linux/sound/soc/google/chv3-i2s.c
Paweł Anikiel 702648721d
ASoC: Add Google Chameleon v3 i2s driver
Add driver for the i2s IP present on Google Chameleon v3

Signed-off-by: Paweł Anikiel <pan@semihalf.com
Link: https://lore.kernel.org/r/20230508113037.137627-2-pan@semihalf.com
Signed-off-by: Mark Brown <broonie@kernel.org
2023-05-17 10:37:07 +09:00

339 lines
9.7 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <sound/soc.h>
/*
* The I2S interface consists of two ring buffers - one for RX and one for
* TX. A ring buffer has a producer index and a consumer index. Depending
* on which way the data is flowing, either the software or the hardware
* writes data and updates the producer index, and the other end reads data
* and updates the consumer index.
*
* The pointer managed by software is updated using the .ack callback
* (see chv3_dma_ack). This seems to be the only way to reliably obtain
* the appl_ptr from within the driver and pass it to hardware.
*
* Because of the two pointer design, the ring buffer can never be full. With
* capture this isn't a problem, because the hardware being the producer
* will wait for the consumer index to move out of the way. With playback,
* however, this is problematic, because ALSA wants to fill up the buffer
* completely when waiting for hardware. In the .ack callback, the driver
* would have to wait for the consumer index to move out of the way by
* busy-waiting, which would keep stalling the kernel for quite a long time.
*
* The workaround to this problem is to "lie" to ALSA that the hw_pointer
* is one frame behind what it actually is (see chv3_dma_pointer). This
* way, ALSA will not try to fill up the entire buffer, and all callbacks
* are wait-free.
*/
#define I2S_TX_ENABLE 0x00
#define I2S_TX_BASE_ADDR 0x04
#define I2S_TX_BUFFER_SIZE 0x08
#define I2S_TX_PRODUCER_IDX 0x0c
#define I2S_TX_CONSUMER_IDX 0x10
#define I2S_RX_ENABLE 0x14
#define I2S_RX_BASE_ADDR 0x18
#define I2S_RX_BUFFER_SIZE 0x1c
#define I2S_RX_PRODUCER_IDX 0x20
#define I2S_RX_CONSUMER_IDX 0x24
#define I2S_SOFT_RESET 0x2c
#define I2S_SOFT_RESET_RX_BIT 0x1
#define I2S_SOFT_RESET_TX_BIT 0x2
#define I2S_RX_IRQ 0x4c
#define I2S_RX_IRQ_CONST 0x50
#define I2S_TX_IRQ 0x54
#define I2S_TX_IRQ_CONST 0x58
#define I2S_IRQ_MASK 0x8
#define I2S_IRQ_CLR 0xc
#define I2S_IRQ_RX_BIT 0x1
#define I2S_IRQ_TX_BIT 0x2
#define I2S_MAX_BUFFER_SIZE 0x200000
struct chv3_i2s_dev {
struct device *dev;
void __iomem *iobase;
void __iomem *iobase_irq;
struct snd_pcm_substream *rx_substream;
struct snd_pcm_substream *tx_substream;
int tx_bytes_to_fetch;
};
static struct snd_soc_dai_driver chv3_i2s_dai = {
.name = "chv3-i2s",
.capture = {
.channels_min = 1,
.channels_max = 128,
.rates = SNDRV_PCM_RATE_CONTINUOUS,
.rate_min = 8000,
.rate_max = 96000,
.formats = SNDRV_PCM_FMTBIT_S32_LE,
},
.playback = {
.channels_min = 1,
.channels_max = 128,
.rates = SNDRV_PCM_RATE_CONTINUOUS,
.rate_min = 8000,
.rate_max = 96000,
.formats = SNDRV_PCM_FMTBIT_S32_LE,
},
};
static const struct snd_pcm_hardware chv3_dma_hw = {
.info = SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_BLOCK_TRANSFER,
.buffer_bytes_max = I2S_MAX_BUFFER_SIZE,
.period_bytes_min = 64,
