Linus Torvalds 705c1da8fa pci-v6.9-changes
-----BEGIN PGP SIGNATURE-----
 
 iQJIBAABCgAyFiEEgMe7l+5h9hnxdsnuWYigwDrT+vwFAmXw04sUHGJoZWxnYWFz
 QGdvb2dsZS5jb20ACgkQWYigwDrT+vyT3xAAsp5+c2IcbrXpZZM7figwx4y9PPRp
 jcQ4AYSGP41xqTUGXUTcVZYvRorSIAFEOz33U0SL1UNxoOZz8j/M6SD58k8a6XRr
 9SSPuKja1OKJjONhS1bzrcbVtuzr71ISrECXfLkvW5hY5hvq+3+anMtu3/UIEHu6
 M1vVc+basRjjPJNTixMWvVqS3R+4gDAFeBtdZl/D+U6v0v2xOK+81YZqjfZZCw9v
 xmdHHK2dKNEdysNoRJ5cafY3b1NnSsrxlHbIhBnKt+7uRSWKD1dHcBQj7wDc/HrX
 yBGca+BZBKitXEJM3p5KcWWs4ijaywGw0GSffUIKrN9i6RIfwnxBH9jUbwDngifU
 2IR/kLEqdjYi/WnENxIHpQATLyXhXZ8uEnLS0xMlRIA96u3M5B0mrYOZxaN3bo12
 A3aE+aPOTw0u1wf7G8dBX6IdYnjZ/ZuR9Q+fVoKpZBvsYUVaKyiKCtKMCNaVirn5
 z7nxR1W71ee+35+37KthPXhiw+YtURGz1wBWt+wWUMjBcpIj2bpzU9wQDE9ZMdYt
 XJoJcatrRhJzefO3uzd0egft+vwk0xrj5LQEDhMQyDrnBLC4EgI5niKPWqbay5Nx
 Cnll01CI82xAnIF6eu7OOuI1nYGtoFcY8rP3hTC85cWN7Xi8SAOLTZZcVTpfBMUr
 l2uEll8p+8dZ6IY=
 =AP3I
 -----END PGP SIGNATURE-----

Merge tag 'pci-v6.9-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/pci/pci

Pull PCI updates from Bjorn Helgaas:
 "Enumeration:

   - Consolidate interrupt related code in irq.c (Ilpo Järvinen)

   - Reduce kernel size by replacing sysfs resource macros with
     functions (Ilpo Järvinen)

   - Reduce kernel size by compiling sysfs support only when
     CONFIG_SYSFS=y (Lukas Wunner)

   - Avoid using Extended Tags on 3ware-9650SE Root Port to work around
     an apparent hardware defect (Jörg Wedekind)

  Resource management:

   - Fix an MMIO mapping leak in pci_iounmap() (Philipp Stanner)

   - Move pci_iomap.c and other PCI-specific devres code to drivers/pci
     (Philipp Stanner)

   - Consolidate PCI devres code in devres.c (Philipp Stanner)

  Power management:

   - Avoid D3cold on Asus B1400 PCI-NVMe bridge, where firmware doesn't
     know how to return correctly to D0, and remove previous quirk that
     wasn't as specific (Daniel Drake)

   - Allow runtime PM when the driver enables it but doesn't need any
     runtime PM callbacks (Raag Jadav)

   - Drain runtime-idle callbacks before driver removal to avoid races
     between .remove() and .runtime_idle(), which caused intermittent
     page faults when the rtsx .runtime_idle() accessed registers that
     its .remove() had already unmapped (Rafael J. Wysocki)

  Virtualization:

   - Avoid Secondary Bus Reset on LSI FW643 so it can be assigned to VMs
     with VFIO, e.g., for professional audio software on many Apple
     machines, at the cost of leaking state between VMs (Edmund Raile)

  Error handling:

   - Print all logged TLP Prefixes, not just the first, after AER or DPC
     errors (Ilpo Järvinen)

   - Quirk the DPC PIO log size for Intel Raptor Lake Root Ports, which
     still don't advertise a legal size (Paul Menzel)

   - Ignore expected DPC Surprise Down errors on hot removal (Smita
     Koralahalli)

   - Block runtime suspend while handling AER errors to avoid races that
     prevent the device form being resumed from D3hot (Stanislaw
     Gruszka)

  Peer-to-peer DMA:

   - Use atomic XA allocation in RCU read section (Christophe JAILLET)

  ASPM:

   - Collect bits of ASPM-related code that we need even without
     CONFIG_PCIEASPM into aspm.c (David E. Box)

   - Save/restore L1 PM Substates config for suspend/resume (David E.
     Box)

   - Update save_save when ASPM config is changed, so a .slot_reset()
     during error recovery restores the changed config, not the
     .probe()-time config (Vidya Sagar)

  Endpoint framework:

   - Refactor and improve pci_epf_alloc_space() API (Niklas Cassel)

   - Clean up endpoint BAR descriptions (Niklas Cassel)

   - Fix ntb_register_device() name leak in error path (Yang Yingliang)

   - Return actual error code for pci_vntb_probe() failure (Yang
     Yingliang)

  Broadcom STB PCIe controller driver:

   - Fix MDIO write polling, which previously never waited for
     completion (Jonathan Bell)

  Cadence PCIe endpoint driver:

   - Clear the ARI "Next Function Number" of last function (Jasko-EXT
     Wojciech)

  Freescale i.MX6 PCIe controller driver:

   - Simplify by replacing switch statements with function pointers for
     different hardware variants (Frank Li)

   - Simplify by using clk_bulk*() API (Frank Li)

   - Remove redundant DT clock and reg/reg-name details (Frank Li)

   - Add i.MX95 DT and driver support for both Root Complex and Endpoint
     mode (Frank Li)

  Microsoft Hyper-V host bridge driver:

   - Reduce memory usage by limiting ring buffer size to 16KB instead of
     4 pages (Michael Kelley)

  Qualcomm PCIe controller driver:

   - Add X1E80100 DT and driver support (Abel Vesa)

   - Add DT 'required-opps' for SoCs that require a minimum performance
     level (Johan Hovold)

   - Make DT 'msi-map-mask' optional, depending on how MSI interrupts
     are mapped (Johan Hovold)

   - Disable ASPM L0s for sc8280xp, sa8540p and sa8295p because the PHY
     configuration isn't tuned correctly for L0s (Johan Hovold)

   - Split dt-binding qcom,pcie.yaml into qcom,pcie-common.yaml and
     separate files for SA8775p, SC7280, SC8180X, SC8280XP, SM8150,
     SM8250, SM8350, SM8450, SM8550 for easier reviewing (Krzysztof
     Kozlowski)

   - Enable BDF to SID translation by disabling bypass mode (Manivannan
     Sadhasivam)

   - Add endpoint MHI support for Snapdragon SA8775P SoC (Mrinmay
     Sarkar)

  Synopsys DesignWare PCIe controller driver:

   - Allocate 64-bit MSI address if no 32-bit address is available (Ajay
     Agarwal)

   - Fix endpoint Resizable BAR to actually advertise the required 1MB
     size (Niklas Cassel)

  MicroSemi Switchtec management driver:

   - Release resources if the .probe() fails (Christophe JAILLET)

  Miscellaneous:

   - Make pcie_port_bus_type const (Ricardo B. Marliere)"

* tag 'pci-v6.9-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/pci/pci: (77 commits)
  PCI/ASPM: Update save_state when configuration changes
  PCI/ASPM: Disable L1 before configuring L1 Substates
  PCI/ASPM: Call pci_save_ltr_state() from pci_save_pcie_state()
  PCI/ASPM: Save L1 PM Substates Capability for suspend/resume
  PCI: hv: Fix ring buffer size calculation
  PCI: dwc: endpoint: Fix advertised resizable BAR size
  PCI: cadence: Clear the ARI Capability Next Function Number of the last function
  PCI: dwc: Strengthen the MSI address allocation logic
  PCI: brcmstb: Fix broken brcm_pcie_mdio_write() polling
  PCI: qcom: Add X1E80100 PCIe support
  dt-bindings: PCI: qcom: Document the X1E80100 PCIe Controller
  PCI: qcom: Enable BDF to SID translation properly
  PCI/AER: Generalize TLP Header Log reading
  PCI/AER: Use explicit register size for PCI_ERR_CAP
  PCI: qcom: Disable ASPM L0s for sc8280xp, sa8540p and sa8295p
  dt-bindings: PCI: qcom: Do not require 'msi-map-mask'
  dt-bindings: PCI: qcom: Allow 'required-opps'
  PCI/AER: Block runtime suspend when handling errors
  PCI/ASPM: Move pci_save_ltr_state() to aspm.c
  PCI/ASPM: Always build aspm.c
  ...
2024-03-14 10:58:27 -07:00

