
const struct bpf_func_proto bpf_get_current_comm_proto = {
.func = bpf_get_current_comm,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
.arg2_type = ARG_CONST_SIZE,
};
#if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
{
arch_spinlock_t *l = (void *)lock;
union {
__u32 val;
arch_spinlock_t lock;
} u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
arch_spin_lock(l);
}
static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
{
arch_spinlock_t *l = (void *)lock;
arch_spin_unlock(l);
}
#else
static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
{
atomic_t *l = (void *)lock;
BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
do {
atomic_cond_read_relaxed(l, !VAL);
} while (atomic_xchg(l, 1));
}
static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
{
atomic_t *l = (void *)lock;
atomic_set_release(l, 0);
}
#endif
static DEFINE_PER_CPU(unsigned long, irqsave_flags);
static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
{
unsigned long flags;
local_irq_save(flags);
__bpf_spin_lock(lock);
__this_cpu_write(irqsave_flags, flags);
}
notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
{
__bpf_spin_lock_irqsave(lock);
return 0;
}
const struct bpf_func_proto bpf_spin_lock_proto = {
.func = bpf_spin_lock,
.gpl_only = false,
.ret_type = RET_VOID,
.arg1_type = ARG_PTR_TO_SPIN_LOCK,
.arg1_btf_id = BPF_PTR_POISON,
};
static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
{
unsigned long flags;
flags = __this_cpu_read(irqsave_flags);
__bpf_spin_unlock(lock);
local_irq_restore(flags);
}
notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
{
__bpf_spin_unlock_irqrestore(lock);
return 0;
}
const struct bpf_func_proto bpf_spin_unlock_proto = {
.func = bpf_spin_unlock,
.gpl_only = false,
.ret_type = RET_VOID,
.arg1_type = ARG_PTR_TO_SPIN_LOCK,
.arg1_btf_id = BPF_PTR_POISON,
};
void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
bool lock_src)
{
struct bpf_spin_lock *lock;
if (lock_src)
lock = src + map->record->spin_lock_off;
else
lock = dst + map->record->spin_lock_off;
preempt_disable();
__bpf_spin_lock_irqsave(lock);
copy_map_value(map, dst, src);
__bpf_spin_unlock_irqrestore(lock);
preempt_enable();
}
BPF_CALL_0(bpf_jiffies64)
{
return get_jiffies_64();
}
const struct bpf_func_proto bpf_jiffies64_proto = {
.func = bpf_jiffies64,
.gpl_only = false,
.ret_type = RET_INTEGER,
};
#ifdef CONFIG_CGROUPS
BPF_CALL_0(bpf_get_current_cgroup_id)
{
struct cgroup *cgrp;
u64 cgrp_id;
rcu_read_lock();
cgrp = task_dfl_cgroup(current);
cgrp_id = cgroup_id(cgrp);
rcu_read_unlock();
return cgrp_id;
}
const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
.func = bpf_get_current_cgroup_id,
.gpl_only = false,
.ret_type = RET_INTEGER,
};
BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
{
struct cgroup *cgrp;
struct cgroup *ancestor;
u64 cgrp_id;
rcu_read_lock();
cgrp = task_dfl_cgroup(current);
ancestor = cgroup_ancestor(cgrp, ancestor_level);
cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
rcu_read_unlock();
return cgrp_id;
}
const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
.func = bpf_get_current_ancestor_cgroup_id,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_ANYTHING,
};
#endif /* CONFIG_CGROUPS */
#define BPF_STRTOX_BASE_MASK 0x1F
static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
unsigned long long *res, bool *is_negative)
{
unsigned int base = flags & BPF_STRTOX_BASE_MASK;
const char *cur_buf = buf;
size_t cur_len = buf_len;
unsigned int consumed;
size_t val_len;
char str[64];
if (!buf || !buf_len || !res || !is_negative)
return -EINVAL;
if (base != 0 && base != 8 && base != 10 && base != 16)
return -EINVAL;
if (flags & ~BPF_STRTOX_BASE_MASK)
return -EINVAL;
while (cur_buf < buf + buf_len && isspace(*cur_buf))
++cur_buf;
*is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
if (*is_negative)
++cur_buf;
consumed = cur_buf - buf;
cur_len -= consumed;
if (!cur_len)
return -EINVAL;
cur_len = min(cur_len, sizeof(str) - 1);
memcpy(str, cur_buf, cur_len);
str[cur_len] = '\0';
cur_buf = str;
cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
val_len = _parse_integer(cur_buf, base, res);
if (val_len & KSTRTOX_OVERFLOW)
return -ERANGE;
if (val_len == 0)
return -EINVAL;
cur_buf += val_len;
consumed += cur_buf - str;
return consumed;
}
static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
long long *res)
{
unsigned long long _res;
bool is_negative;
int err;
err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
if (err < 0)
return err;
if (is_negative) {
if ((long long)-_res > 0)
return -ERANGE;
*res = -_res;
} else {
if ((long long)_res < 0)
return -ERANGE;
*res = _res;
}
return err;
}
BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
long *, res)
{
long long _res;
int err;
err = __bpf_strtoll(buf, buf_len, flags, &_res);
if (err < 0)
return err;
if (_res != (long)_res)
return -ERANGE;
*res = _res;
return err;
}
const struct bpf_func_proto bpf_strtol_proto = {
.func = bpf_strtol,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
.arg2_type = ARG_CONST_SIZE,
.arg3_type = ARG_ANYTHING,
.arg4_type = ARG_PTR_TO_LONG,
};
BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
unsigned long *, res)
{
unsigned long long _res;
bool is_negative;
int err;
err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
if (err < 0)
return err;
if (is_negative)
return -EINVAL;
if (_res != (unsigned long)_res)
return -ERANGE;
*res = _res;
return err;
}
const struct bpf_func_proto bpf_strtoul_proto = {
.func = bpf_strtoul,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
.arg2_type = ARG_CONST_SIZE,
.arg3_type = ARG_ANYTHING,
.arg4_type = ARG_PTR_TO_LONG,
};
BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
{
return strncmp(s1, s2, s1_sz);
}
static const struct bpf_func_proto bpf_strncmp_proto = {
.func = bpf_strncmp,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
.arg2_type = ARG_CONST_SIZE,
.arg3_type = ARG_PTR_TO_CONST_STR,
};
BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
struct bpf_pidns_info *, nsdata, u32, size)
{
struct task_struct *task = current;
struct pid_namespace *pidns;
int err = -EINVAL;
if (unlikely(size != sizeof(struct bpf_pidns_info)))
goto clear;
if (unlikely((u64)(dev_t)dev != dev))
goto clear;
if (unlikely(!task))
goto clear;
pidns = task_active_pid_ns(task);
if (unlikely(!pidns)) {
err = -ENOENT;
goto clear;
}
if (!ns_match(&pidns->ns, (dev_t)dev, ino))
goto clear;
nsdata->pid = task_pid_nr_ns(task, pidns);
nsdata->tgid = task_tgid_nr_ns(task, pidns);
return 0;
clear:
memset((void *)nsdata, 0, (size_t) size);
return err;
}
const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
.func = bpf_get_ns_current_pid_tgid,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_ANYTHING,
.arg2_type = ARG_ANYTHING,
.arg3_type = ARG_PTR_TO_UNINIT_MEM,
.arg4_type = ARG_CONST_SIZE,
};
static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
.func = bpf_get_raw_cpu_id,
.gpl_only = false,
.ret_type = RET_INTEGER,
