6f8fd758de
On completion of a flush sequence, blk_flush_restore_request() restores the bio of a request to the original submitted BIO. However, the last use of the request in the flush sequence may have been for a POSTFLUSH which does not have a sector. So make sure to restore the request sector using the iter sector of the original BIO. This BIO has not changed yet since the completions of the flush sequence intermediate steps use requeueing of the request until all steps are completed. Restoring the request sector ensures that blk_mq_end_request() will see a valid sector as originally set when the flush BIO was submitted. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Hannes Reinecke <hare@suse.de> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Link: https://lore.kernel.org/r/20240408014128.205141-2-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
541 lines
16 KiB
C
541 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Functions to sequence PREFLUSH and FUA writes.
|
|
*
|
|
* Copyright (C) 2011 Max Planck Institute for Gravitational Physics
|
|
* Copyright (C) 2011 Tejun Heo <tj@kernel.org>
|
|
*
|
|
* REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three
|
|
* optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
|
|
* properties and hardware capability.
|
|
*
|
|
* If a request doesn't have data, only REQ_PREFLUSH makes sense, which
|
|
* indicates a simple flush request. If there is data, REQ_PREFLUSH indicates
|
|
* that the device cache should be flushed before the data is executed, and
|
|
* REQ_FUA means that the data must be on non-volatile media on request
|
|
* completion.
|
|
*
|
|
* If the device doesn't have writeback cache, PREFLUSH and FUA don't make any
|
|
* difference. The requests are either completed immediately if there's no data
|
|
* or executed as normal requests otherwise.
|
|
*
|
|
* If the device has writeback cache and supports FUA, REQ_PREFLUSH is
|
|
* translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
|
|
*
|
|
* If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH
|
|
* is translated to PREFLUSH and REQ_FUA to POSTFLUSH.
|
|
*
|
|
* The actual execution of flush is double buffered. Whenever a request
|
|
* needs to execute PRE or POSTFLUSH, it queues at
|
|
* fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a
|
|
* REQ_OP_FLUSH is issued and the pending_idx is toggled. When the flush
|
|
* completes, all the requests which were pending are proceeded to the next
|
|
* step. This allows arbitrary merging of different types of PREFLUSH/FUA
|
|
* requests.
|
|
*
|
|
* Currently, the following conditions are used to determine when to issue
|
|
* flush.
|
|
*
|
|
* C1. At any given time, only one flush shall be in progress. This makes
|
|
* double buffering sufficient.
|
|
*
|
|
* C2. Flush is deferred if any request is executing DATA of its sequence.
|
|
* This avoids issuing separate POSTFLUSHes for requests which shared
|
|
* PREFLUSH.
|
|
*
|
|
* C3. The second condition is ignored if there is a request which has
|
|
* waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid
|
|
* starvation in the unlikely case where there are continuous stream of
|
|
* FUA (without PREFLUSH) requests.
|
|
*
|
|
* For devices which support FUA, it isn't clear whether C2 (and thus C3)
|
|
* is beneficial.
|
|
*
|
|
* Note that a sequenced PREFLUSH/FUA request with DATA is completed twice.
|
|
* Once while executing DATA and again after the whole sequence is
|
|
* complete. The first completion updates the contained bio but doesn't
|
|
* finish it so that the bio submitter is notified only after the whole
|
|
* sequence is complete. This is implemented by testing RQF_FLUSH_SEQ in
|
|
* req_bio_endio().
|
|
*
|
|
* The above peculiarity requires that each PREFLUSH/FUA request has only one
|
|
* bio attached to it, which is guaranteed as they aren't allowed to be
|
|
* merged in the usual way.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/part_stat.h>
|
|
|
|
#include "blk.h"
|
|
#include "blk-mq.h"
|
|
#include "blk-mq-sched.h"
|
|
|
|
/* PREFLUSH/FUA sequences */
|
|
enum {
|
|
REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */
|
|
REQ_FSEQ_DATA = (1 << 1), /* data write in progress */
|
|
REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */
|
|
REQ_FSEQ_DONE = (1 << 3),
|
|
|
|
REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
|
|
REQ_FSEQ_POSTFLUSH,
|
|
|
|
/*
|
|
* If flush has been pending longer than the following timeout,
|
|
* it's issued even if flush_data requests are still in flight.