1716 lines
51 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Enable PCIe link L0s/L1 state and Clock Power Management
*
* Copyright (C) 2007 Intel
* Copyright (C) Zhang Yanmin (yanmin.zhang@intel.com)
* Copyright (C) Shaohua Li (shaohua.li@intel.com)
*/
#include <linux/bitfield.h>
#include <linux/kernel.h>
#include <linux/limits.h>
#include <linux/math.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/pci.h>
#include <linux/pci_regs.h>
#include <linux/errno.h>
#include <linux/pm.h>
#include <linux/init.h>
#include <linux/printk.h>
#include <linux/slab.h>
#include <linux/time.h>
#include "../pci.h"
void pci_save_ltr_state(struct pci_dev *dev)
{
int ltr;
struct pci_cap_saved_state *save_state;
u32 *cap;
if (!pci_is_pcie(dev))
return;
ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
if (!ltr)
return;
save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
if (!save_state) {
pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
return;
}
/* Some broken devices only support dword access to LTR */
cap = &save_state->cap.data[0];
pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
}
void pci_restore_ltr_state(struct pci_dev *dev)
{
struct pci_cap_saved_state *save_state;
int ltr;
u32 *cap;
save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
if (!save_state || !ltr)
return;
/* Some broken devices only support dword access to LTR */
cap = &save_state->cap.data[0];
pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
}
void pci_configure_aspm_l1ss(struct pci_dev *pdev)
{
int rc;
pdev->l1ss = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_L1SS);
rc = pci_add_ext_cap_save_buffer(pdev, PCI_EXT_CAP_ID_L1SS,
2 * sizeof(u32));
if (rc)
pci_err(pdev, "unable to allocate ASPM L1SS save buffer (%pe)\n",
ERR_PTR(rc));
}
void pci_save_aspm_l1ss_state(struct pci_dev *pdev)
{
struct pci_cap_saved_state *save_state;
u16 l1ss = pdev->l1ss;
u32 *cap;
/*
* Save L1 substate configuration. The ASPM L0s/L1 configuration
* in PCI_EXP_LNKCTL_ASPMC is saved by pci_save_pcie_state().
*/
if (!l1ss)
return;
save_state = pci_find_saved_ext_cap(pdev, PCI_EXT_CAP_ID_L1SS);
if (!save_state)
return;
cap = &save_state->cap.data[0];
pci_read_config_dword(pdev, l1ss + PCI_L1SS_CTL2, cap++);
pci_read_config_dword(pdev, l1ss + PCI_L1SS_CTL1, cap++);
}
void pci_restore_aspm_l1ss_state(struct pci_dev *pdev)
{
struct pci_cap_saved_state *pl_save_state, *cl_save_state;
struct pci_dev *parent = pdev->bus->self;
u32 *cap, pl_ctl1, pl_ctl2, pl_l1_2_enable;
u32 cl_ctl1, cl_ctl2, cl_l1_2_enable;
u16 clnkctl, plnkctl;
/*
* In case BIOS enabled L1.2 when resuming, we need to disable it first
* on the downstream component before the upstream. So, don't attempt to
* restore either until we are at the downstream component.
*/
if (pcie_downstream_port(pdev) || !parent)
return;
if (!pdev->l1ss || !parent->l1ss)
return;
cl_save_state = pci_find_saved_ext_cap(pdev, PCI_EXT_CAP_ID_L1SS);
pl_save_state = pci_find_saved_ext_cap(parent, PCI_EXT_CAP_ID_L1SS);
if (!cl_save_state || !pl_save_state)
return;
cap = &cl_save_state->cap.data[0];
cl_ctl2 = *cap++;
cl_ctl1 = *cap;
cap = &pl_save_state->cap.data[0];
pl_ctl2 = *cap++;
pl_ctl1 = *cap;
/* Make sure L0s/L1 are disabled before updating L1SS config */
pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &clnkctl);
pcie_capability_read_word(parent, PCI_EXP_LNKCTL, &plnkctl);
if (FIELD_GET(PCI_EXP_LNKCTL_ASPMC, clnkctl) ||
FIELD_GET(PCI_EXP_LNKCTL_ASPMC, plnkctl)) {
pcie_capability_write_word(pdev, PCI_EXP_LNKCTL,
clnkctl & ~PCI_EXP_LNKCTL_ASPMC);
pcie_capability_write_word(parent, PCI_EXP_LNKCTL,
plnkctl & ~PCI_EXP_LNKCTL_ASPMC);
}
/*
* Disable L1.2 on this downstream endpoint device first, followed
* by the upstream
*/
pci_clear_and_set_config_dword(pdev, pdev->l1ss + PCI_L1SS_CTL1,
PCI_L1SS_CTL1_L1_2_MASK, 0);
pci_clear_and_set_config_dword(parent, parent->l1ss + PCI_L1SS_CTL1,
PCI_L1SS_CTL1_L1_2_MASK, 0);
/*
* In addition, Common_Mode_Restore_Time and LTR_L1.2_THRESHOLD
* in PCI_L1SS_CTL1 must be programmed *before* setting the L1.2
* enable bits, even though they're all in PCI_L1SS_CTL1.
*/
pl_l1_2_enable = pl_ctl1 & PCI_L1SS_CTL1_L1_2_MASK;
pl_ctl1 &= ~PCI_L1SS_CTL1_L1_2_MASK;
cl_l1_2_enable = cl_ctl1 & PCI_L1SS_CTL1_L1_2_MASK;
cl_ctl1 &= ~PCI_L1SS_CTL1_L1_2_MASK;
/* Write back without enables first (above we cleared them in ctl1) */
pci_write_config_dword(parent, parent->l1ss + PCI_L1SS_CTL2, pl_ctl2);
pci_write_config_dword(pdev, pdev->l1ss + PCI_L1SS_CTL2, cl_ctl2);
pci_write_config_dword(parent, parent->l1ss + PCI_L1SS_CTL1, pl_ctl1);
pci_write_config_dword(pdev, pdev->l1ss + PCI_L1SS_CTL1, cl_ctl1);
/* Then write back the enables */
if (pl_l1_2_enable || cl_l1_2_enable) {
pci_write_config_dword(parent, parent->l1ss + PCI_L1SS_CTL1,
pl_ctl1 | pl_l1_2_enable);
pci_write_config_dword(pdev, pdev->l1ss + PCI_L1SS_CTL1,
cl_ctl1 | cl_l1_2_enable);
}
/* Restore L0s/L1 if they were enabled */
if (FIELD_GET(PCI_EXP_LNKCTL_ASPMC, clnkctl) ||
FIELD_GET(PCI_EXP_LNKCTL_ASPMC, plnkctl)) {
pcie_capability_write_word(parent, PCI_EXP_LNKCTL, clnkctl);
pcie_capability_write_word(pdev, PCI_EXP_LNKCTL, plnkctl);
}
}
#ifdef CONFIG_PCIEASPM
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "pcie_aspm."
/* Note: those are not register definitions */
#define ASPM_STATE_L0S_UP (1) /* Upstream direction L0s state */
#define ASPM_STATE_L0S_DW (2) /* Downstream direction L0s state */
#define ASPM_STATE_L1 (4) /* L1 state */
#define ASPM_STATE_L1_1 (8) /* ASPM L1.1 state */
#define ASPM_STATE_L1_2 (0x10) /* ASPM L1.2 state */
#define ASPM_STATE_L1_1_PCIPM (0x20) /* PCI PM L1.1 state */
#define ASPM_STATE_L1_2_PCIPM (0x40) /* PCI PM L1.2 state */
#define ASPM_STATE_L1_SS_PCIPM (ASPM_STATE_L1_1_PCIPM | ASPM_STATE_L1_2_PCIPM)
#define ASPM_STATE_L1_2_MASK (ASPM_STATE_L1_2 | ASPM_STATE_L1_2_PCIPM)
#define ASPM_STATE_L1SS (ASPM_STATE_L1_1 | ASPM_STATE_L1_1_PCIPM |\
ASPM_STATE_L1_2_MASK)
#define ASPM_STATE_L0S (ASPM_STATE_L0S_UP | ASPM_STATE_L0S_DW)
#define ASPM_STATE_ALL (ASPM_STATE_L0S | ASPM_STATE_L1 | \
ASPM_STATE_L1SS)
struct pcie_link_state {
struct pci_dev *pdev; /* Upstream component of the Link */
struct pci_dev *downstream; /* Downstream component, function 0 */
struct pcie_link_state *root; /* pointer to the root port link */
struct pcie_link_state *parent; /* pointer to the parent Link state */
struct list_head sibling; /* node in link_list */
/* ASPM state */
u32 aspm_support:7; /* Supported ASPM state */
u32 aspm_enabled:7; /* Enabled ASPM state */
u32 aspm_capable:7; /* Capable ASPM state with latency */
u32 aspm_default:7; /* Default ASPM state by BIOS */
u32 aspm_disable:7; /* Disabled ASPM state */
/* Clock PM state */
u32 clkpm_capable:1; /* Clock PM capable? */
u32 clkpm_enabled:1; /* Current Clock PM state */
u32 clkpm_default:1; /* Default Clock PM state by BIOS */
u32 clkpm_disable:1; /* Clock PM disabled */
};
static int aspm_disabled, aspm_force;
static bool aspm_support_enabled = true;
static DEFINE_MUTEX(aspm_lock);
static LIST_HEAD(link_list);
#define POLICY_DEFAULT 0 /* BIOS default setting */