};
BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
u64, flags, void *, data, u64, size)
{
if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
return -EINVAL;
return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
}
const struct bpf_func_proto bpf_event_output_data_proto = {
.func = bpf_event_output_data,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_CTX,
.arg2_type = ARG_CONST_MAP_PTR,
.arg3_type = ARG_ANYTHING,
.arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
.arg5_type = ARG_CONST_SIZE_OR_ZERO,
};
BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
const void __user *, user_ptr)
{
int ret = copy_from_user(dst, user_ptr, size);
if (unlikely(ret)) {
memset(dst, 0, size);
ret = -EFAULT;
}
return ret;
}
const struct bpf_func_proto bpf_copy_from_user_proto = {
.func = bpf_copy_from_user,
.gpl_only = false,
.might_sleep = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
.arg3_type = ARG_ANYTHING,
};
BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
{
int ret;
/* flags is not used yet */
if (unlikely(flags))
return -EINVAL;
if (unlikely(!size))
return 0;
ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
if (ret == size)
return 0;
memset(dst, 0, size);
/* Return -EFAULT for partial read */
return ret < 0 ? ret : -EFAULT;
}
const struct bpf_func_proto bpf_copy_from_user_task_proto = {
.func = bpf_copy_from_user_task,
.gpl_only = true,
.might_sleep = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
.arg3_type = ARG_ANYTHING,
.arg4_type = ARG_PTR_TO_BTF_ID,
.arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
.arg5_type = ARG_ANYTHING
};
BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
{
if (cpu >= nr_cpu_ids)
return (unsigned long)NULL;
return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
}
const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
.func = bpf_per_cpu_ptr,
.gpl_only = false,
.ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
.arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
.arg2_type = ARG_ANYTHING,
};
BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
{
return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
}
const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
.func = bpf_this_cpu_ptr,
.gpl_only = false,
.ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
.arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
};
static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
size_t bufsz)
{
void __user *user_ptr = (__force void __user *)unsafe_ptr;
buf[0] = 0;
switch (fmt_ptype) {
case 's':
#ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
if ((unsigned long)unsafe_ptr < TASK_SIZE)
return strncpy_from_user_nofault(buf, user_ptr, bufsz);
fallthrough;
#endif
case 'k':
return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
case 'u':
return strncpy_from_user_nofault(buf, user_ptr, bufsz);
}
return -EINVAL;
}
/* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
* arguments representation.
*/
#define MAX_BPRINTF_BIN_ARGS 512
/* Support executing three nested bprintf helper calls on a given CPU */
#define MAX_BPRINTF_NEST_LEVEL 3
struct bpf_bprintf_buffers {
char bin_args[MAX_BPRINTF_BIN_ARGS];
char buf[MAX_BPRINTF_BUF];
};
static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs);
static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
static int try_get_buffers(struct bpf_bprintf_buffers **bufs)
{
int nest_level;
preempt_disable();
nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
this_cpu_dec(bpf_bprintf_nest_level);
preempt_enable();
return -EBUSY;
}
*bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]);
return 0;
}
void bpf_bprintf_cleanup(struct bpf_bprintf_data *data)
{
if (!data->bin_args && !data->buf)
return;
if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0))
return;
this_cpu_dec(bpf_bprintf_nest_level);
preempt_enable();
}
/*
* bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
*
* Returns a negative value if fmt is an invalid format string or 0 otherwise.
*
* This can be used in two ways:
* - Format string verification only: when data->get_bin_args is false
* - Arguments preparation: in addition to the above verification, it writes in
* data->bin_args a binary representation of arguments usable by bstr_printf
* where pointers from BPF have been sanitized.
*
* In argument preparation mode, if 0 is returned, safe temporary buffers are
* allocated and bpf_bprintf_cleanup should be called to free them after use.
*/
int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
u32 num_args, struct bpf_bprintf_data *data)
{
bool get_buffers = (data->get_bin_args && num_args) || data->get_buf;
char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
struct bpf_bprintf_buffers *buffers = NULL;
size_t sizeof_cur_arg, sizeof_cur_ip;
int err, i, num_spec = 0;
u64 cur_arg;
char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
fmt_end = strnchr(fmt, fmt_size, 0);
if (!fmt_end)
return -EINVAL;
fmt_size = fmt_end - fmt;
if (get_buffers && try_get_buffers(&buffers))
return -EBUSY;
if (data->get_bin_args) {
if (num_args)
tmp_buf = buffers->bin_args;
tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS;
data->bin_args = (u32 *)tmp_buf;
}
if (data->get_buf)
data->buf = buffers->buf;
for (i = 0; i < fmt_size; i++) {
if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
err = -EINVAL;
goto out;
}
if (fmt[i] != '%')
continue;
if (fmt[i + 1] == '%') {
i++;
continue;
}
if (num_spec >= num_args) {
err = -EINVAL;
goto out;
}
/* The string is zero-terminated so if fmt[i] != 0, we can
* always access fmt[i + 1], in the worst case it will be a 0
*/
i++;
/* skip optional "[0 +-][num]" width formatting field */
while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' ||
fmt[i] == ' ')
i++;
if (fmt[i] >= '1' && fmt[i] <= '9') {
i++;
while (fmt[i] >= '0' && fmt[i] <= '9')
i++;
}
if (fmt[i] == 'p') {
sizeof_cur_arg = sizeof(long);
if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
fmt[i + 2] == 's') {
fmt_ptype = fmt[i + 1];
i += 2;
goto fmt_str;
}
if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
fmt[i + 1] == 'S') {
/* just kernel pointers */
if (tmp_buf)
cur_arg = raw_args[num_spec];
i++;
goto nocopy_fmt;
}
if (fmt[i + 1] == 'B') {
if (tmp_buf) {
err = snprintf(tmp_buf,
(tmp_buf_end - tmp_buf),
"%pB",
(void *)(long)raw_args[num_spec]);
tmp_buf += (err + 1);
}
i++;
num_spec++;
continue;
}
/* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
(fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
err = -EINVAL;
goto out;
}
i += 2;
if (!tmp_buf)
goto nocopy_fmt;
sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
err = -ENOSPC;
goto out;
}
unsafe_ptr = (char *)(long)raw_args[num_spec];
err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
sizeof_cur_ip);
if (err < 0)
memset(cur_ip, 0, sizeof_cur_ip);
/* hack: bstr_printf expects IP addresses to be
* pre-formatted as strings, ironically, the easiest way
* to do that is to call snprintf.