|
|
*/
|
|
FLUSH_PENDING_TIMEOUT = 5 * HZ,
|
|
};
|
|
|
|
static void blk_kick_flush(struct request_queue *q,
|
|
struct blk_flush_queue *fq, blk_opf_t flags);
|
|
|
|
static inline struct blk_flush_queue *
|
|
blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx)
|
|
{
|
|
return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq;
|
|
}
|
|
|
|
static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq)
|
|
{
|
|
unsigned int policy = 0;
|
|
|
|
if (blk_rq_sectors(rq))
|
|
policy |= REQ_FSEQ_DATA;
|
|
|
|
if (fflags & (1UL << QUEUE_FLAG_WC)) {
|
|
if (rq->cmd_flags & REQ_PREFLUSH)
|
|
policy |= REQ_FSEQ_PREFLUSH;
|
|
if (!(fflags & (1UL << QUEUE_FLAG_FUA)) &&
|
|
(rq->cmd_flags & REQ_FUA))
|
|
policy |= REQ_FSEQ_POSTFLUSH;
|
|
}
|
|
return policy;
|
|
}
|
|
|
|
static unsigned int blk_flush_cur_seq(struct request *rq)
|
|
{
|
|
return 1 << ffz(rq->flush.seq);
|
|
}
|
|
|
|
static void blk_flush_restore_request(struct request *rq)
|
|
{
|
|
/*
|
|
* After flush data completion, @rq->bio is %NULL but we need to
|
|
* complete the bio again. @rq->biotail is guaranteed to equal the
|
|
* original @rq->bio. Restore it.
|
|
*/
|
|
rq->bio = rq->biotail;
|
|
rq->__sector = rq->bio->bi_iter.bi_sector;
|
|
|
|
/* make @rq a normal request */
|
|
rq->rq_flags &= ~RQF_FLUSH_SEQ;
|
|
rq->end_io = rq->flush.saved_end_io;
|
|
}
|
|
|
|
static void blk_account_io_flush(struct request *rq)
|
|
{
|
|
struct block_device *part = rq->q->disk->part0;
|
|
|
|
part_stat_lock();
|
|
part_stat_inc(part, ios[STAT_FLUSH]);
|
|
part_stat_add(part, nsecs[STAT_FLUSH],
|
|
blk_time_get_ns() - rq->start_time_ns);
|
|
part_stat_unlock();
|
|
}
|
|
|
|
/**
|
|
* blk_flush_complete_seq - complete flush sequence
|
|
* @rq: PREFLUSH/FUA request being sequenced
|
|
* @fq: flush queue
|
|
* @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
|
|
* @error: whether an error occurred
|
|
*
|
|
* @rq just completed @seq part of its flush sequence, record the
|
|
* completion and trigger the next step.
|
|
*
|
|
* CONTEXT:
|
|
* spin_lock_irq(fq->mq_flush_lock)
|
|
*/
|
|
static void blk_flush_complete_seq(struct request *rq,
|
|
struct blk_flush_queue *fq,
|
|
unsigned int seq, blk_status_t error)
|
|
{
|
|
struct request_queue *q = rq->q;
|
|
struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
|
|
blk_opf_t cmd_flags;
|
|
|
|
BUG_ON(rq->flush.seq & seq);
|
|
rq->flush.seq |= seq;
|
|
cmd_flags = rq->cmd_flags;
|
|
|
|
if (likely(!error))
|
|
seq = blk_flush_cur_seq(rq);
|
|
else
|
|
seq = REQ_FSEQ_DONE;
|
|
|
|
switch (seq) {
|
|
case REQ_FSEQ_PREFLUSH:
|
|
case REQ_FSEQ_POSTFLUSH:
|
|
/* queue for flush */
|
|
if (list_empty(pending))
|
|
fq->flush_pending_since = jiffies;
|
|
list_move_tail(&rq->queuelist, pending);
|
|
break;
|
|
|
|
case REQ_FSEQ_DATA:
|
|
fq->flush_data_in_flight++;
|
|
spin_lock(&q->requeue_lock);
|
|
list_move(&rq->queuelist, &q->requeue_list);
|
|
spin_unlock(&q->requeue_lock);
|
|
blk_mq_kick_requeue_list(q);
|
|
break;
|
|
|
|
case REQ_FSEQ_DONE:
|
|
/*
|
|
* @rq was previously adjusted by blk_insert_flush() for
|
|
* flush sequencing and may already have gone through the
|
|
* flush data request completion path. Restore @rq for
|
|
* normal completion and end it.
