Grant Grundler 6e5dc42b5a [PARISC] Further updates to timer_interrupt()
This version (relative to the current tree):
o eliminates "while (ticks_elapsed)" loop. It's not needed.
o drop "ticks_elapsed" completely from timer_interrupt().
o Estimates elapsed cycles (based on HZ) to see which kind of
  math we want to use to calculate "cycles_remainder".
o Fixes a bug where we would loose a tick if we decided
  we wanted to skip one interrupt.

Signed-off-by: Grant Grundler <grundler@parisc-linux.org>
Signed-off-by: Kyle McMartin <kyle@parisc-linux.org>
2006-10-04 06:48:48 -06:00

330 lines
8.3 KiB
C

/*
* linux/arch/parisc/kernel/time.c
*
* Copyright (C) 1991, 1992, 1995 Linus Torvalds
* Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
* Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
*
* 1994-07-02 Alan Modra
* fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
* 1998-12-20 Updated NTP code according to technical memorandum Jan '96
* "A Kernel Model for Precision Timekeeping" by Dave Mills
*/
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/profile.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/param.h>
#include <asm/pdc.h>
#include <asm/led.h>
#include <linux/timex.h>
static unsigned long clocktick __read_mostly; /* timer cycles per tick */
#ifdef CONFIG_SMP
extern void smp_do_timer(struct pt_regs *regs);
#endif
irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
unsigned long now;
unsigned long next_tick;
unsigned long cycles_elapsed;
unsigned long cycles_remainder;
unsigned int cpu = smp_processor_id();
/* gcc can optimize for "read-only" case with a local clocktick */
unsigned long cpt = clocktick;
profile_tick(CPU_PROFILING, regs);
/* Initialize next_tick to the expected tick time. */
next_tick = cpu_data[cpu].it_value;
/* Get current interval timer.
* CR16 reads as 64 bits in CPU wide mode.
* CR16 reads as 32 bits in CPU narrow mode.
*/
now = mfctl(16);
cycles_elapsed = now - next_tick;
if ((cycles_elapsed >> 5) < cpt) {
/* use "cheap" math (add/subtract) instead
* of the more expensive div/mul method
*/
cycles_remainder = cycles_elapsed;
while (cycles_remainder > cpt) {
cycles_remainder -= cpt;
}
} else {
cycles_remainder = cycles_elapsed % cpt;
}
/* Can we differentiate between "early CR16" (aka Scenario 1) and
* "long delay" (aka Scenario 3)? I don't think so.
*
* We expected timer_interrupt to be delivered at least a few hundred
* cycles after the IT fires. But it's arbitrary how much time passes
* before we call it "late". I've picked one second.
*/
/* aproximate HZ with shifts. Intended math is "(elapsed/clocktick) > HZ" */
#if HZ == 1000
if (cycles_elapsed > (cpt << 10) )
#elif HZ == 250
if (cycles_elapsed > (cpt << 8) )
#elif HZ == 100
if (cycles_elapsed > (cpt << 7) )
#else
#warn WTF is HZ set to anyway?
if (cycles_elapsed > (HZ * cpt) )
#endif
{
/* Scenario 3: very long delay? bad in any case */
printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
" cycles %lX rem %lX "
" next/now %lX/%lX\n",
cpu,
cycles_elapsed, cycles_remainder,
next_tick, now );
}
/* convert from "division remainder" to "remainder of clock tick" */
cycles_remainder = cpt - cycles_remainder;
/* Determine when (in CR16 cycles) next IT interrupt will fire.
* We want IT to fire modulo clocktick even if we miss/skip some.
* But those interrupts don't in fact get delivered that regularly.
*/
next_tick = now + cycles_remainder;
cpu_data[cpu].it_value = next_tick;
/* Skip one clocktick on purpose if we are likely to miss next_tick.
* We want to avoid the new next_tick being less than CR16.
* If that happened, itimer wouldn't fire until CR16 wrapped.
* We'll catch the tick we missed on the tick after that.
*/
if (!(cycles_remainder >> 13))
next_tick += cpt;
/* Program the IT when to deliver the next interrupt. */
/* Only bottom 32-bits of next_tick are written to cr16. */
mtctl(next_tick, 16);
/* Done mucking with unreliable delivery of interrupts.
* Go do system house keeping.
*/
#ifdef CONFIG_SMP
smp_do_timer(regs);
#else
update_process_times(user_mode(regs));
#endif
if (cpu == 0) {
write_seqlock(&xtime_lock);
do_timer(regs);
write_sequnlock(&xtime_lock);