#define POLICY_PERFORMANCE 1 /* high performance */
#define POLICY_POWERSAVE 2 /* high power saving */
#define POLICY_POWER_SUPERSAVE 3 /* possibly even more power saving */
#ifdef CONFIG_PCIEASPM_PERFORMANCE
static int aspm_policy = POLICY_PERFORMANCE;
#elif defined CONFIG_PCIEASPM_POWERSAVE
static int aspm_policy = POLICY_POWERSAVE;
#elif defined CONFIG_PCIEASPM_POWER_SUPERSAVE
static int aspm_policy = POLICY_POWER_SUPERSAVE;
#else
static int aspm_policy;
#endif
static const char *policy_str[] = {
[POLICY_DEFAULT] = "default",
[POLICY_PERFORMANCE] = "performance",
[POLICY_POWERSAVE] = "powersave",
[POLICY_POWER_SUPERSAVE] = "powersupersave"
};
/*
* The L1 PM substate capability is only implemented in function 0 in a
* multi function device.
*/
static struct pci_dev *pci_function_0(struct pci_bus *linkbus)
{
struct pci_dev *child;
list_for_each_entry(child, &linkbus->devices, bus_list)
if (PCI_FUNC(child->devfn) == 0)
return child;
return NULL;
}
static int policy_to_aspm_state(struct pcie_link_state *link)
{
switch (aspm_policy) {
case POLICY_PERFORMANCE:
/* Disable ASPM and Clock PM */
return 0;
case POLICY_POWERSAVE:
/* Enable ASPM L0s/L1 */
return (ASPM_STATE_L0S | ASPM_STATE_L1);
case POLICY_POWER_SUPERSAVE:
/* Enable Everything */
return ASPM_STATE_ALL;
case POLICY_DEFAULT:
return link->aspm_default;
}
return 0;
}
static int policy_to_clkpm_state(struct pcie_link_state *link)
{
switch (aspm_policy) {
case POLICY_PERFORMANCE:
/* Disable ASPM and Clock PM */
return 0;
case POLICY_POWERSAVE:
case POLICY_POWER_SUPERSAVE:
/* Enable Clock PM */
return 1;
case POLICY_DEFAULT:
return link->clkpm_default;
}
return 0;
}
static void pci_update_aspm_saved_state(struct pci_dev *dev)
{
struct pci_cap_saved_state *save_state;
u16 *cap, lnkctl, aspm_ctl;
save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
if (!save_state)
return;
pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &lnkctl);
/*
* Update ASPM and CLKREQ bits of LNKCTL in save_state. We only
* write PCI_EXP_LNKCTL_CCC during enumeration, so it shouldn't
* change after being captured in save_state.
*/
aspm_ctl = lnkctl & (PCI_EXP_LNKCTL_ASPMC | PCI_EXP_LNKCTL_CLKREQ_EN);
lnkctl &= ~(PCI_EXP_LNKCTL_ASPMC | PCI_EXP_LNKCTL_CLKREQ_EN);
/* Depends on pci_save_pcie_state(): cap[1] is LNKCTL */
cap = (u16 *)&save_state->cap.data[0];
cap[1] = lnkctl | aspm_ctl;
}
static void pcie_set_clkpm_nocheck(struct pcie_link_state *link, int enable)
{
struct pci_dev *child;
struct pci_bus *linkbus = link->pdev->subordinate;
u32 val = enable ? PCI_EXP_LNKCTL_CLKREQ_EN : 0;
list_for_each_entry(child, &linkbus->devices, bus_list) {
pcie_capability_clear_and_set_word(child, PCI_EXP_LNKCTL,
PCI_EXP_LNKCTL_CLKREQ_EN,
val);
pci_update_aspm_saved_state(child);
}
link->clkpm_enabled = !!enable;
}
static void pcie_set_clkpm(struct pcie_link_state *link, int enable)
{
/*
* Don't enable Clock PM if the link is not Clock PM capable
* or Clock PM is disabled
*/
if (!link->clkpm_capable || link->clkpm_disable)
enable = 0;
/* Need nothing if the specified equals to current state */
if (link->clkpm_enabled == enable)
return;
pcie_set_clkpm_nocheck(link, enable);
}
static void pcie_clkpm_cap_init(struct pcie_link_state *link, int blacklist)
{
int capable = 1, enabled = 1;
u32 reg32;
u16 reg16;
struct pci_dev *child;
struct pci_bus *linkbus = link->pdev->subordinate;
/* All functions should have the same cap and state, take the worst */
list_for_each_entry(child, &linkbus->devices, bus_list) {
pcie_capability_read_dword(child, PCI_EXP_LNKCAP, &reg32);
if (!(reg32 & PCI_EXP_LNKCAP_CLKPM)) {
capable = 0;
enabled = 0;
break;
}
pcie_capability_read_word(child, PCI_EXP_LNKCTL, &reg16);
if (!(reg16 & PCI_EXP_LNKCTL_CLKREQ_EN))
enabled = 0;
}
link->clkpm_enabled = enabled;
link->clkpm_default = enabled;
link->clkpm_capable = capable;
link->clkpm_disable = blacklist ? 1 : 0;
}
/*
* pcie_aspm_configure_common_clock: check if the 2 ends of a link
* could use common clock. If they are, configure them to use the
* common clock. That will reduce the ASPM state exit latency.
*/
static void pcie_aspm_configure_common_clock(struct pcie_link_state *link)
{
int same_clock = 1;
u16 reg16, ccc, parent_old_ccc, child_old_ccc[8];
struct pci_dev *child, *parent = link->pdev;
struct pci_bus *linkbus = parent->subordinate;
/*
* All functions of a slot should have the same Slot Clock
* Configuration, so just check one function
*/
child = list_entry(linkbus->devices.next, struct pci_dev, bus_list);
BUG_ON(!pci_is_pcie(child));
/* Check downstream component if bit Slot Clock Configuration is 1 */
pcie_capability_read_word(child, PCI_EXP_LNKSTA, &reg16);
if (!(reg16 & PCI_EXP_LNKSTA_SLC))
same_clock = 0;
/* Check upstream component if bit Slot Clock Configuration is 1 */
pcie_capability_read_word(parent, PCI_EXP_LNKSTA, &reg16);
if (!(reg16 & PCI_EXP_LNKSTA_SLC))
same_clock = 0;
/* Port might be already in common clock mode */
pcie_capability_read_word(parent, PCI_EXP_LNKCTL, &reg16);
parent_old_ccc = reg16 & PCI_EXP_LNKCTL_CCC;
if (same_clock && (reg16 & PCI_EXP_LNKCTL_CCC)) {
bool consistent = true;
list_for_each_entry(child, &linkbus->devices, bus_list) {
pcie_capability_read_word(child, PCI_EXP_LNKCTL,
&reg16);
if (!(reg16 & PCI_EXP_LNKCTL_CCC)) {
consistent = false;
break;
}
}
if (consistent)
return;
pci_info(parent, "ASPM: current common clock configuration is inconsistent, reconfiguring\n");
}
ccc = same_clock ? PCI_EXP_LNKCTL_CCC : 0;
/* Configure downstream component, all functions */
list_for_each_entry(child, &linkbus->devices, bus_list) {
pcie_capability_read_word(child, PCI_EXP_LNKCTL, &reg16);
child_old_ccc[PCI_FUNC(child->devfn)] = reg16 & PCI_EXP_LNKCTL_CCC;
pcie_capability_clear_and_set_word(child, PCI_EXP_LNKCTL,
PCI_EXP_LNKCTL_CCC, ccc);
}
/* Configure upstream component */
pcie_capability_clear_and_set_word(parent, PCI_EXP_LNKCTL,
PCI_EXP_LNKCTL_CCC, ccc);
if (pcie_retrain_link(link->pdev, true)) {
/* Training failed. Restore common clock configurations */
pci_err(parent, "ASPM: Could not configure common clock\n");
list_for_each_entry(child, &linkbus->devices, bus_list)
pcie_capability_clear_and_set_word(child, PCI_EXP_LNKCTL,
PCI_EXP_LNKCTL_CCC,
child_old_ccc[PCI_FUNC(child->devfn)]);
pcie_capability_clear_and_set_word(parent, PCI_EXP_LNKCTL,
PCI_EXP_LNKCTL_CCC, parent_old_ccc);
}
}
/* Convert L0s latency encoding to ns */
static u32 calc_l0s_latency(u32 lnkcap)
{
u32 encoding = FIELD_GET(PCI_EXP_LNKCAP_L0SEL, lnkcap);
if (encoding == 0x7)
return 5 * NSEC_PER_USEC; /* > 4us */
return (64 << encoding);
}
/* Convert L0s acceptable latency encoding to ns */
static u32 calc_l0s_acceptable(u32 encoding)
{
if (encoding == 0x7)
return U32_MAX;
return (64 << encoding);
}
/* Convert L1 latency encoding to ns */
static u32 calc_l1_latency(u32 lnkcap)
{
u32 encoding = FIELD_GET(PCI_EXP_LNKCAP_L1EL, lnkcap);
if (encoding == 0x7)
return 65 * NSEC_PER_USEC; /* > 64us */
return NSEC_PER_USEC << encoding;
}
/* Convert L1 acceptable latency encoding to ns */