|
|
*/
|
|
list_del_init(&rq->queuelist);
|
|
blk_flush_restore_request(rq);
|
|
blk_mq_end_request(rq, error);
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
blk_kick_flush(q, fq, cmd_flags);
|
|
}
|
|
|
|
static enum rq_end_io_ret flush_end_io(struct request *flush_rq,
|
|
blk_status_t error)
|
|
{
|
|
struct request_queue *q = flush_rq->q;
|
|
struct list_head *running;
|
|
struct request *rq, *n;
|
|
unsigned long flags = 0;
|
|
struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
|
|
|
|
/* release the tag's ownership to the req cloned from */
|
|
spin_lock_irqsave(&fq->mq_flush_lock, flags);
|
|
|
|
if (!req_ref_put_and_test(flush_rq)) {
|
|
fq->rq_status = error;
|
|
spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
|
|
return RQ_END_IO_NONE;
|
|
}
|
|
|
|
blk_account_io_flush(flush_rq);
|
|
/*
|
|
* Flush request has to be marked as IDLE when it is really ended
|
|
* because its .end_io() is called from timeout code path too for
|
|
* avoiding use-after-free.
|
|
*/
|
|
WRITE_ONCE(flush_rq->state, MQ_RQ_IDLE);
|
|
if (fq->rq_status != BLK_STS_OK) {
|
|
error = fq->rq_status;
|
|
fq->rq_status = BLK_STS_OK;
|
|
}
|
|
|
|
if (!q->elevator) {
|
|
flush_rq->tag = BLK_MQ_NO_TAG;
|
|
} else {
|
|
blk_mq_put_driver_tag(flush_rq);
|
|
flush_rq->internal_tag = BLK_MQ_NO_TAG;
|
|
}
|
|
|
|
running = &fq->flush_queue[fq->flush_running_idx];
|
|
BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
|
|
|
|
/* account completion of the flush request */
|
|
fq->flush_running_idx ^= 1;
|
|
|
|
/* and push the waiting requests to the next stage */
|
|
list_for_each_entry_safe(rq, n, running, queuelist) {
|
|
unsigned int seq = blk_flush_cur_seq(rq);
|
|
|
|
BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
|
|
blk_flush_complete_seq(rq, fq, seq, error);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
|
|
return RQ_END_IO_NONE;
|
|
}
|
|
|
|
bool is_flush_rq(struct request *rq)
|
|
{
|
|
return rq->end_io == flush_end_io;
|
|
}
|
|
|
|
/**
|
|
* blk_kick_flush - consider issuing flush request
|
|
* @q: request_queue being kicked
|
|
* @fq: flush queue
|
|
* @flags: cmd_flags of the original request
|
|
*
|
|
* Flush related states of @q have changed, consider issuing flush request.
|
|
* Please read the comment at the top of this file for more info.
|
|
*
|
|
* CONTEXT:
|
|
* spin_lock_irq(fq->mq_flush_lock)
|
|
*
|
|
*/
|
|
static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq,
|
|
blk_opf_t flags)
|
|
{
|
|
struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
|
|
struct request *first_rq =
|
|
list_first_entry(pending, struct request, queuelist);
|
|
struct request *flush_rq = fq->flush_rq;
|
|
|
|
/* C1 described at the top of this file */
|
|
if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
|
|
return;
|
|
|
|
/* C2 and C3 */
|
|
if (fq->flush_data_in_flight &&
|
|
time_before(jiffies,
|
|
fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
|
|
return;
|
|
|
|
/*
|
|
* Issue flush and toggle pending_idx. This makes pending_idx
|
|
* different from running_idx, which means flush is in flight.
|
|
*/
|
|
fq->flush_pending_idx ^= 1;
|
|
|
|
blk_rq_init(q, flush_rq);
|
|
|
|
/*
|
|
* In case of none scheduler, borrow tag from the first request
|
|
* since they can't be in flight at the same time. And acquire
|
|
* the tag's ownership for flush req.
|
|
*
|
|
* In case of IO scheduler, flush rq need to borrow scheduler tag
|
|
* just for cheating put/get driver tag.