}
/* check soft power switch status */
if (cpu == 0 && !atomic_read(&power_tasklet.count))
tasklet_schedule(&power_tasklet);
return IRQ_HANDLED;
}
unsigned long profile_pc(struct pt_regs *regs)
{
unsigned long pc = instruction_pointer(regs);
if (regs->gr[0] & PSW_N)
pc -= 4;
#ifdef CONFIG_SMP
if (in_lock_functions(pc))
pc = regs->gr[2];
#endif
return pc;
}
EXPORT_SYMBOL(profile_pc);
/*
* Return the number of micro-seconds that elapsed since the last
* update to wall time (aka xtime). The xtime_lock
* must be at least read-locked when calling this routine.
*/
static inline unsigned long gettimeoffset (void)
{
#ifndef CONFIG_SMP
/*
* FIXME: This won't work on smp because jiffies are updated by cpu 0.
* Once parisc-linux learns the cr16 difference between processors,
* this could be made to work.
*/
unsigned long now;
unsigned long prev_tick;
unsigned long next_tick;
unsigned long elapsed_cycles;
unsigned long usec;
unsigned long cpuid = smp_processor_id();
unsigned long cpt = clocktick;
next_tick = cpu_data[cpuid].it_value;
now = mfctl(16); /* Read the hardware interval timer. */
prev_tick = next_tick - cpt;
/* Assume Scenario 1: "now" is later than prev_tick. */
elapsed_cycles = now - prev_tick;
/* aproximate HZ with shifts. Intended math is "(elapsed/clocktick) > HZ" */
#if HZ == 1000
if (elapsed_cycles > (cpt << 10) )
#elif HZ == 250
if (elapsed_cycles > (cpt << 8) )
#elif HZ == 100
if (elapsed_cycles > (cpt << 7) )
#else
#warn WTF is HZ set to anyway?
if (elapsed_cycles > (HZ * cpt) )
#endif
{
/* Scenario 3: clock ticks are missing. */
printk (KERN_CRIT "gettimeoffset(CPU %ld): missing %ld ticks!"
" cycles %lX prev/now/next %lX/%lX/%lX clock %lX\n",
cpuid, elapsed_cycles / cpt,
elapsed_cycles, prev_tick, now, next_tick, cpt);
}
/* FIXME: Can we improve the precision? Not with PAGE0. */
usec = (elapsed_cycles * 10000) / PAGE0->mem_10msec;
/* add in "lost" jiffies */
usec += cpt * (jiffies - wall_jiffies);
return usec;
#else
return 0;
#endif
}
void
do_gettimeofday (struct timeval *tv)
{
unsigned long flags, seq, usec, sec;
/* Hold xtime_lock and adjust timeval. */
do {
seq = read_seqbegin_irqsave(&xtime_lock, flags);
usec = gettimeoffset();
sec = xtime.tv_sec;
usec += (xtime.tv_nsec / 1000);
} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
/* Move adjusted usec's into sec's. */
while (usec >= USEC_PER_SEC) {
usec -= USEC_PER_SEC;
++sec;
}
/* Return adjusted result. */
tv->tv_sec = sec;
tv->tv_usec = usec;
}
EXPORT_SYMBOL(do_gettimeofday);
int
do_settimeofday (struct timespec *tv)
{
time_t wtm_sec, sec = tv->tv_sec;
long wtm_nsec, nsec = tv->tv_nsec;
if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
return -EINVAL;
write_seqlock_irq(&xtime_lock);
{
/*
* This is revolting. We need to set "xtime"
* correctly. However, the value in this location is
* the value at the most recent update of wall time.
* Discover what correction gettimeofday would have
* done, and then undo it!
*/
nsec -= gettimeoffset() * 1000;
wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
set_normalized_timespec(&xtime, sec, nsec);
set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
ntp_clear();
}
write_sequnlock_irq(&xtime_lock);
clock_was_set();
return 0;
}
EXPORT_SYMBOL(do_settimeofday);
/*
* XXX: We can do better than this.
* Returns nanoseconds
*/
unsigned long long sched_clock(void)
{
return (unsigned long long)jiffies * (1000000000 / HZ);
}
void __init start_cpu_itimer(void)
{
unsigned int cpu = smp_processor_id();
unsigned long next_tick = mfctl(16) + clocktick;
mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */
cpu_data[cpu].it_value = next_tick;
}
void __init time_init(void)
{
static struct pdc_tod tod_data;
clocktick = (100 * PAGE0->mem_10msec) / HZ;
start_cpu_itimer(); /* get CPU 0 started */
if(pdc_tod_read(&tod_data) == 0) {
write_seqlock_irq(&xtime_lock);
xtime.tv_sec = tod_data.tod_sec;
xtime.tv_nsec = tod_data.tod_usec * 1000;
set_normalized_timespec(&wall_to_monotonic,
-xtime.tv_sec, -xtime.tv_nsec);
write_sequnlock_irq(&xtime_lock);
} else {
printk(KERN_ERR "Error reading tod clock\n");
xtime.tv_sec = 0;
xtime.tv_nsec = 0;
}
}