static u32 calc_l1_acceptable(u32 encoding)
{
if (encoding == 0x7)
return U32_MAX;
return NSEC_PER_USEC << encoding;
}
/* Convert L1SS T_pwr encoding to usec */
static u32 calc_l12_pwron(struct pci_dev *pdev, u32 scale, u32 val)
{
switch (scale) {
case 0:
return val * 2;
case 1:
return val * 10;
case 2:
return val * 100;
}
pci_err(pdev, "%s: Invalid T_PwrOn scale: %u\n", __func__, scale);
return 0;
}
/*
* Encode an LTR_L1.2_THRESHOLD value for the L1 PM Substates Control 1
* register. Ports enter L1.2 when the most recent LTR value is greater
* than or equal to LTR_L1.2_THRESHOLD, so we round up to make sure we
* don't enter L1.2 too aggressively.
*
* See PCIe r6.0, sec 5.5.1, 6.18, 7.8.3.3.
*/
static void encode_l12_threshold(u32 threshold_us, u32 *scale, u32 *value)
{
u64 threshold_ns = (u64)threshold_us * NSEC_PER_USEC;
/*
* LTR_L1.2_THRESHOLD_Value ("value") is a 10-bit field with max
* value of 0x3ff.
*/
if (threshold_ns <= 1 * FIELD_MAX(PCI_L1SS_CTL1_LTR_L12_TH_VALUE)) {
*scale = 0; /* Value times 1ns */
*value = threshold_ns;
} else if (threshold_ns <= 32 * FIELD_MAX(PCI_L1SS_CTL1_LTR_L12_TH_VALUE)) {
*scale = 1; /* Value times 32ns */
*value = roundup(threshold_ns, 32) / 32;
} else if (threshold_ns <= 1024 * FIELD_MAX(PCI_L1SS_CTL1_LTR_L12_TH_VALUE)) {
*scale = 2; /* Value times 1024ns */
*value = roundup(threshold_ns, 1024) / 1024;
} else if (threshold_ns <= 32768 * FIELD_MAX(PCI_L1SS_CTL1_LTR_L12_TH_VALUE)) {
*scale = 3; /* Value times 32768ns */
*value = roundup(threshold_ns, 32768) / 32768;
} else if (threshold_ns <= 1048576 * FIELD_MAX(PCI_L1SS_CTL1_LTR_L12_TH_VALUE)) {
*scale = 4; /* Value times 1048576ns */
*value = roundup(threshold_ns, 1048576) / 1048576;
} else if (threshold_ns <= (u64)33554432 * FIELD_MAX(PCI_L1SS_CTL1_LTR_L12_TH_VALUE)) {
*scale = 5; /* Value times 33554432ns */
*value = roundup(threshold_ns, 33554432) / 33554432;
} else {
*scale = 5;
*value = FIELD_MAX(PCI_L1SS_CTL1_LTR_L12_TH_VALUE);
}
}
static void pcie_aspm_check_latency(struct pci_dev *endpoint)
{
u32 latency, encoding, lnkcap_up, lnkcap_dw;
u32 l1_switch_latency = 0, latency_up_l0s;
u32 latency_up_l1, latency_dw_l0s, latency_dw_l1;
u32 acceptable_l0s, acceptable_l1;
struct pcie_link_state *link;
/* Device not in D0 doesn't need latency check */
if ((endpoint->current_state != PCI_D0) &&
(endpoint->current_state != PCI_UNKNOWN))
return;
link = endpoint->bus->self->link_state;
/* Calculate endpoint L0s acceptable latency */
encoding = FIELD_GET(PCI_EXP_DEVCAP_L0S, endpoint->devcap);
acceptable_l0s = calc_l0s_acceptable(encoding);
/* Calculate endpoint L1 acceptable latency */
encoding = FIELD_GET(PCI_EXP_DEVCAP_L1, endpoint->devcap);
acceptable_l1 = calc_l1_acceptable(encoding);
while (link) {
struct pci_dev *dev = pci_function_0(link->pdev->subordinate);
/* Read direction exit latencies */
pcie_capability_read_dword(link->pdev, PCI_EXP_LNKCAP,
&lnkcap_up);
pcie_capability_read_dword(dev, PCI_EXP_LNKCAP,
&lnkcap_dw);
latency_up_l0s = calc_l0s_latency(lnkcap_up);
latency_up_l1 = calc_l1_latency(lnkcap_up);
latency_dw_l0s = calc_l0s_latency(lnkcap_dw);
latency_dw_l1 = calc_l1_latency(lnkcap_dw);
/* Check upstream direction L0s latency */
if ((link->aspm_capable & ASPM_STATE_L0S_UP) &&
(latency_up_l0s > acceptable_l0s))
link->aspm_capable &= ~ASPM_STATE_L0S_UP;
/* Check downstream direction L0s latency */
if ((link->aspm_capable & ASPM_STATE_L0S_DW) &&
(latency_dw_l0s > acceptable_l0s))
link->aspm_capable &= ~ASPM_STATE_L0S_DW;
/*
* Check L1 latency.
* Every switch on the path to root complex need 1
* more microsecond for L1. Spec doesn't mention L0s.
*
* The exit latencies for L1 substates are not advertised
* by a device. Since the spec also doesn't mention a way
* to determine max latencies introduced by enabling L1
* substates on the components, it is not clear how to do
* a L1 substate exit latency check. We assume that the
* L1 exit latencies advertised by a device include L1
* substate latencies (and hence do not do any check).
*/
latency = max_t(u32, latency_up_l1, latency_dw_l1);
if ((link->aspm_capable & ASPM_STATE_L1) &&
(latency + l1_switch_latency > acceptable_l1))
link->aspm_capable &= ~ASPM_STATE_L1;
l1_switch_latency += NSEC_PER_USEC;
link = link->parent;
}
}
/* Calculate L1.2 PM substate timing parameters */
static void aspm_calc_l12_info(struct pcie_link_state *link,
u32 parent_l1ss_cap, u32 child_l1ss_cap)
{
struct pci_dev *child = link->downstream, *parent = link->pdev;
u32 val1, val2, scale1, scale2;
u32 t_common_mode, t_power_on, l1_2_threshold, scale, value;
u32 ctl1 = 0, ctl2 = 0;
u32 pctl1, pctl2, cctl1, cctl2;
u32 pl1_2_enables, cl1_2_enables;
/* Choose the greater of the two Port Common_Mode_Restore_Times */
val1 = FIELD_GET(PCI_L1SS_CAP_CM_RESTORE_TIME, parent_l1ss_cap);
val2 = FIELD_GET(PCI_L1SS_CAP_CM_RESTORE_TIME, child_l1ss_cap);
t_common_mode = max(val1, val2);
/* Choose the greater of the two Port T_POWER_ON times */
val1 = FIELD_GET(PCI_L1SS_CAP_P_PWR_ON_VALUE, parent_l1ss_cap);
scale1 = FIELD_GET(PCI_L1SS_CAP_P_PWR_ON_SCALE, parent_l1ss_cap);
val2 = FIELD_GET(PCI_L1SS_CAP_P_PWR_ON_VALUE, child_l1ss_cap);
scale2 = FIELD_GET(PCI_L1SS_CAP_P_PWR_ON_SCALE, child_l1ss_cap);
if (calc_l12_pwron(parent, scale1, val1) >
calc_l12_pwron(child, scale2, val2)) {
ctl2 |= FIELD_PREP(PCI_L1SS_CTL2_T_PWR_ON_SCALE, scale1) |
FIELD_PREP(PCI_L1SS_CTL2_T_PWR_ON_VALUE, val1);
t_power_on = calc_l12_pwron(parent, scale1, val1);
} else {
ctl2 |= FIELD_PREP(PCI_L1SS_CTL2_T_PWR_ON_SCALE, scale2) |
FIELD_PREP(PCI_L1SS_CTL2_T_PWR_ON_VALUE, val2);
t_power_on = calc_l12_pwron(child, scale2, val2);
}
/*
* Set LTR_L1.2_THRESHOLD to the time required to transition the
* Link from L0 to L1.2 and back to L0 so we enter L1.2 only if
* downstream devices report (via LTR) that they can tolerate at
* least that much latency.
*
* Based on PCIe r3.1, sec 5.5.3.3.1, Figures 5-16 and 5-17, and
* Table 5-11. T(POWER_OFF) is at most 2us and T(L1.2) is at
* least 4us.
*/
l1_2_threshold = 2 + 4 + t_common_mode + t_power_on;
encode_l12_threshold(l1_2_threshold, &scale, &value);
ctl1 |= FIELD_PREP(PCI_L1SS_CTL1_CM_RESTORE_TIME, t_common_mode) |
FIELD_PREP(PCI_L1SS_CTL1_LTR_L12_TH_VALUE, value) |
FIELD_PREP(PCI_L1SS_CTL1_LTR_L12_TH_SCALE, scale);
/* Some broken devices only support dword access to L1 SS */
pci_read_config_dword(parent, parent->l1ss + PCI_L1SS_CTL1, &pctl1);
pci_read_config_dword(parent, parent->l1ss + PCI_L1SS_CTL2, &pctl2);
pci_read_config_dword(child, child->l1ss + PCI_L1SS_CTL1, &cctl1);
pci_read_config_dword(child, child->l1ss + PCI_L1SS_CTL2, &cctl2);
if (ctl1 == pctl1 && ctl1 == cctl1 &&
ctl2 == pctl2 && ctl2 == cctl2)
return;
/* Disable L1.2 while updating. See PCIe r5.0, sec 5.5.4, 7.8.3.3 */
pl1_2_enables = pctl1 & PCI_L1SS_CTL1_L1_2_MASK;
cl1_2_enables = cctl1 & PCI_L1SS_CTL1_L1_2_MASK;
if (pl1_2_enables || cl1_2_enables) {
pci_clear_and_set_config_dword(child,
child->l1ss + PCI_L1SS_CTL1,
PCI_L1SS_CTL1_L1_2_MASK, 0);
pci_clear_and_set_config_dword(parent,
parent->l1ss + PCI_L1SS_CTL1,