|
|
*/
|
|
flush_rq->mq_ctx = first_rq->mq_ctx;
|
|
flush_rq->mq_hctx = first_rq->mq_hctx;
|
|
|
|
if (!q->elevator)
|
|
flush_rq->tag = first_rq->tag;
|
|
else
|
|
flush_rq->internal_tag = first_rq->internal_tag;
|
|
|
|
flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH;
|
|
flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK);
|
|
flush_rq->rq_flags |= RQF_FLUSH_SEQ;
|
|
flush_rq->end_io = flush_end_io;
|
|
/*
|
|
* Order WRITE ->end_io and WRITE rq->ref, and its pair is the one
|
|
* implied in refcount_inc_not_zero() called from
|
|
* blk_mq_find_and_get_req(), which orders WRITE/READ flush_rq->ref
|
|
* and READ flush_rq->end_io
|
|
*/
|
|
smp_wmb();
|
|
req_ref_set(flush_rq, 1);
|
|
|
|
spin_lock(&q->requeue_lock);
|
|
list_add_tail(&flush_rq->queuelist, &q->flush_list);
|
|
spin_unlock(&q->requeue_lock);
|
|
|
|
blk_mq_kick_requeue_list(q);
|
|
}
|
|
|
|
static enum rq_end_io_ret mq_flush_data_end_io(struct request *rq,
|
|
blk_status_t error)
|
|
{
|
|
struct request_queue *q = rq->q;
|
|
struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
|
|
struct blk_mq_ctx *ctx = rq->mq_ctx;
|
|
unsigned long flags;
|
|
struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
|
|
|
|
if (q->elevator) {
|
|
WARN_ON(rq->tag < 0);
|
|
blk_mq_put_driver_tag(rq);
|
|
}
|
|
|
|
/*
|
|
* After populating an empty queue, kick it to avoid stall. Read
|
|
* the comment in flush_end_io().
|
|
*/
|
|
spin_lock_irqsave(&fq->mq_flush_lock, flags);
|
|
fq->flush_data_in_flight--;
|
|
/*
|
|
* May have been corrupted by rq->rq_next reuse, we need to
|
|
* re-initialize rq->queuelist before reusing it here.
|
|
*/
|
|
INIT_LIST_HEAD(&rq->queuelist);
|
|
blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error);
|
|
spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
|
|
|
|
blk_mq_sched_restart(hctx);
|
|
return RQ_END_IO_NONE;
|
|
}
|
|
|
|
static void blk_rq_init_flush(struct request *rq)
|
|
{
|
|
rq->flush.seq = 0;
|
|
rq->rq_flags |= RQF_FLUSH_SEQ;
|
|
rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
|
|
rq->end_io = mq_flush_data_end_io;
|
|
}
|
|
|
|
/*
|
|
* Insert a PREFLUSH/FUA request into the flush state machine.
|
|
* Returns true if the request has been consumed by the flush state machine,
|
|
* or false if the caller should continue to process it.
|
|
*/
|
|
bool blk_insert_flush(struct request *rq)
|
|
{
|
|
struct request_queue *q = rq->q;
|
|
unsigned long fflags = q->queue_flags; /* may change, cache */
|
|
unsigned int policy = blk_flush_policy(fflags, rq);
|
|
struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
|
|
|
|
/* FLUSH/FUA request must never be merged */
|
|
WARN_ON_ONCE(rq->bio != rq->biotail);
|
|
|
|
/*
|
|
* @policy now records what operations need to be done. Adjust
|
|
* REQ_PREFLUSH and FUA for the driver.
|
|
*/
|
|
rq->cmd_flags &= ~REQ_PREFLUSH;
|
|
if (!(fflags & (1UL << QUEUE_FLAG_FUA)))
|
|
rq->cmd_flags &= ~REQ_FUA;
|
|
|
|
/*
|
|
* REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any
|
|
* of those flags, we have to set REQ_SYNC to avoid skewing
|
|
* the request accounting.
|
|
*/
|
|
rq->cmd_flags |= REQ_SYNC;
|
|
|
|
switch (policy) {
|
|
case 0:
|
|
/*
|
|
* An empty flush handed down from a stacking driver may
|
|
* translate into nothing if the underlying device does not
|
|
* advertise a write-back cache. In this case, simply
|
|
* complete the request.