*/
ip_spec[2] = fmt[i - 1];
ip_spec[3] = fmt[i];
err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
ip_spec, &cur_ip);
tmp_buf += err + 1;
num_spec++;
continue;
} else if (fmt[i] == 's') {
fmt_ptype = fmt[i];
fmt_str:
if (fmt[i + 1] != 0 &&
!isspace(fmt[i + 1]) &&
!ispunct(fmt[i + 1])) {
err = -EINVAL;
goto out;
}
if (!tmp_buf)
goto nocopy_fmt;
if (tmp_buf_end == tmp_buf) {
err = -ENOSPC;
goto out;
}
unsafe_ptr = (char *)(long)raw_args[num_spec];
err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
fmt_ptype,
tmp_buf_end - tmp_buf);
if (err < 0) {
tmp_buf[0] = '\0';
err = 1;
}
tmp_buf += err;
num_spec++;
continue;
} else if (fmt[i] == 'c') {
if (!tmp_buf)
goto nocopy_fmt;
if (tmp_buf_end == tmp_buf) {
err = -ENOSPC;
goto out;
}
*tmp_buf = raw_args[num_spec];
tmp_buf++;
num_spec++;
continue;
}
sizeof_cur_arg = sizeof(int);
if (fmt[i] == 'l') {
sizeof_cur_arg = sizeof(long);
i++;
}
if (fmt[i] == 'l') {
sizeof_cur_arg = sizeof(long long);
i++;
}
if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
fmt[i] != 'x' && fmt[i] != 'X') {
err = -EINVAL;
goto out;
}
if (tmp_buf)
cur_arg = raw_args[num_spec];
nocopy_fmt:
if (tmp_buf) {
tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
err = -ENOSPC;
goto out;
}
if (sizeof_cur_arg == 8) {
*(u32 *)tmp_buf = *(u32 *)&cur_arg;
*(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
} else {
*(u32 *)tmp_buf = (u32)(long)cur_arg;
}
tmp_buf += sizeof_cur_arg;
}
num_spec++;
}
err = 0;
out:
if (err)
bpf_bprintf_cleanup(data);
return err;
}
BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
const void *, args, u32, data_len)
{
struct bpf_bprintf_data data = {
.get_bin_args = true,
};
int err, num_args;
if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
(data_len && !args))
return -EINVAL;
num_args = data_len / 8;
/* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
* can safely give an unbounded size.
*/
err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data);
if (err < 0)
return err;
err = bstr_printf(str, str_size, fmt, data.bin_args);
bpf_bprintf_cleanup(&data);
return err + 1;
}
const struct bpf_func_proto bpf_snprintf_proto = {
.func = bpf_snprintf,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_MEM_OR_NULL,
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
.arg3_type = ARG_PTR_TO_CONST_STR,
.arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
.arg5_type = ARG_CONST_SIZE_OR_ZERO,
};
/* BPF map elements can contain 'struct bpf_timer'.
* Such map owns all of its BPF timers.
* 'struct bpf_timer' is allocated as part of map element allocation
* and it's zero initialized.
* That space is used to keep 'struct bpf_timer_kern'.
* bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
* remembers 'struct bpf_map *' pointer it's part of.
* bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
* bpf_timer_start() arms the timer.
* If user space reference to a map goes to zero at this point
* ops->map_release_uref callback is responsible for cancelling the timers,
* freeing their memory, and decrementing prog's refcnts.
* bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
* Inner maps can contain bpf timers as well. ops->map_release_uref is
* freeing the timers when inner map is replaced or deleted by user space.
*/
struct bpf_hrtimer {
struct hrtimer timer;
struct bpf_map *map;
struct bpf_prog *prog;
void __rcu *callback_fn;
void *value;
};
/* the actual struct hidden inside uapi struct bpf_timer */
struct bpf_timer_kern {
struct bpf_hrtimer *timer;
/* bpf_spin_lock is used here instead of spinlock_t to make
* sure that it always fits into space reserved by struct bpf_timer
* regardless of LOCKDEP and spinlock debug flags.
*/
struct bpf_spin_lock lock;
} __attribute__((aligned(8)));
static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
{
struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
struct bpf_map *map = t->map;
void *value = t->value;
bpf_callback_t callback_fn;
void *key;
u32 idx;
BTF_TYPE_EMIT(struct bpf_timer);
callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held());
if (!callback_fn)
goto out;
/* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
* cannot be preempted by another bpf_timer_cb() on the same cpu.
* Remember the timer this callback is servicing to prevent
* deadlock if callback_fn() calls bpf_timer_cancel() or
* bpf_map_delete_elem() on the same timer.
*/
this_cpu_write(hrtimer_running, t);
if (map->map_type == BPF_MAP_TYPE_ARRAY) {
struct bpf_array *array = container_of(map, struct bpf_array, map);
/* compute the key */
idx = ((char *)value - array->value) / array->elem_size;
key = &idx;
} else { /* hash or lru */
key = value - round_up(map->key_size, 8);
}
callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
/* The verifier checked that return value is zero. */
this_cpu_write(hrtimer_running, NULL);
out:
return HRTIMER_NORESTART;
}
BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map,
u64, flags)
{
clockid_t clockid = flags & (MAX_CLOCKS - 1);
struct bpf_hrtimer *t;
int ret = 0;
BUILD_BUG_ON(MAX_CLOCKS != 16);
BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer));
BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer));
if (in_nmi())
return -EOPNOTSUPP;
if (flags >= MAX_CLOCKS ||
/* similar to timerfd except _ALARM variants are not supported */
(clockid != CLOCK_MONOTONIC &&
clockid != CLOCK_REALTIME &&
clockid != CLOCK_BOOTTIME))
return -EINVAL;
__bpf_spin_lock_irqsave(&timer->lock);
t = timer->timer;
if (t) {
ret = -EBUSY;
goto out;
}
if (!atomic64_read(&map->usercnt)) {
/* maps with timers must be either held by user space
* or pinned in bpffs.
*/
ret = -EPERM;
goto out;
}
/* allocate hrtimer via map_kmalloc to use memcg accounting */
t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node);
if (!t) {
ret = -ENOMEM;
goto out;
}
t->value = (void *)timer - map->record->timer_off;
t->map = map;
t->prog = NULL;
rcu_assign_pointer(t->callback_fn, NULL);
hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT);
t->timer.function = bpf_timer_cb;
timer->timer = t;
out:
__bpf_spin_unlock_irqrestore(&timer->lock);
return ret;
}
static const struct bpf_func_proto bpf_timer_init_proto = {
.func = bpf_timer_init,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_TIMER,
.arg2_type = ARG_CONST_MAP_PTR,
.arg3_type = ARG_ANYTHING,
};
BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn,
struct bpf_prog_aux *, aux)
{
struct bpf_prog *prev, *prog = aux->prog;
struct bpf_hrtimer *t;
int ret = 0;
if (in_nmi())
return -EOPNOTSUPP;
__bpf_spin_lock_irqsave(&timer->lock);
t = timer->timer;
if (!t) {
ret = -EINVAL;
goto out;
}
if (!atomic64_read(&t->map->usercnt)) {
/* maps with timers must be either held by user space
* or pinned in bpffs. Otherwise timer might still be
* running even when bpf prog is detached and user space
* is gone, since map_release_uref won't ever be called.