PCI_L1SS_CTL1_L1_2_MASK, 0);
}
/* Program T_POWER_ON times in both ports */
pci_write_config_dword(parent, parent->l1ss + PCI_L1SS_CTL2, ctl2);
pci_write_config_dword(child, child->l1ss + PCI_L1SS_CTL2, ctl2);
/* Program Common_Mode_Restore_Time in upstream device */
pci_clear_and_set_config_dword(parent, parent->l1ss + PCI_L1SS_CTL1,
PCI_L1SS_CTL1_CM_RESTORE_TIME, ctl1);
/* Program LTR_L1.2_THRESHOLD time in both ports */
pci_clear_and_set_config_dword(parent, parent->l1ss + PCI_L1SS_CTL1,
PCI_L1SS_CTL1_LTR_L12_TH_VALUE |
PCI_L1SS_CTL1_LTR_L12_TH_SCALE,
ctl1);
pci_clear_and_set_config_dword(child, child->l1ss + PCI_L1SS_CTL1,
PCI_L1SS_CTL1_LTR_L12_TH_VALUE |
PCI_L1SS_CTL1_LTR_L12_TH_SCALE,
ctl1);
if (pl1_2_enables || cl1_2_enables) {
pci_clear_and_set_config_dword(parent,
parent->l1ss + PCI_L1SS_CTL1, 0,
pl1_2_enables);
pci_clear_and_set_config_dword(child,
child->l1ss + PCI_L1SS_CTL1, 0,
cl1_2_enables);
}
}
static void aspm_l1ss_init(struct pcie_link_state *link)
{
struct pci_dev *child = link->downstream, *parent = link->pdev;
u32 parent_l1ss_cap, child_l1ss_cap;
u32 parent_l1ss_ctl1 = 0, child_l1ss_ctl1 = 0;
if (!parent->l1ss || !child->l1ss)
return;
/* Setup L1 substate */
pci_read_config_dword(parent, parent->l1ss + PCI_L1SS_CAP,
&parent_l1ss_cap);
pci_read_config_dword(child, child->l1ss + PCI_L1SS_CAP,
&child_l1ss_cap);
if (!(parent_l1ss_cap & PCI_L1SS_CAP_L1_PM_SS))
parent_l1ss_cap = 0;
if (!(child_l1ss_cap & PCI_L1SS_CAP_L1_PM_SS))
child_l1ss_cap = 0;
/*
* If we don't have LTR for the entire path from the Root Complex
* to this device, we can't use ASPM L1.2 because it relies on the
* LTR_L1.2_THRESHOLD. See PCIe r4.0, secs 5.5.4, 6.18.
*/
if (!child->ltr_path)
child_l1ss_cap &= ~PCI_L1SS_CAP_ASPM_L1_2;
if (parent_l1ss_cap & child_l1ss_cap & PCI_L1SS_CAP_ASPM_L1_1)
link->aspm_support |= ASPM_STATE_L1_1;
if (parent_l1ss_cap & child_l1ss_cap & PCI_L1SS_CAP_ASPM_L1_2)
link->aspm_support |= ASPM_STATE_L1_2;
if (parent_l1ss_cap & child_l1ss_cap & PCI_L1SS_CAP_PCIPM_L1_1)
link->aspm_support |= ASPM_STATE_L1_1_PCIPM;
if (parent_l1ss_cap & child_l1ss_cap & PCI_L1SS_CAP_PCIPM_L1_2)
link->aspm_support |= ASPM_STATE_L1_2_PCIPM;
if (parent_l1ss_cap)
pci_read_config_dword(parent, parent->l1ss + PCI_L1SS_CTL1,
&parent_l1ss_ctl1);
if (child_l1ss_cap)
pci_read_config_dword(child, child->l1ss + PCI_L1SS_CTL1,
&child_l1ss_ctl1);
if (parent_l1ss_ctl1 & child_l1ss_ctl1 & PCI_L1SS_CTL1_ASPM_L1_1)
link->aspm_enabled |= ASPM_STATE_L1_1;
if (parent_l1ss_ctl1 & child_l1ss_ctl1 & PCI_L1SS_CTL1_ASPM_L1_2)
link->aspm_enabled |= ASPM_STATE_L1_2;
if (parent_l1ss_ctl1 & child_l1ss_ctl1 & PCI_L1SS_CTL1_PCIPM_L1_1)
link->aspm_enabled |= ASPM_STATE_L1_1_PCIPM;
if (parent_l1ss_ctl1 & child_l1ss_ctl1 & PCI_L1SS_CTL1_PCIPM_L1_2)
link->aspm_enabled |= ASPM_STATE_L1_2_PCIPM;
if (link->aspm_support & ASPM_STATE_L1_2_MASK)
aspm_calc_l12_info(link, parent_l1ss_cap, child_l1ss_cap);
}
static void pcie_aspm_cap_init(struct pcie_link_state *link, int blacklist)
{
struct pci_dev *child = link->downstream, *parent = link->pdev;
u32 parent_lnkcap, child_lnkcap;
u16 parent_lnkctl, child_lnkctl;
struct pci_bus *linkbus = parent->subordinate;
if (blacklist) {
/* Set enabled/disable so that we will disable ASPM later */
link->aspm_enabled = ASPM_STATE_ALL;
link->aspm_disable = ASPM_STATE_ALL;
return;
}
/*
* If ASPM not supported, don't mess with the clocks and link,
* bail out now.
*/
pcie_capability_read_dword(parent, PCI_EXP_LNKCAP, &parent_lnkcap);
pcie_capability_read_dword(child, PCI_EXP_LNKCAP, &child_lnkcap);
if (!(parent_lnkcap & child_lnkcap & PCI_EXP_LNKCAP_ASPMS))
return;
/* Configure common clock before checking latencies */
pcie_aspm_configure_common_clock(link);
/*
* Re-read upstream/downstream components' register state after
* clock configuration. L0s & L1 exit latencies in the otherwise
* read-only Link Capabilities may change depending on common clock
* configuration (PCIe r5.0, sec 7.5.3.6).
*/
pcie_capability_read_dword(parent, PCI_EXP_LNKCAP, &parent_lnkcap);
pcie_capability_read_dword(child, PCI_EXP_LNKCAP, &child_lnkcap);
pcie_capability_read_word(parent, PCI_EXP_LNKCTL, &parent_lnkctl);
pcie_capability_read_word(child, PCI_EXP_LNKCTL, &child_lnkctl);
/*
* Setup L0s state
*
* Note that we must not enable L0s in either direction on a
* given link unless components on both sides of the link each
* support L0s.
*/
if (parent_lnkcap & child_lnkcap & PCI_EXP_LNKCAP_ASPM_L0S)
link->aspm_support |= ASPM_STATE_L0S;
if (child_lnkctl & PCI_EXP_LNKCTL_ASPM_L0S)
link->aspm_enabled |= ASPM_STATE_L0S_UP;
if (parent_lnkctl & PCI_EXP_LNKCTL_ASPM_L0S)
link->aspm_enabled |= ASPM_STATE_L0S_DW;
/* Setup L1 state */
if (parent_lnkcap & child_lnkcap & PCI_EXP_LNKCAP_ASPM_L1)
link->aspm_support |= ASPM_STATE_L1;
if (parent_lnkctl & child_lnkctl & PCI_EXP_LNKCTL_ASPM_L1)
link->aspm_enabled |= ASPM_STATE_L1;
aspm_l1ss_init(link);
/* Save default state */
link->aspm_default = link->aspm_enabled;
/* Setup initial capable state. Will be updated later */
link->aspm_capable = link->aspm_support;
/* Get and check endpoint acceptable latencies */
list_for_each_entry(child, &linkbus->devices, bus_list) {
if (pci_pcie_type(child) != PCI_EXP_TYPE_ENDPOINT &&
pci_pcie_type(child) != PCI_EXP_TYPE_LEG_END)
continue;
pcie_aspm_check_latency(child);
}
}
/* Configure the ASPM L1 substates */
static void pcie_config_aspm_l1ss(struct pcie_link_state *link, u32 state)
{
u32 val, enable_req;
struct pci_dev *child = link->downstream, *parent = link->pdev;
enable_req = (link->aspm_enabled ^ state) & state;
/*
* Here are the rules specified in the PCIe spec for enabling L1SS:
* - When enabling L1.x, enable bit at parent first, then at child
* - When disabling L1.x, disable bit at child first, then at parent
* - When enabling ASPM L1.x, need to disable L1
* (at child followed by parent).
* - The ASPM/PCIPM L1.2 must be disabled while programming timing
* parameters
*
* To keep it simple, disable all L1SS bits first, and later enable
* what is needed.
*/
/* Disable all L1 substates */
pci_clear_and_set_config_dword(child, child->l1ss + PCI_L1SS_CTL1,
PCI_L1SS_CTL1_L1SS_MASK, 0);
pci_clear_and_set_config_dword(parent, parent->l1ss + PCI_L1SS_CTL1,
PCI_L1SS_CTL1_L1SS_MASK, 0);
/*
* If needed, disable L1, and it gets enabled later
* in pcie_config_aspm_link().
*/
if (enable_req & (ASPM_STATE_L1_1 | ASPM_STATE_L1_2)) {
pcie_capability_clear_word(child, PCI_EXP_LNKCTL,
PCI_EXP_LNKCTL_ASPM_L1);
pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
PCI_EXP_LNKCTL_ASPM_L1);
}
val = 0;
if (state & ASPM_STATE_L1_1)
val |= PCI_L1SS_CTL1_ASPM_L1_1;
if (state & ASPM_STATE_L1_2)
val |= PCI_L1SS_CTL1_ASPM_L1_2;
if (state & ASPM_STATE_L1_1_PCIPM)
val |= PCI_L1SS_CTL1_PCIPM_L1_1;
if (state & ASPM_STATE_L1_2_PCIPM)
val |= PCI_L1SS_CTL1_PCIPM_L1_2;
/* Enable what we need to enable */
pci_clear_and_set_config_dword(parent, parent->l1ss + PCI_L1SS_CTL1,
PCI_L1SS_CTL1_L1SS_MASK, val);
pci_clear_and_set_config_dword(child, child->l1ss + PCI_L1SS_CTL1,
PCI_L1SS_CTL1_L1SS_MASK, val);
}