.period_bytes_max = 8192,
.periods_min = 4,
.periods_max = 256,
};
static inline void chv3_i2s_wr(struct chv3_i2s_dev *i2s, int offset, u32 val)
{
writel(val, i2s->iobase + offset);
}
static inline u32 chv3_i2s_rd(struct chv3_i2s_dev *i2s, int offset)
{
return readl(i2s->iobase + offset);
}
static irqreturn_t chv3_i2s_isr(int irq, void *data)
{
struct chv3_i2s_dev *i2s = data;
u32 reg;
reg = readl(i2s->iobase_irq + I2S_IRQ_CLR);
if (!reg)
return IRQ_NONE;
if (reg & I2S_IRQ_RX_BIT)
snd_pcm_period_elapsed(i2s->rx_substream);
if (reg & I2S_IRQ_TX_BIT)
snd_pcm_period_elapsed(i2s->tx_substream);
writel(reg, i2s->iobase_irq + I2S_IRQ_CLR);
return IRQ_HANDLED;
}
static int chv3_dma_open(struct snd_soc_component *component,
struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
struct chv3_i2s_dev *i2s = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
int res;
snd_soc_set_runtime_hwparams(substream, &chv3_dma_hw);
res = snd_pcm_hw_constraint_pow2(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_BUFFER_BYTES);
if (res)
return res;
if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
i2s->rx_substream = substream;
else
i2s->tx_substream = substream;
return 0;
}
static int chv3_dma_close(struct snd_soc_component *component,
struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
struct chv3_i2s_dev *i2s = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
if (substream->pstr->stream == SNDRV_PCM_STREAM_CAPTURE)
chv3_i2s_wr(i2s, I2S_RX_ENABLE, 0);
else
chv3_i2s_wr(i2s, I2S_TX_ENABLE, 0);
return 0;
}
static int chv3_dma_pcm_construct(struct snd_soc_component *component,
struct snd_soc_pcm_runtime *rtd)
{
struct chv3_i2s_dev *i2s = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
struct snd_pcm_substream *substream;
int res;
substream = rtd->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream;
if (substream) {
res = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, i2s->dev,
I2S_MAX_BUFFER_SIZE, &substream->dma_buffer);
if (res)
return res;
}
substream = rtd->pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream;
if (substream) {
res = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, i2s->dev,
I2S_MAX_BUFFER_SIZE, &substream->dma_buffer);
if (res)
return res;
}
return 0;
}
static int chv3_dma_hw_params(struct snd_soc_component *component,
struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params)
{
snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
return 0;
}
static int chv3_dma_prepare(struct snd_soc_component *component,
struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
struct chv3_i2s_dev *i2s = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
unsigned int buffer_bytes, period_bytes, period_size;
buffer_bytes = snd_pcm_lib_buffer_bytes(substream);
period_bytes = snd_pcm_lib_period_bytes(substream);
period_size = substream->runtime->period_size;
if (substream->pstr->stream == SNDRV_PCM_STREAM_CAPTURE) {
chv3_i2s_wr(i2s, I2S_SOFT_RESET, I2S_SOFT_RESET_RX_BIT);
chv3_i2s_wr(i2s, I2S_RX_BASE_ADDR, substream->dma_buffer.addr);
chv3_i2s_wr(i2s, I2S_RX_BUFFER_SIZE, buffer_bytes);
chv3_i2s_wr(i2s, I2S_RX_IRQ, (period_size << 8) | 1);
chv3_i2s_wr(i2s, I2S_RX_ENABLE, 1);
} else {