*/
ret = -EPERM;
goto out;
}
prev = t->prog;
if (prev != prog) {
/* Bump prog refcnt once. Every bpf_timer_set_callback()
* can pick different callback_fn-s within the same prog.
*/
prog = bpf_prog_inc_not_zero(prog);
if (IS_ERR(prog)) {
ret = PTR_ERR(prog);
goto out;
}
if (prev)
/* Drop prev prog refcnt when swapping with new prog */
bpf_prog_put(prev);
t->prog = prog;
}
rcu_assign_pointer(t->callback_fn, callback_fn);
out:
__bpf_spin_unlock_irqrestore(&timer->lock);
return ret;
}
static const struct bpf_func_proto bpf_timer_set_callback_proto = {
.func = bpf_timer_set_callback,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_TIMER,
.arg2_type = ARG_PTR_TO_FUNC,
};
BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags)
{
struct bpf_hrtimer *t;
int ret = 0;
enum hrtimer_mode mode;
if (in_nmi())
return -EOPNOTSUPP;
if (flags > BPF_F_TIMER_ABS)
return -EINVAL;
__bpf_spin_lock_irqsave(&timer->lock);
t = timer->timer;
if (!t || !t->prog) {
ret = -EINVAL;
goto out;
}
if (flags & BPF_F_TIMER_ABS)
mode = HRTIMER_MODE_ABS_SOFT;
else
mode = HRTIMER_MODE_REL_SOFT;
hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode);
out:
__bpf_spin_unlock_irqrestore(&timer->lock);
return ret;
}
static const struct bpf_func_proto bpf_timer_start_proto = {
.func = bpf_timer_start,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_TIMER,
.arg2_type = ARG_ANYTHING,
.arg3_type = ARG_ANYTHING,
};
static void drop_prog_refcnt(struct bpf_hrtimer *t)
{
struct bpf_prog *prog = t->prog;
if (prog) {
bpf_prog_put(prog);
t->prog = NULL;
rcu_assign_pointer(t->callback_fn, NULL);
}
}
BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer)
{
struct bpf_hrtimer *t;
int ret = 0;
if (in_nmi())
return -EOPNOTSUPP;
__bpf_spin_lock_irqsave(&timer->lock);
t = timer->timer;
if (!t) {
ret = -EINVAL;
goto out;
}
if (this_cpu_read(hrtimer_running) == t) {
/* If bpf callback_fn is trying to bpf_timer_cancel()
* its own timer the hrtimer_cancel() will deadlock
* since it waits for callback_fn to finish
*/
ret = -EDEADLK;
goto out;
}
drop_prog_refcnt(t);
out:
__bpf_spin_unlock_irqrestore(&timer->lock);
/* Cancel the timer and wait for associated callback to finish
* if it was running.
*/
ret = ret ?: hrtimer_cancel(&t->timer);
return ret;
}
static const struct bpf_func_proto bpf_timer_cancel_proto = {
.func = bpf_timer_cancel,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_TIMER,
};
/* This function is called by map_delete/update_elem for individual element and
* by ops->map_release_uref when the user space reference to a map reaches zero.
*/
void bpf_timer_cancel_and_free(void *val)
{
struct bpf_timer_kern *timer = val;
struct bpf_hrtimer *t;
/* Performance optimization: read timer->timer without lock first. */
if (!READ_ONCE(timer->timer))
return;
__bpf_spin_lock_irqsave(&timer->lock);
/* re-read it under lock */
t = timer->timer;
if (!t)
goto out;
drop_prog_refcnt(t);
/* The subsequent bpf_timer_start/cancel() helpers won't be able to use
* this timer, since it won't be initialized.
*/
timer->timer = NULL;
out:
__bpf_spin_unlock_irqrestore(&timer->lock);
if (!t)
return;
/* Cancel the timer and wait for callback to complete if it was running.
* If hrtimer_cancel() can be safely called it's safe to call kfree(t)
* right after for both preallocated and non-preallocated maps.
* The timer->timer = NULL was already done and no code path can
* see address 't' anymore.
*
* Check that bpf_map_delete/update_elem() wasn't called from timer
* callback_fn. In such case don't call hrtimer_cancel() (since it will
* deadlock) and don't call hrtimer_try_to_cancel() (since it will just
* return -1). Though callback_fn is still running on this cpu it's
* safe to do kfree(t) because bpf_timer_cb() read everything it needed
* from 't'. The bpf subprog callback_fn won't be able to access 't',
* since timer->timer = NULL was already done. The timer will be
* effectively cancelled because bpf_timer_cb() will return
* HRTIMER_NORESTART.
*/
if (this_cpu_read(hrtimer_running) != t)
hrtimer_cancel(&t->timer);
kfree(t);
}
BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr)
{
unsigned long *kptr = map_value;
return xchg(kptr, (unsigned long)ptr);
}
/* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
* helper is determined dynamically by the verifier. Use BPF_PTR_POISON to
* denote type that verifier will determine.
*/
static const struct bpf_func_proto bpf_kptr_xchg_proto = {
.func = bpf_kptr_xchg,
.gpl_only = false,
.ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
.ret_btf_id = BPF_PTR_POISON,
.arg1_type = ARG_PTR_TO_KPTR,
.arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
.arg2_btf_id = BPF_PTR_POISON,
};
/* Since the upper 8 bits of dynptr->size is reserved, the
* maximum supported size is 2^24 - 1.