static void pcie_config_aspm_dev(struct pci_dev *pdev, u32 val)
{
pcie_capability_clear_and_set_word(pdev, PCI_EXP_LNKCTL,
PCI_EXP_LNKCTL_ASPMC, val);
}
static void pcie_config_aspm_link(struct pcie_link_state *link, u32 state)
{
u32 upstream = 0, dwstream = 0;
struct pci_dev *child = link->downstream, *parent = link->pdev;
struct pci_bus *linkbus = parent->subordinate;
/* Enable only the states that were not explicitly disabled */
state &= (link->aspm_capable & ~link->aspm_disable);
/* Can't enable any substates if L1 is not enabled */
if (!(state & ASPM_STATE_L1))
state &= ~ASPM_STATE_L1SS;
/* Spec says both ports must be in D0 before enabling PCI PM substates*/
if (parent->current_state != PCI_D0 || child->current_state != PCI_D0) {
state &= ~ASPM_STATE_L1_SS_PCIPM;
state |= (link->aspm_enabled & ASPM_STATE_L1_SS_PCIPM);
}
/* Nothing to do if the link is already in the requested state */
if (link->aspm_enabled == state)
return;
/* Convert ASPM state to upstream/downstream ASPM register state */
if (state & ASPM_STATE_L0S_UP)
dwstream |= PCI_EXP_LNKCTL_ASPM_L0S;
if (state & ASPM_STATE_L0S_DW)
upstream |= PCI_EXP_LNKCTL_ASPM_L0S;
if (state & ASPM_STATE_L1) {
upstream |= PCI_EXP_LNKCTL_ASPM_L1;
dwstream |= PCI_EXP_LNKCTL_ASPM_L1;
}
if (link->aspm_capable & ASPM_STATE_L1SS)
pcie_config_aspm_l1ss(link, state);
/*
* Spec 2.0 suggests all functions should be configured the
* same setting for ASPM. Enabling ASPM L1 should be done in
* upstream component first and then downstream, and vice
* versa for disabling ASPM L1. Spec doesn't mention L0S.
*/
if (state & ASPM_STATE_L1)
pcie_config_aspm_dev(parent, upstream);
list_for_each_entry(child, &linkbus->devices, bus_list)
pcie_config_aspm_dev(child, dwstream);
if (!(state & ASPM_STATE_L1))
pcie_config_aspm_dev(parent, upstream);
link->aspm_enabled = state;
/* Update latest ASPM configuration in saved context */
pci_save_aspm_l1ss_state(link->downstream);
pci_update_aspm_saved_state(link->downstream);
pci_save_aspm_l1ss_state(parent);
pci_update_aspm_saved_state(parent);
}
static void pcie_config_aspm_path(struct pcie_link_state *link)
{
while (link) {
pcie_config_aspm_link(link, policy_to_aspm_state(link));
link = link->parent;
}
}
static void free_link_state(struct pcie_link_state *link)
{
link->pdev->link_state = NULL;
kfree(link);
}
static int pcie_aspm_sanity_check(struct pci_dev *pdev)
{
struct pci_dev *child;
u32 reg32;
/*
* Some functions in a slot might not all be PCIe functions,
* very strange. Disable ASPM for the whole slot
*/
list_for_each_entry(child, &pdev->subordinate->devices, bus_list) {
if (!pci_is_pcie(child))
return -EINVAL;
/*
* If ASPM is disabled then we're not going to change
* the BIOS state. It's safe to continue even if it's a
* pre-1.1 device
*/
if (aspm_disabled)
continue;
/*
* Disable ASPM for pre-1.1 PCIe device, we follow MS to use
* RBER bit to determine if a function is 1.1 version device
*/
pcie_capability_read_dword(child, PCI_EXP_DEVCAP, &reg32);
if (!(reg32 & PCI_EXP_DEVCAP_RBER) && !aspm_force) {
pci_info(child, "disabling ASPM on pre-1.1 PCIe device. You can enable it with 'pcie_aspm=force'\n");
return -EINVAL;
}
}
return 0;
}
static struct pcie_link_state *alloc_pcie_link_state(struct pci_dev *pdev)
{
struct pcie_link_state *link;
link = kzalloc(sizeof(*link), GFP_KERNEL);
if (!link)
return NULL;
INIT_LIST_HEAD(&link->sibling);
link->pdev = pdev;
link->downstream = pci_function_0(pdev->subordinate);
/*
* Root Ports and PCI/PCI-X to PCIe Bridges are roots of PCIe
* hierarchies. Note that some PCIe host implementations omit
* the root ports entirely, in which case a downstream port on
* a switch may become the root of the link state chain for all
* its subordinate endpoints.
*/
if (pci_pcie_type(pdev) == PCI_EXP_TYPE_ROOT_PORT ||
pci_pcie_type(pdev) == PCI_EXP_TYPE_PCIE_BRIDGE ||
!pdev->bus->parent->self) {
link->root = link;
} else {
struct pcie_link_state *parent;
parent = pdev->bus->parent->self->link_state;
if (!parent) {
kfree(link);
return NULL;
}
link->parent = parent;
link->root = link->parent->root;
}
list_add(&link->sibling, &link_list);
pdev->link_state = link;
return link;
}
static void pcie_aspm_update_sysfs_visibility(struct pci_dev *pdev)
{
struct pci_dev *child;
list_for_each_entry(child, &pdev->subordinate->devices, bus_list)
sysfs_update_group(&child->dev.kobj, &aspm_ctrl_attr_group);
}
/*
* pcie_aspm_init_link_state: Initiate PCI express link state.
* It is called after the pcie and its children devices are scanned.
* @pdev: the root port or switch downstream port
*/
void pcie_aspm_init_link_state(struct pci_dev *pdev)
{
struct pcie_link_state *link;
int blacklist = !!pcie_aspm_sanity_check(pdev);
if (!aspm_support_enabled)
return;
if (pdev->link_state)
return;
/*
* We allocate pcie_link_state for the component on the upstream
* end of a Link, so there's nothing to do unless this device is
* downstream port.
*/
if (!pcie_downstream_port(pdev))
return;
/* VIA has a strange chipset, root port is under a bridge */
if (pci_pcie_type(pdev) == PCI_EXP_TYPE_ROOT_PORT &&
pdev->bus->self)
return;
down_read(&pci_bus_sem);
if (list_empty(&pdev->subordinate->devices))
goto out;
mutex_lock(&aspm_lock);
link = alloc_pcie_link_state(pdev);
if (!link)
goto unlock;
/*
* Setup initial ASPM state. Note that we need to configure
* upstream links also because capable state of them can be
* update through pcie_aspm_cap_init().
*/
pcie_aspm_cap_init(link, blacklist);
/* Setup initial Clock PM state */
pcie_clkpm_cap_init(link, blacklist);
/*
* At this stage drivers haven't had an opportunity to change the
* link policy setting. Enabling ASPM on broken hardware can cripple
* it even before the driver has had a chance to disable ASPM, so
* default to a safe level right now. If we're enabling ASPM beyond
* the BIOS's expectation, we'll do so once pci_enable_device() is
* called.
*/
if (aspm_policy != POLICY_POWERSAVE &&
aspm_policy != POLICY_POWER_SUPERSAVE) {
pcie_config_aspm_path(link);
pcie_set_clkpm(link, policy_to_clkpm_state(link));
}
pcie_aspm_update_sysfs_visibility(pdev);
unlock:
mutex_unlock(&aspm_lock);
out:
up_read(&pci_bus_sem);
}
void pci_bridge_reconfigure_ltr(struct pci_dev *pdev)
{
struct pci_dev *bridge;
u32 ctl;
bridge = pci_upstream_bridge(pdev);
if (bridge && bridge->ltr_path) {
pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
pci_dbg(bridge, "re-enabling LTR\n");
pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
PCI_EXP_DEVCTL2_LTR_EN);
}
}
}
void pci_configure_ltr(struct pci_dev *pdev)
{
struct pci_host_bridge *host = pci_find_host_bridge(pdev->bus);
struct pci_dev *bridge;
u32 cap, ctl;
if (!pci_is_pcie(pdev))
return;
pcie_capability_read_dword(pdev, PCI_EXP_DEVCAP2, &cap);
if (!(cap & PCI_EXP_DEVCAP2_LTR))
return;
pcie_capability_read_dword(pdev, PCI_EXP_DEVCTL2, &ctl);
if (ctl & PCI_EXP_DEVCTL2_LTR_EN) {
if (pci_pcie_type(pdev) == PCI_EXP_TYPE_ROOT_PORT) {
pdev->ltr_path = 1;
return;
}
bridge = pci_upstream_bridge(pdev);
if (bridge && bridge->ltr_path)
pdev->ltr_path = 1;
return;
}