|
|
*/
|
|
blk_mq_end_request(rq, 0);
|
|
return true;
|
|
case REQ_FSEQ_DATA:
|
|
/*
|
|
* If there's data, but no flush is necessary, the request can
|
|
* be processed directly without going through flush machinery.
|
|
* Queue for normal execution.
|
|
*/
|
|
return false;
|
|
case REQ_FSEQ_DATA | REQ_FSEQ_POSTFLUSH:
|
|
/*
|
|
* Initialize the flush fields and completion handler to trigger
|
|
* the post flush, and then just pass the command on.
|
|
*/
|
|
blk_rq_init_flush(rq);
|
|
rq->flush.seq |= REQ_FSEQ_PREFLUSH;
|
|
spin_lock_irq(&fq->mq_flush_lock);
|
|
fq->flush_data_in_flight++;
|
|
spin_unlock_irq(&fq->mq_flush_lock);
|
|
return false;
|
|
default:
|
|
/*
|
|
* Mark the request as part of a flush sequence and submit it
|
|
* for further processing to the flush state machine.
|
|
*/
|
|
blk_rq_init_flush(rq);
|
|
spin_lock_irq(&fq->mq_flush_lock);
|
|
blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
|
|
spin_unlock_irq(&fq->mq_flush_lock);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* blkdev_issue_flush - queue a flush
|
|
* @bdev: blockdev to issue flush for
|
|
*
|
|
* Description:
|
|
* Issue a flush for the block device in question.
|
|
*/
|
|
int blkdev_issue_flush(struct block_device *bdev)
|
|
{
|
|
struct bio bio;
|
|
|
|
bio_init(&bio, bdev, NULL, 0, REQ_OP_WRITE | REQ_PREFLUSH);
|
|
return submit_bio_wait(&bio);
|
|
}
|
|
EXPORT_SYMBOL(blkdev_issue_flush);
|
|
|
|
struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
|
|
gfp_t flags)
|
|
{
|
|
struct blk_flush_queue *fq;
|
|
int rq_sz = sizeof(struct request);
|
|
|
|
fq = kzalloc_node(sizeof(*fq), flags, node);
|
|
if (!fq)
|
|
goto fail;
|
|
|
|
spin_lock_init(&fq->mq_flush_lock);
|
|
|
|
rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
|
|
fq->flush_rq = kzalloc_node(rq_sz, flags, node);
|
|
if (!fq->flush_rq)
|
|
goto fail_rq;
|
|
|
|
INIT_LIST_HEAD(&fq->flush_queue[0]);
|
|
INIT_LIST_HEAD(&fq->flush_queue[1]);
|
|
|
|
return fq;
|
|
|
|
fail_rq:
|
|
kfree(fq);
|
|
fail:
|
|
return NULL;
|
|
}
|
|
|
|
void blk_free_flush_queue(struct blk_flush_queue *fq)
|
|
{
|
|
/* bio based request queue hasn't flush queue */
|
|
if (!fq)
|
|
return;
|
|
|
|
kfree(fq->flush_rq);
|
|
kfree(fq);
|
|
}
|
|
|
|
/*
|
|
* Allow driver to set its own lock class to fq->mq_flush_lock for
|
|
* avoiding lockdep complaint.
|
|
*
|
|
* flush_end_io() may be called recursively from some driver, such as
|
|
* nvme-loop, so lockdep may complain 'possible recursive locking' because
|
|
* all 'struct blk_flush_queue' instance share same mq_flush_lock lock class
|
|
* key. We need to assign different lock class for these driver's
|
|
* fq->mq_flush_lock for avoiding the lockdep warning.
|
|
*
|
|
* Use dynamically allocated lock class key for each 'blk_flush_queue'
|
|
* instance is over-kill, and more worse it introduces horrible boot delay
|
|
* issue because synchronize_rcu() is implied in lockdep_unregister_key which
|
|
* is called for each hctx release. SCSI probing may synchronously create and
|
|
* destroy lots of MQ request_queues for non-existent devices, and some robot
|
|
* test kernel always enable lockdep option. It is observed that more than half
|
|
* an hour is taken during SCSI MQ probe with per-fq lock class.
|
|
*/
|
|
void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
|
|
struct lock_class_key *key)
|
|
{
|
|
lockdep_set_class(&hctx->fq->mq_flush_lock, key);
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_mq_hctx_set_fq_lock_class);
|