*/
#define DYNPTR_MAX_SIZE ((1UL << 24) - 1)
#define DYNPTR_TYPE_SHIFT 28
#define DYNPTR_SIZE_MASK 0xFFFFFF
#define DYNPTR_RDONLY_BIT BIT(31)
static bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr)
{
return ptr->size & DYNPTR_RDONLY_BIT;
}
void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
{
ptr->size |= DYNPTR_RDONLY_BIT;
}
static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
{
ptr->size |= type << DYNPTR_TYPE_SHIFT;
}
static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr)
{
return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT;
}
u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
{
return ptr->size & DYNPTR_SIZE_MASK;
}
static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size)
{
u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK;
ptr->size = new_size | metadata;
}
int bpf_dynptr_check_size(u32 size)
{
return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
}
void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
enum bpf_dynptr_type type, u32 offset, u32 size)
{
ptr->data = data;
ptr->offset = offset;
ptr->size = size;
bpf_dynptr_set_type(ptr, type);
}
void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
{
memset(ptr, 0, sizeof(*ptr));
}
static int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u32 offset, u32 len)
{
u32 size = __bpf_dynptr_size(ptr);
if (len > size || offset > size - len)
return -E2BIG;
return 0;
}
BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr)
{
int err;
BTF_TYPE_EMIT(struct bpf_dynptr);
err = bpf_dynptr_check_size(size);
if (err)
goto error;
/* flags is currently unsupported */
if (flags) {
err = -EINVAL;
goto error;
}
bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size);
return 0;
error:
bpf_dynptr_set_null(ptr);
return err;
}
static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
.func = bpf_dynptr_from_mem,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
.arg3_type = ARG_ANYTHING,
.arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT,
};
BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src,
u32, offset, u64, flags)
{
enum bpf_dynptr_type type;
int err;
if (!src->data || flags)
return -EINVAL;
err = bpf_dynptr_check_off_len(src, offset, len);
if (err)
return err;
type = bpf_dynptr_get_type(src);
switch (type) {
case BPF_DYNPTR_TYPE_LOCAL:
case BPF_DYNPTR_TYPE_RINGBUF:
/* Source and destination may possibly overlap, hence use memmove to
* copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
* pointing to overlapping PTR_TO_MAP_VALUE regions.
*/
memmove(dst, src->data + src->offset + offset, len);
return 0;
case BPF_DYNPTR_TYPE_SKB:
return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len);
case BPF_DYNPTR_TYPE_XDP:
return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len);
default:
WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type);
return -EFAULT;
}
}
static const struct bpf_func_proto bpf_dynptr_read_proto = {
.func = bpf_dynptr_read,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
.arg3_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
.arg4_type = ARG_ANYTHING,
.arg5_type = ARG_ANYTHING,
};
BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src,
u32, len, u64, flags)
{
enum bpf_dynptr_type type;
int err;
if (!dst->data || __bpf_dynptr_is_rdonly(dst))
return -EINVAL;
err = bpf_dynptr_check_off_len(dst, offset, len);
if (err)
return err;
type = bpf_dynptr_get_type(dst);
switch (type) {
case BPF_DYNPTR_TYPE_LOCAL:
case BPF_DYNPTR_TYPE_RINGBUF:
if (flags)
return -EINVAL;
/* Source and destination may possibly overlap, hence use memmove to
* copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
* pointing to overlapping PTR_TO_MAP_VALUE regions.
*/
memmove(dst->data + dst->offset + offset, src, len);
return 0;
case BPF_DYNPTR_TYPE_SKB:
return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len,
flags);
case BPF_DYNPTR_TYPE_XDP:
if (flags)
return -EINVAL;
return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len);
default:
WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type);
return -EFAULT;
}
}
static const struct bpf_func_proto bpf_dynptr_write_proto = {
.func = bpf_dynptr_write,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
.arg2_type = ARG_ANYTHING,
.arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
.arg4_type = ARG_CONST_SIZE_OR_ZERO,
.arg5_type = ARG_ANYTHING,
};
BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len)
{
enum bpf_dynptr_type type;
int err;
if (!ptr->data)
return 0;
err = bpf_dynptr_check_off_len(ptr, offset, len);
if (err)
return 0;
if (__bpf_dynptr_is_rdonly(ptr))
return 0;
type = bpf_dynptr_get_type(ptr);
switch (type) {
case BPF_DYNPTR_TYPE_LOCAL:
case BPF_DYNPTR_TYPE_RINGBUF:
return (unsigned long)(ptr->data + ptr->offset + offset);
case BPF_DYNPTR_TYPE_SKB:
case BPF_DYNPTR_TYPE_XDP:
/* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */
return 0;
default:
WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type);
return 0;
}
}
static const struct bpf_func_proto bpf_dynptr_data_proto = {
.func = bpf_dynptr_data,
.gpl_only = false,
.ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL,
.arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
.arg2_type = ARG_ANYTHING,
.arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO,
};
const struct bpf_func_proto bpf_get_current_task_proto __weak;
const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
const struct bpf_func_proto bpf_probe_read_user_proto __weak;
const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id)
{
switch (func_id) {
case BPF_FUNC_map_lookup_elem:
return &bpf_map_lookup_elem_proto;
case BPF_FUNC_map_update_elem:
return &bpf_map_update_elem_proto;
case BPF_FUNC_map_delete_elem:
return &bpf_map_delete_elem_proto;
case BPF_FUNC_map_push_elem:
return &bpf_map_push_elem_proto;
case BPF_FUNC_map_pop_elem:
return &bpf_map_pop_elem_proto;
case BPF_FUNC_map_peek_elem:
return &bpf_map_peek_elem_proto;
case BPF_FUNC_map_lookup_percpu_elem:
return &bpf_map_lookup_percpu_elem_proto;
case BPF_FUNC_get_prandom_u32:
return &bpf_get_prandom_u32_proto;
case BPF_FUNC_get_smp_processor_id:
return &bpf_get_raw_smp_processor_id_proto;
case BPF_FUNC_get_numa_node_id:
return &bpf_get_numa_node_id_proto;
case BPF_FUNC_tail_call:
return &bpf_tail_call_proto;
case BPF_FUNC_ktime_get_ns:
return &bpf_ktime_get_ns_proto;
case BPF_FUNC_ktime_get_boot_ns:
return &bpf_ktime_get_boot_ns_proto;
case BPF_FUNC_ktime_get_tai_ns:
return &bpf_ktime_get_tai_ns_proto;
case BPF_FUNC_ringbuf_output:
return &bpf_ringbuf_output_proto;
case BPF_FUNC_ringbuf_reserve:
return &bpf_ringbuf_reserve_proto;
case BPF_FUNC_ringbuf_submit:
return &bpf_ringbuf_submit_proto;
case BPF_FUNC_ringbuf_discard:
return &bpf_ringbuf_discard_proto;
case BPF_FUNC_ringbuf_query:
return &bpf_ringbuf_query_proto;
case BPF_FUNC_strncmp:
return &bpf_strncmp_proto;
case BPF_FUNC_strtol:
return &bpf_strtol_proto;
case BPF_FUNC_strtoul:
return &bpf_strtoul_proto;
default:
break;
}
if (!bpf_capable())
return NULL;
switch (func_id) {
case BPF_FUNC_spin_lock:
return &bpf_spin_lock_proto;
case BPF_FUNC_spin_unlock:
return &bpf_spin_unlock_proto;
case BPF_FUNC_jiffies64:
return &bpf_jiffies64_proto;
case BPF_FUNC_per_cpu_ptr:
return &bpf_per_cpu_ptr_proto;