if (!host->native_ltr)
return;
/*
* Software must not enable LTR in an Endpoint unless the Root
* Complex and all intermediate Switches indicate support for LTR.
* PCIe r4.0, sec 6.18.
*/
if (pci_pcie_type(pdev) == PCI_EXP_TYPE_ROOT_PORT) {
pcie_capability_set_word(pdev, PCI_EXP_DEVCTL2,
PCI_EXP_DEVCTL2_LTR_EN);
pdev->ltr_path = 1;
return;
}
/*
* If we're configuring a hot-added device, LTR was likely
* disabled in the upstream bridge, so re-enable it before enabling
* it in the new device.
*/
bridge = pci_upstream_bridge(pdev);
if (bridge && bridge->ltr_path) {
pci_bridge_reconfigure_ltr(pdev);
pcie_capability_set_word(pdev, PCI_EXP_DEVCTL2,
PCI_EXP_DEVCTL2_LTR_EN);
pdev->ltr_path = 1;
}
}
/* Recheck latencies and update aspm_capable for links under the root */
static void pcie_update_aspm_capable(struct pcie_link_state *root)
{
struct pcie_link_state *link;
BUG_ON(root->parent);
list_for_each_entry(link, &link_list, sibling) {
if (link->root != root)
continue;
link->aspm_capable = link->aspm_support;
}
list_for_each_entry(link, &link_list, sibling) {
struct pci_dev *child;
struct pci_bus *linkbus = link->pdev->subordinate;
if (link->root != root)
continue;
list_for_each_entry(child, &linkbus->devices, bus_list) {
if ((pci_pcie_type(child) != PCI_EXP_TYPE_ENDPOINT) &&
(pci_pcie_type(child) != PCI_EXP_TYPE_LEG_END))
continue;
pcie_aspm_check_latency(child);
}
}
}
/* @pdev: the endpoint device */
void pcie_aspm_exit_link_state(struct pci_dev *pdev)
{
struct pci_dev *parent = pdev->bus->self;
struct pcie_link_state *link, *root, *parent_link;
if (!parent || !parent->link_state)
return;
down_read(&pci_bus_sem);
mutex_lock(&aspm_lock);
link = parent->link_state;
root = link->root;
parent_link = link->parent;
/*
* link->downstream is a pointer to the pci_dev of function 0. If
* we remove that function, the pci_dev is about to be deallocated,
* so we can't use link->downstream again. Free the link state to
* avoid this.
*
* If we're removing a non-0 function, it's possible we could
* retain the link state, but PCIe r6.0, sec 7.5.3.7, recommends
* programming the same ASPM Control value for all functions of
* multi-function devices, so disable ASPM for all of them.
*/
pcie_config_aspm_link(link, 0);
list_del(&link->sibling);
free_link_state(link);
/* Recheck latencies and configure upstream links */
if (parent_link) {
pcie_update_aspm_capable(root);
pcie_config_aspm_path(parent_link);
}
mutex_unlock(&aspm_lock);
up_read(&pci_bus_sem);
}
/*
* @pdev: the root port or switch downstream port
* @locked: whether pci_bus_sem is held
*/
void pcie_aspm_pm_state_change(struct pci_dev *pdev, bool locked)
{
struct pcie_link_state *link = pdev->link_state;
if (aspm_disabled || !link)
return;
/*
* Devices changed PM state, we should recheck if latency
* meets all functions' requirement
*/
if (!locked)
down_read(&pci_bus_sem);
mutex_lock(&aspm_lock);
pcie_update_aspm_capable(link->root);
pcie_config_aspm_path(link);
mutex_unlock(&aspm_lock);
if (!locked)
up_read(&pci_bus_sem);
}
void pcie_aspm_powersave_config_link(struct pci_dev *pdev)
{
struct pcie_link_state *link = pdev->link_state;
if (aspm_disabled || !link)
return;
if (aspm_policy != POLICY_POWERSAVE &&
aspm_policy != POLICY_POWER_SUPERSAVE)
return;
down_read(&pci_bus_sem);
mutex_lock(&aspm_lock);
pcie_config_aspm_path(link);
pcie_set_clkpm(link, policy_to_clkpm_state(link));
mutex_unlock(&aspm_lock);
up_read(&pci_bus_sem);
}
static struct pcie_link_state *pcie_aspm_get_link(struct pci_dev *pdev)
{
struct pci_dev *bridge;
if (!pci_is_pcie(pdev))
return NULL;
bridge = pci_upstream_bridge(pdev);
if (!bridge || !pci_is_pcie(bridge))
return NULL;
return bridge->link_state;
}
static int __pci_disable_link_state(struct pci_dev *pdev, int state, bool locked)
{
struct pcie_link_state *link = pcie_aspm_get_link(pdev);
if (!link)
return -EINVAL;
/*
* A driver requested that ASPM be disabled on this device, but
* if we don't have permission to manage ASPM (e.g., on ACPI
* systems we have to observe the FADT ACPI_FADT_NO_ASPM bit and
* the _OSC method), we can't honor that request. Windows has
* a similar mechanism using "PciASPMOptOut", which is also
* ignored in this situation.
*/
if (aspm_disabled) {
pci_warn(pdev, "can't disable ASPM; OS doesn't have ASPM control\n");
return -EPERM;
}
if (!locked)
down_read(&pci_bus_sem);
mutex_lock(&aspm_lock);
if (state & PCIE_LINK_STATE_L0S)
link->aspm_disable |= ASPM_STATE_L0S;
if (state & PCIE_LINK_STATE_L1)
/* L1 PM substates require L1 */
link->aspm_disable |= ASPM_STATE_L1 | ASPM_STATE_L1SS;
if (state & PCIE_LINK_STATE_L1_1)
link->aspm_disable |= ASPM_STATE_L1_1;
if (state & PCIE_LINK_STATE_L1_2)
link->aspm_disable |= ASPM_STATE_L1_2;
if (state & PCIE_LINK_STATE_L1_1_PCIPM)
link->aspm_disable |= ASPM_STATE_L1_1_PCIPM;
if (state & PCIE_LINK_STATE_L1_2_PCIPM)
link->aspm_disable |= ASPM_STATE_L1_2_PCIPM;
pcie_config_aspm_link(link, policy_to_aspm_state(link));
if (state & PCIE_LINK_STATE_CLKPM)
link->clkpm_disable = 1;
pcie_set_clkpm(link, policy_to_clkpm_state(link));
mutex_unlock(&aspm_lock);
if (!locked)
up_read(&pci_bus_sem);
return 0;
}
int pci_disable_link_state_locked(struct pci_dev *pdev, int state)
{
lockdep_assert_held_read(&pci_bus_sem);
return __pci_disable_link_state(pdev, state, true);
}
EXPORT_SYMBOL(pci_disable_link_state_locked);
/**
* pci_disable_link_state - Disable device's link state, so the link will
* never enter specific states. Note that if the BIOS didn't grant ASPM
* control to the OS, this does nothing because we can't touch the LNKCTL
* register. Returns 0 or a negative errno.
*
* @pdev: PCI device
* @state: ASPM link state to disable
*/
int pci_disable_link_state(struct pci_dev *pdev, int state)
{
return __pci_disable_link_state(pdev, state, false);
}
EXPORT_SYMBOL(pci_disable_link_state);
static int __pci_enable_link_state(struct pci_dev *pdev, int state, bool locked)
{
struct pcie_link_state *link = pcie_aspm_get_link(pdev);
if (!link)
return -EINVAL;
/*
* A driver requested that ASPM be enabled on this device, but
* if we don't have permission to manage ASPM (e.g., on ACPI
* systems we have to observe the FADT ACPI_FADT_NO_ASPM bit and
* the _OSC method), we can't honor that request.
*/
if (aspm_disabled) {
pci_warn(pdev, "can't override BIOS ASPM; OS doesn't have ASPM control\n");
return -EPERM;
}
if (!locked)
down_read(&pci_bus_sem);
mutex_lock(&aspm_lock);
link->aspm_default = 0;
if (state & PCIE_LINK_STATE_L0S)
link->aspm_default |= ASPM_STATE_L0S;
if (state & PCIE_LINK_STATE_L1)
link->aspm_default |= ASPM_STATE_L1;
/* L1 PM substates require L1 */
if (state & PCIE_LINK_STATE_L1_1)
link->aspm_default |= ASPM_STATE_L1_1 | ASPM_STATE_L1;
if (state & PCIE_LINK_STATE_L1_2)
link->aspm_default |= ASPM_STATE_L1_2 | ASPM_STATE_L1;
if (state & PCIE_LINK_STATE_L1_1_PCIPM)
link->aspm_default |= ASPM_STATE_L1_1_PCIPM | ASPM_STATE_L1;
if (state & PCIE_LINK_STATE_L1_2_PCIPM)
link->aspm_default |= ASPM_STATE_L1_2_PCIPM | ASPM_STATE_L1;
pcie_config_aspm_link(link, policy_to_aspm_state(link));