chv3_i2s_wr(i2s, I2S_SOFT_RESET, I2S_SOFT_RESET_TX_BIT);
chv3_i2s_wr(i2s, I2S_TX_BASE_ADDR, substream->dma_buffer.addr);
chv3_i2s_wr(i2s, I2S_TX_BUFFER_SIZE, buffer_bytes);
chv3_i2s_wr(i2s, I2S_TX_IRQ, ((period_bytes / i2s->tx_bytes_to_fetch) << 8) | 1);
chv3_i2s_wr(i2s, I2S_TX_ENABLE, 1);
}
writel(I2S_IRQ_RX_BIT | I2S_IRQ_TX_BIT, i2s->iobase_irq + I2S_IRQ_MASK);
return 0;
}
static snd_pcm_uframes_t chv3_dma_pointer(struct snd_soc_component *component,
struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
struct chv3_i2s_dev *i2s = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
u32 frame_bytes, buffer_bytes;
u32 idx_bytes;
frame_bytes = substream->runtime->frame_bits * 8;
buffer_bytes = snd_pcm_lib_buffer_bytes(substream);
if (substream->pstr->stream == SNDRV_PCM_STREAM_CAPTURE) {
idx_bytes = chv3_i2s_rd(i2s, I2S_RX_PRODUCER_IDX);
} else {
idx_bytes = chv3_i2s_rd(i2s, I2S_TX_CONSUMER_IDX);
/* lag the pointer by one frame */
idx_bytes = (idx_bytes - frame_bytes) & (buffer_bytes - 1);
}
return bytes_to_frames(substream->runtime, idx_bytes);
}
static int chv3_dma_ack(struct snd_soc_component *component,
struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
struct chv3_i2s_dev *i2s = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
unsigned int bytes, idx;
bytes = frames_to_bytes(runtime, runtime->control->appl_ptr);
idx = bytes & (snd_pcm_lib_buffer_bytes(substream) - 1);
if (substream->pstr->stream == SNDRV_PCM_STREAM_CAPTURE)
chv3_i2s_wr(i2s, I2S_RX_CONSUMER_IDX, idx);
else
chv3_i2s_wr(i2s, I2S_TX_PRODUCER_IDX, idx);
return 0;
}
static const struct snd_soc_component_driver chv3_i2s_comp = {
.name = "chv3-i2s-comp",
.open = chv3_dma_open,
.close = chv3_dma_close,
.pcm_construct = chv3_dma_pcm_construct,
.hw_params = chv3_dma_hw_params,
.prepare = chv3_dma_prepare,
.pointer = chv3_dma_pointer,
.ack = chv3_dma_ack,
};
static int chv3_i2s_probe(struct platform_device *pdev)
{
struct chv3_i2s_dev *i2s;
int res;
int irq;
i2s = devm_kzalloc(&pdev->dev, sizeof(*i2s), GFP_KERNEL);
if (!i2s)
return -ENOMEM;
i2s->iobase = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(i2s->iobase))
return PTR_ERR(i2s->iobase);
i2s->iobase_irq = devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(i2s->iobase_irq))
return PTR_ERR(i2s->iobase_irq);
i2s->tx_bytes_to_fetch = (chv3_i2s_rd(i2s, I2S_TX_IRQ_CONST) >> 8) & 0xffff;
i2s->dev = &pdev->dev;
dev_set_drvdata(&pdev->dev, i2s);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return -ENXIO;
res = devm_request_irq(i2s->dev, irq, chv3_i2s_isr, 0, "chv3-i2s", i2s);
if (res)
return res;
res = devm_snd_soc_register_component(&pdev->dev, &chv3_i2s_comp,
&chv3_i2s_dai, 1);
if (res) {
dev_err(&pdev->dev, "couldn't register component: %d\n", res);
return res;
}
return 0;
}
static const struct of_device_id chv3_i2s_of_match[] = {
{ .compatible = "google,chv3-i2s" },
{},
};
static struct platform_driver chv3_i2s_driver = {
.probe = chv3_i2s_probe,
.driver = {
.name = "chv3-i2s",
.of_match_table = chv3_i2s_of_match,
},
};
module_platform_driver(chv3_i2s_driver);
MODULE_AUTHOR("Pawel Anikiel <pan@semihalf.com>");
MODULE_DESCRIPTION("Chameleon v3 I2S interface");
MODULE_LICENSE("GPL");