case BPF_FUNC_this_cpu_ptr:
return &bpf_this_cpu_ptr_proto;
case BPF_FUNC_timer_init:
return &bpf_timer_init_proto;
case BPF_FUNC_timer_set_callback:
return &bpf_timer_set_callback_proto;
case BPF_FUNC_timer_start:
return &bpf_timer_start_proto;
case BPF_FUNC_timer_cancel:
return &bpf_timer_cancel_proto;
case BPF_FUNC_kptr_xchg:
return &bpf_kptr_xchg_proto;
case BPF_FUNC_for_each_map_elem:
return &bpf_for_each_map_elem_proto;
case BPF_FUNC_loop:
return &bpf_loop_proto;
case BPF_FUNC_user_ringbuf_drain:
return &bpf_user_ringbuf_drain_proto;
case BPF_FUNC_ringbuf_reserve_dynptr:
return &bpf_ringbuf_reserve_dynptr_proto;
case BPF_FUNC_ringbuf_submit_dynptr:
return &bpf_ringbuf_submit_dynptr_proto;
case BPF_FUNC_ringbuf_discard_dynptr:
return &bpf_ringbuf_discard_dynptr_proto;
case BPF_FUNC_dynptr_from_mem:
return &bpf_dynptr_from_mem_proto;
case BPF_FUNC_dynptr_read:
return &bpf_dynptr_read_proto;
case BPF_FUNC_dynptr_write:
return &bpf_dynptr_write_proto;
case BPF_FUNC_dynptr_data:
return &bpf_dynptr_data_proto;
#ifdef CONFIG_CGROUPS
case BPF_FUNC_cgrp_storage_get:
return &bpf_cgrp_storage_get_proto;
case BPF_FUNC_cgrp_storage_delete:
return &bpf_cgrp_storage_delete_proto;
case BPF_FUNC_get_current_cgroup_id:
return &bpf_get_current_cgroup_id_proto;
case BPF_FUNC_get_current_ancestor_cgroup_id:
return &bpf_get_current_ancestor_cgroup_id_proto;
#endif
default:
break;
}
if (!perfmon_capable())
return NULL;
switch (func_id) {
case BPF_FUNC_trace_printk:
return bpf_get_trace_printk_proto();
case BPF_FUNC_get_current_task:
return &bpf_get_current_task_proto;
case BPF_FUNC_get_current_task_btf:
return &bpf_get_current_task_btf_proto;
case BPF_FUNC_probe_read_user:
return &bpf_probe_read_user_proto;
case BPF_FUNC_probe_read_kernel:
return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
NULL : &bpf_probe_read_kernel_proto;
case BPF_FUNC_probe_read_user_str:
return &bpf_probe_read_user_str_proto;
case BPF_FUNC_probe_read_kernel_str:
return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
NULL : &bpf_probe_read_kernel_str_proto;
case BPF_FUNC_snprintf_btf:
return &bpf_snprintf_btf_proto;
case BPF_FUNC_snprintf:
return &bpf_snprintf_proto;
case BPF_FUNC_task_pt_regs:
return &bpf_task_pt_regs_proto;
case BPF_FUNC_trace_vprintk:
return bpf_get_trace_vprintk_proto();
default:
return NULL;
}
}
void __bpf_obj_drop_impl(void *p, const struct btf_record *rec);
void bpf_list_head_free(const struct btf_field *field, void *list_head,
struct bpf_spin_lock *spin_lock)
{
struct list_head *head = list_head, *orig_head = list_head;
BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head));
BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head));
/* Do the actual list draining outside the lock to not hold the lock for
* too long, and also prevent deadlocks if tracing programs end up
* executing on entry/exit of functions called inside the critical
* section, and end up doing map ops that call bpf_list_head_free for
* the same map value again.
*/
__bpf_spin_lock_irqsave(spin_lock);
if (!head->next || list_empty(head))
goto unlock;
head = head->next;
unlock:
INIT_LIST_HEAD(orig_head);
__bpf_spin_unlock_irqrestore(spin_lock);
while (head != orig_head) {
void *obj = head;
obj -= field->graph_root.node_offset;
head = head->next;
/* The contained type can also have resources, including a
* bpf_list_head which needs to be freed.
*/
migrate_disable();
__bpf_obj_drop_impl(obj, field->graph_root.value_rec);
migrate_enable();
}
}
/* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are
* 'rb_node *', so field name of rb_node within containing struct is not
* needed.
*
* Since bpf_rb_tree's node type has a corresponding struct btf_field with
* graph_root.node_offset, it's not necessary to know field name
* or type of node struct
*/
#define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \
for (pos = rb_first_postorder(root); \
pos && ({ n = rb_next_postorder(pos); 1; }); \
pos = n)
void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
struct bpf_spin_lock *spin_lock)
{
struct rb_root_cached orig_root, *root = rb_root;
struct rb_node *pos, *n;
void *obj;
BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root));
BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root));
__bpf_spin_lock_irqsave(spin_lock);
orig_root = *root;
*root = RB_ROOT_CACHED;
__bpf_spin_unlock_irqrestore(spin_lock);
bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) {
obj = pos;
obj -= field->graph_root.node_offset;
migrate_disable();
__bpf_obj_drop_impl(obj, field->graph_root.value_rec);
migrate_enable();
}
}
__diag_push();
__diag_ignore_all("-Wmissing-prototypes",
"Global functions as their definitions will be in vmlinux BTF");
__bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign)
{
struct btf_struct_meta *meta = meta__ign;
u64 size = local_type_id__k;
void *p;
p = bpf_mem_alloc(&bpf_global_ma, size);
if (!p)
return NULL;
if (meta)
bpf_obj_init(meta->record, p);
return p;
}
/* Must be called under migrate_disable(), as required by bpf_mem_free */
void __bpf_obj_drop_impl(void *p, const struct btf_record *rec)
{
if (rec && rec->refcount_off >= 0 &&
!refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) {
/* Object is refcounted and refcount_dec didn't result in 0
* refcount. Return without freeing the object
*/
return;
}
if (rec)
bpf_obj_free_fields(rec, p);
bpf_mem_free(&bpf_global_ma, p);
}
__bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign)
{
struct btf_struct_meta *meta = meta__ign;
void *p = p__alloc;
__bpf_obj_drop_impl(p, meta ? meta->record : NULL);
}
__bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign)
{
struct btf_struct_meta *meta = meta__ign;
struct bpf_refcount *ref;
/* Could just cast directly to refcount_t *, but need some code using
* bpf_refcount type so that it is emitted in vmlinux BTF
*/
ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off);
if (!refcount_inc_not_zero((refcount_t *)ref))
return NULL;
/* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null
* in verifier.c
*/
return (void *)p__refcounted_kptr;
}
static int __bpf_list_add(struct bpf_list_node *node, struct bpf_list_head *head,
bool tail, struct btf_record *rec, u64 off)
{
struct list_head *n = (void *)node, *h = (void *)head;
/* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
* called on its fields, so init here
*/
if (unlikely(!h->next))
INIT_LIST_HEAD(h);
if (!list_empty(n)) {
/* Only called from BPF prog, no need to migrate_disable */
__bpf_obj_drop_impl((void *)n - off, rec);
return -EINVAL;
}
tail ? list_add_tail(n, h) : list_add(n, h);
return 0;
}
__bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head,
struct bpf_list_node *node,
void *meta__ign, u64 off)
{
struct btf_struct_meta *meta = meta__ign;
return __bpf_list_add(node, head, false,
meta ? meta->record : NULL, off);
}
__bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head,
struct bpf_list_node *node,
void *meta__ign, u64 off)
{
struct btf_struct_meta *meta = meta__ign;
return __bpf_list_add(node, head, true,
meta ? meta->record : NULL, off);
}
static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail)
{
struct list_head *n, *h = (void *)head;
/* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