link->clkpm_default = (state & PCIE_LINK_STATE_CLKPM) ? 1 : 0;
pcie_set_clkpm(link, policy_to_clkpm_state(link));
mutex_unlock(&aspm_lock);
if (!locked)
up_read(&pci_bus_sem);
return 0;
}
/**
* pci_enable_link_state - Clear and set the default device link state so that
* the link may be allowed to enter the specified states. Note that if the
* BIOS didn't grant ASPM control to the OS, this does nothing because we can't
* touch the LNKCTL register. Also note that this does not enable states
* disabled by pci_disable_link_state(). Return 0 or a negative errno.
*
* @pdev: PCI device
* @state: Mask of ASPM link states to enable
*/
int pci_enable_link_state(struct pci_dev *pdev, int state)
{
return __pci_enable_link_state(pdev, state, false);
}
EXPORT_SYMBOL(pci_enable_link_state);
/**
* pci_enable_link_state_locked - Clear and set the default device link state
* so that the link may be allowed to enter the specified states. Note that if
* the BIOS didn't grant ASPM control to the OS, this does nothing because we
* can't touch the LNKCTL register. Also note that this does not enable states
* disabled by pci_disable_link_state(). Return 0 or a negative errno.
*
* @pdev: PCI device
* @state: Mask of ASPM link states to enable
*
* Context: Caller holds pci_bus_sem read lock.
*/
int pci_enable_link_state_locked(struct pci_dev *pdev, int state)
{
lockdep_assert_held_read(&pci_bus_sem);
return __pci_enable_link_state(pdev, state, true);
}
EXPORT_SYMBOL(pci_enable_link_state_locked);
static int pcie_aspm_set_policy(const char *val,
const struct kernel_param *kp)
{
int i;
struct pcie_link_state *link;
if (aspm_disabled)
return -EPERM;
i = sysfs_match_string(policy_str, val);
if (i < 0)
return i;
if (i == aspm_policy)
return 0;
down_read(&pci_bus_sem);
mutex_lock(&aspm_lock);
aspm_policy = i;
list_for_each_entry(link, &link_list, sibling) {
pcie_config_aspm_link(link, policy_to_aspm_state(link));
pcie_set_clkpm(link, policy_to_clkpm_state(link));
}
mutex_unlock(&aspm_lock);
up_read(&pci_bus_sem);
return 0;
}
static int pcie_aspm_get_policy(char *buffer, const struct kernel_param *kp)
{
int i, cnt = 0;
for (i = 0; i < ARRAY_SIZE(policy_str); i++)
if (i == aspm_policy)
cnt += sprintf(buffer + cnt, "[%s] ", policy_str[i]);
else
cnt += sprintf(buffer + cnt, "%s ", policy_str[i]);
cnt += sprintf(buffer + cnt, "\n");
return cnt;
}
module_param_call(policy, pcie_aspm_set_policy, pcie_aspm_get_policy,
NULL, 0644);
/**
* pcie_aspm_enabled - Check if PCIe ASPM has been enabled for a device.
* @pdev: Target device.
*
* Relies on the upstream bridge's link_state being valid. The link_state
* is deallocated only when the last child of the bridge (i.e., @pdev or a
* sibling) is removed, and the caller should be holding a reference to
* @pdev, so this should be safe.
*/
bool pcie_aspm_enabled(struct pci_dev *pdev)
{
struct pcie_link_state *link = pcie_aspm_get_link(pdev);
if (!link)
return false;
return link->aspm_enabled;
}
EXPORT_SYMBOL_GPL(pcie_aspm_enabled);
static ssize_t aspm_attr_show_common(struct device *dev,
struct device_attribute *attr,
char *buf, u8 state)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct pcie_link_state *link = pcie_aspm_get_link(pdev);
return sysfs_emit(buf, "%d\n", (link->aspm_enabled & state) ? 1 : 0);
}
static ssize_t aspm_attr_store_common(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len, u8 state)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct pcie_link_state *link = pcie_aspm_get_link(pdev);
bool state_enable;
if (kstrtobool(buf, &state_enable) < 0)
return -EINVAL;
down_read(&pci_bus_sem);
mutex_lock(&aspm_lock);
if (state_enable) {
link->aspm_disable &= ~state;
/* need to enable L1 for substates */
if (state & ASPM_STATE_L1SS)
link->aspm_disable &= ~ASPM_STATE_L1;
} else {
link->aspm_disable |= state;
if (state & ASPM_STATE_L1)
link->aspm_disable |= ASPM_STATE_L1SS;
}
pcie_config_aspm_link(link, policy_to_aspm_state(link));
mutex_unlock(&aspm_lock);
up_read(&pci_bus_sem);
return len;
}
#define ASPM_ATTR(_f, _s) \
static ssize_t _f##_show(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ return aspm_attr_show_common(dev, attr, buf, ASPM_STATE_##_s); } \
\
static ssize_t _f##_store(struct device *dev, \
struct device_attribute *attr, \
const char *buf, size_t len) \
{ return aspm_attr_store_common(dev, attr, buf, len, ASPM_STATE_##_s); }
ASPM_ATTR(l0s_aspm, L0S)
ASPM_ATTR(l1_aspm, L1)
ASPM_ATTR(l1_1_aspm, L1_1)
ASPM_ATTR(l1_2_aspm, L1_2)
ASPM_ATTR(l1_1_pcipm, L1_1_PCIPM)
ASPM_ATTR(l1_2_pcipm, L1_2_PCIPM)
static ssize_t clkpm_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct pcie_link_state *link = pcie_aspm_get_link(pdev);
return sysfs_emit(buf, "%d\n", link->clkpm_enabled);
}
static ssize_t clkpm_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct pcie_link_state *link = pcie_aspm_get_link(pdev);
bool state_enable;
if (kstrtobool(buf, &state_enable) < 0)
return -EINVAL;
down_read(&pci_bus_sem);
mutex_lock(&aspm_lock);
link->clkpm_disable = !state_enable;
pcie_set_clkpm(link, policy_to_clkpm_state(link));
mutex_unlock(&aspm_lock);
up_read(&pci_bus_sem);
return len;
}
static DEVICE_ATTR_RW(clkpm);
static DEVICE_ATTR_RW(l0s_aspm);
static DEVICE_ATTR_RW(l1_aspm);
static DEVICE_ATTR_RW(l1_1_aspm);
static DEVICE_ATTR_RW(l1_2_aspm);
static DEVICE_ATTR_RW(l1_1_pcipm);
static DEVICE_ATTR_RW(l1_2_pcipm);
static struct attribute *aspm_ctrl_attrs[] = {
&dev_attr_clkpm.attr,
&dev_attr_l0s_aspm.attr,
&dev_attr_l1_aspm.attr,
&dev_attr_l1_1_aspm.attr,
&dev_attr_l1_2_aspm.attr,
&dev_attr_l1_1_pcipm.attr,
&dev_attr_l1_2_pcipm.attr,
NULL
};
static umode_t aspm_ctrl_attrs_are_visible(struct kobject *kobj,
struct attribute *a, int n)
{
struct device *dev = kobj_to_dev(kobj);
struct pci_dev *pdev = to_pci_dev(dev);
struct pcie_link_state *link = pcie_aspm_get_link(pdev);
static const u8 aspm_state_map[] = {
ASPM_STATE_L0S,
ASPM_STATE_L1,
ASPM_STATE_L1_1,
ASPM_STATE_L1_2,
ASPM_STATE_L1_1_PCIPM,
ASPM_STATE_L1_2_PCIPM,
};
if (aspm_disabled || !link)
return 0;
if (n == 0)
return link->clkpm_capable ? a->mode : 0;
return link->aspm_capable & aspm_state_map[n - 1] ? a->mode : 0;
}
const struct attribute_group aspm_ctrl_attr_group = {
.name = "link",
.attrs = aspm_ctrl_attrs,
.is_visible = aspm_ctrl_attrs_are_visible,
};
static int __init pcie_aspm_disable(char *str)
{
if (!strcmp(str, "off")) {
aspm_policy = POLICY_DEFAULT;
aspm_disabled = 1;
aspm_support_enabled = false;
pr_info("PCIe ASPM is disabled\n");
} else if (!strcmp(str, "force")) {
aspm_force = 1;
pr_info("PCIe ASPM is forcibly enabled\n");
}
return 1;
}
__setup("pcie_aspm=", pcie_aspm_disable);
void pcie_no_aspm(void)
{
/*
* Disabling ASPM is intended to prevent the kernel from modifying
* existing hardware state, not to clear existing state. To that end:
* (a) set policy to POLICY_DEFAULT in order to avoid changing state
* (b) prevent userspace from changing policy
*/
if (!aspm_force) {
aspm_policy = POLICY_DEFAULT;
aspm_disabled = 1;
}
}
bool pcie_aspm_support_enabled(void)
{
return aspm_support_enabled;
}
#endif /* CONFIG_PCIEASPM */