* called on its fields, so init here
*/
if (unlikely(!h->next))
INIT_LIST_HEAD(h);
if (list_empty(h))
return NULL;
n = tail ? h->prev : h->next;
list_del_init(n);
return (struct bpf_list_node *)n;
}
__bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head)
{
return __bpf_list_del(head, false);
}
__bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head)
{
return __bpf_list_del(head, true);
}
__bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root,
struct bpf_rb_node *node)
{
struct rb_root_cached *r = (struct rb_root_cached *)root;
struct rb_node *n = (struct rb_node *)node;
if (RB_EMPTY_NODE(n))
return NULL;
rb_erase_cached(n, r);
RB_CLEAR_NODE(n);
return (struct bpf_rb_node *)n;
}
/* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF
* program
*/
static int __bpf_rbtree_add(struct bpf_rb_root *root, struct bpf_rb_node *node,
void *less, struct btf_record *rec, u64 off)
{
struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node;
struct rb_node *parent = NULL, *n = (struct rb_node *)node;
bpf_callback_t cb = (bpf_callback_t)less;
bool leftmost = true;
if (!RB_EMPTY_NODE(n)) {
/* Only called from BPF prog, no need to migrate_disable */
__bpf_obj_drop_impl((void *)n - off, rec);
return -EINVAL;
}
while (*link) {
parent = *link;
if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) {
link = &parent->rb_left;
} else {
link = &parent->rb_right;
leftmost = false;
}
}
rb_link_node(n, parent, link);
rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost);
return 0;
}
__bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b),
void *meta__ign, u64 off)
{
struct btf_struct_meta *meta = meta__ign;
return __bpf_rbtree_add(root, node, (void *)less, meta ? meta->record : NULL, off);
}
__bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root)
{
struct rb_root_cached *r = (struct rb_root_cached *)root;
return (struct bpf_rb_node *)rb_first_cached(r);
}
/**
* bpf_task_acquire - Acquire a reference to a task. A task acquired by this
* kfunc which is not stored in a map as a kptr, must be released by calling
* bpf_task_release().
* @p: The task on which a reference is being acquired.
*/
__bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p)
{
if (refcount_inc_not_zero(&p->rcu_users))
return p;
return NULL;
}
/**
* bpf_task_release - Release the reference acquired on a task.
* @p: The task on which a reference is being released.
*/
__bpf_kfunc void bpf_task_release(struct task_struct *p)
{
put_task_struct_rcu_user(p);
}
#ifdef CONFIG_CGROUPS
/**
* bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by
* this kfunc which is not stored in a map as a kptr, must be released by
* calling bpf_cgroup_release().
* @cgrp: The cgroup on which a reference is being acquired.
*/
__bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp)
{
return cgroup_tryget(cgrp) ? cgrp : NULL;
}
/**
* bpf_cgroup_release - Release the reference acquired on a cgroup.
* If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to
* not be freed until the current grace period has ended, even if its refcount
* drops to 0.
* @cgrp: The cgroup on which a reference is being released.
*/
__bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp)
{
cgroup_put(cgrp);
}
/**
* bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor
* array. A cgroup returned by this kfunc which is not subsequently stored in a
* map, must be released by calling bpf_cgroup_release().
* @cgrp: The cgroup for which we're performing a lookup.
* @level: The level of ancestor to look up.
*/
__bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level)
{
struct cgroup *ancestor;
if (level > cgrp->level || level < 0)
return NULL;
/* cgrp's refcnt could be 0 here, but ancestors can still be accessed */
ancestor = cgrp->ancestors[level];
if (!cgroup_tryget(ancestor))
return NULL;
return ancestor;
}
/**
* bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this
* kfunc which is not subsequently stored in a map, must be released by calling
* bpf_cgroup_release().
* @cgid: cgroup id.
*/
__bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid)
{
struct cgroup *cgrp;
cgrp = cgroup_get_from_id(cgid);
if (IS_ERR(cgrp))
return NULL;
return cgrp;
}
/**
* bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test
* task's membership of cgroup ancestry.
* @task: the task to be tested
* @ancestor: possible ancestor of @task's cgroup
*
* Tests whether @task's default cgroup hierarchy is a descendant of @ancestor.
* It follows all the same rules as cgroup_is_descendant, and only applies
* to the default hierarchy.
*/
__bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task,
struct cgroup *ancestor)
{
return task_under_cgroup_hierarchy(task, ancestor);
}
#endif /* CONFIG_CGROUPS */
/**
* bpf_task_from_pid - Find a struct task_struct from its pid by looking it up
* in the root pid namespace idr. If a task is returned, it must either be
* stored in a map, or released with bpf_task_release().
* @pid: The pid of the task being looked up.
*/
__bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid)
{
struct task_struct *p;
rcu_read_lock();
p = find_task_by_pid_ns(pid, &init_pid_ns);
if (p)
p = bpf_task_acquire(p);
rcu_read_unlock();
return p;
}
/**
* bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data.
* @ptr: The dynptr whose data slice to retrieve
* @offset: Offset into the dynptr
* @buffer__opt: User-provided buffer to copy contents into. May be NULL
* @buffer__szk: Size (in bytes) of the buffer if present. This is the
* length of the requested slice. This must be a constant.
*
* For non-skb and non-xdp type dynptrs, there is no difference between
* bpf_dynptr_slice and bpf_dynptr_data.
*
* If buffer__opt is NULL, the call will fail if buffer_opt was needed.
*
* If the intention is to write to the data slice, please use
* bpf_dynptr_slice_rdwr.
*
* The user must check that the returned pointer is not null before using it.
*
* Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice
* does not change the underlying packet data pointers, so a call to
* bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in
* the bpf program.
*
* Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only
* data slice (can be either direct pointer to the data or a pointer to the user
* provided buffer, with its contents containing the data, if unable to obtain
* direct pointer)
*/
__bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr_kern *ptr, u32 offset,
void *buffer__opt, u32 buffer__szk)
{
enum bpf_dynptr_type type;
u32 len = buffer__szk;
int err;
if (!ptr->data)
return NULL;
err = bpf_dynptr_check_off_len(ptr, offset, len);
if (err)
return NULL;
type = bpf_dynptr_get_type(ptr);
switch (type) {
case BPF_DYNPTR_TYPE_LOCAL:
case BPF_DYNPTR_TYPE_RINGBUF:
return ptr->data + ptr->offset + offset;
case BPF_DYNPTR_TYPE_SKB:
return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt);
case BPF_DYNPTR_TYPE_XDP:
{
void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len);
if (xdp_ptr)
return xdp_ptr;
if (!buffer__opt)
return NULL;
bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false);
return buffer__opt;
}
default:
WARN_ONCE(true, "unknown dynptr type %d\n", type);
return NULL;
}
}
/**
* bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data.
* @ptr: The dynptr whose data slice to retrieve
* @offset: Offset into the dynptr
* @buffer__opt: User-provided buffer to copy contents into. May be NULL
* @buffer__szk: Size (in bytes) of the buffer if present. This is the
* length of the requested slice. This must be a constant.
*
* For non-skb and non-xdp type dynptrs, there is no difference between
* bpf_dynptr_slice and bpf_dynptr_data.
*
* If buffer__opt is NULL, the call will fail if buffer_opt was needed.
*
* The returned pointer is writable and may point to either directly the dynptr
* data at the requested offset or to the buffer if unable to obtain a direct
* data pointer to (example: the requested slice is to the paged area of an skb
* packet). In the case where the returned pointer is to the buffer, the user
* is responsible for persisting writes through calling bpf_dynptr_write(). This
* usually looks something like this pattern:
*
* struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer));
* if (!eth)
* return TC_ACT_SHOT;
*
* // mutate eth header //
*
* if (eth == buffer)
* bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0);
*
* Please note that, as in the example above, the user must check that the
* returned pointer is not null before using it.
*
* Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr
* does not change the underlying packet data pointers, so a call to
* bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in
* the bpf program.
*
* Return: NULL if the call failed (eg invalid dynptr), pointer to a
* data slice (can be either direct pointer to the data or a pointer to the user
* provided buffer, with its contents containing the data, if unable to obtain
* direct pointer)
*/
__bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr_kern *ptr, u32 offset,
void *buffer__opt, u32 buffer__szk)
{
if (!ptr->data || __bpf_dynptr_is_rdonly(ptr))
return NULL;
/* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice.
*
* For skb-type dynptrs, it is safe to write into the returned pointer
* if the bpf program allows skb data writes. There are two possiblities
* that may occur when calling bpf_dynptr_slice_rdwr:
*
* 1) The requested slice is in the head of the skb. In this case, the
* returned pointer is directly to skb data, and if the skb is cloned, the
* verifier will have uncloned it (see bpf_unclone_prologue()) already.
* The pointer can be directly written into.
*
* 2) Some portion of the requested slice is in the paged buffer area.
* In this case, the requested data will be copied out into the buffer
* and the returned pointer will be a pointer to the buffer. The skb
* will not be pulled. To persist the write, the user will need to call
* bpf_dynptr_write(), which will pull the skb and commit the write.
*
* Similarly for xdp programs, if the requested slice is not across xdp
* fragments, then a direct pointer will be returned, otherwise the data
* will be copied out into the buffer and the user will need to call
* bpf_dynptr_write() to commit changes.
*/
return bpf_dynptr_slice(ptr, offset, buffer__opt, buffer__szk);
}
__bpf_kfunc int bpf_dynptr_adjust(struct bpf_dynptr_kern *ptr, u32 start, u32 end)
{
u32 size;
if (!ptr->data || start > end)
return -EINVAL;
size = __bpf_dynptr_size(ptr);
if (start > size || end > size)
return -ERANGE;
ptr->offset += start;
bpf_dynptr_set_size(ptr, end - start);
return 0;
}
__bpf_kfunc bool bpf_dynptr_is_null(struct bpf_dynptr_kern *ptr)
{
return !ptr->data;
}
__bpf_kfunc bool bpf_dynptr_is_rdonly(struct bpf_dynptr_kern *ptr)
{
if (!ptr->data)
return false;
return __bpf_dynptr_is_rdonly(ptr);
}
__bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
{
if (!ptr->data)
return -EINVAL;
return __bpf_dynptr_size(ptr);
}
__bpf_kfunc int bpf_dynptr_clone(struct bpf_dynptr_kern *ptr,
struct bpf_dynptr_kern *clone__uninit)
{
if (!ptr->data) {
bpf_dynptr_set_null(clone__uninit);
return -EINVAL;
}
*clone__uninit = *ptr;
return 0;
}
__bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj)
{
return obj;
}
__bpf_kfunc void *bpf_rdonly_cast(void *obj__ign, u32 btf_id__k)
{
return obj__ign;
}
__bpf_kfunc void bpf_rcu_read_lock(void)
{
rcu_read_lock();
}
__bpf_kfunc void bpf_rcu_read_unlock(void)
{
rcu_read_unlock();
}
__diag_pop();
BTF_SET8_START(generic_btf_ids)
#ifdef CONFIG_KEXEC_CORE
BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE)
#endif
BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE)
BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_list_push_front_impl)
BTF_ID_FLAGS(func, bpf_list_push_back_impl)
BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE)
BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_rbtree_add_impl)
BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL)
#ifdef CONFIG_CGROUPS
BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE)
BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU)
#endif
BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL)
BTF_SET8_END(generic_btf_ids)
static const struct btf_kfunc_id_set generic_kfunc_set = {
.owner = THIS_MODULE,
.set = &generic_btf_ids,
};
BTF_ID_LIST(generic_dtor_ids)
BTF_ID(struct, task_struct)
BTF_ID(func, bpf_task_release)
#ifdef CONFIG_CGROUPS
BTF_ID(struct, cgroup)
BTF_ID(func, bpf_cgroup_release)
#endif
BTF_SET8_START(common_btf_ids)
BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx)
BTF_ID_FLAGS(func, bpf_rdonly_cast)
BTF_ID_FLAGS(func, bpf_rcu_read_lock)
BTF_ID_FLAGS(func, bpf_rcu_read_unlock)
BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW)
BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY)
BTF_ID_FLAGS(func, bpf_dynptr_adjust)
BTF_ID_FLAGS(func, bpf_dynptr_is_null)
BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly)
BTF_ID_FLAGS(func, bpf_dynptr_size)
BTF_ID_FLAGS(func, bpf_dynptr_clone)
BTF_SET8_END(common_btf_ids)
static const struct btf_kfunc_id_set common_kfunc_set = {
.owner = THIS_MODULE,
.set = &common_btf_ids,
};
static int __init kfunc_init(void)
{
int ret;
const struct btf_id_dtor_kfunc generic_dtors[] = {
{
.btf_id = generic_dtor_ids[0],
.kfunc_btf_id = generic_dtor_ids[1]
},
#ifdef CONFIG_CGROUPS
{
.btf_id = generic_dtor_ids[2],
.kfunc_btf_id = generic_dtor_ids[3]
},
#endif
};
ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set);
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set);
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set);
ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors,
ARRAY_SIZE(generic_dtors),
THIS_MODULE);
return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set);
}
late_initcall(kfunc_init);