d3b58c47d3
Commit514ac99c64
"can: fix multiple delivery of a single CAN frame for overlapping CAN filters" requires the skb->tstamp to be set to check for identical CAN skbs. Without timestamping to be required by user space applications this timestamp was not generated which lead to commit36c01245eb
"can: fix loss of CAN frames in raw_rcv" - which forces the timestamp to be set in all CAN related skbuffs by introducing several __net_timestamp() calls. This forces e.g. out of tree drivers which are not using alloc_can{,fd}_skb() to add __net_timestamp() after skbuff creation to prevent the frame loss fixed in mainline Linux. This patch removes the timestamp dependency and uses an atomic counter to create an unique identifier together with the skbuff pointer. Btw: the new skbcnt element introduced in struct can_skb_priv has to be initialized with zero in out-of-tree drivers which are not using alloc_can{,fd}_skb() too. Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net> Cc: linux-stable <stable@vger.kernel.org> Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
1032 lines
26 KiB
C
1032 lines
26 KiB
C
/*
|
|
* Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
|
|
* Copyright (C) 2006 Andrey Volkov, Varma Electronics
|
|
* Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the version 2 of the GNU General Public License
|
|
* as published by the Free Software Foundation
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/if_arp.h>
|
|
#include <linux/can.h>
|
|
#include <linux/can/dev.h>
|
|
#include <linux/can/skb.h>
|
|
#include <linux/can/netlink.h>
|
|
#include <linux/can/led.h>
|
|
#include <net/rtnetlink.h>
|
|
|
|
#define MOD_DESC "CAN device driver interface"
|
|
|
|
MODULE_DESCRIPTION(MOD_DESC);
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
|
|
|
|
/* CAN DLC to real data length conversion helpers */
|
|
|
|
static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
|
|
8, 12, 16, 20, 24, 32, 48, 64};
|
|
|
|
/* get data length from can_dlc with sanitized can_dlc */
|
|
u8 can_dlc2len(u8 can_dlc)
|
|
{
|
|
return dlc2len[can_dlc & 0x0F];
|
|
}
|
|
EXPORT_SYMBOL_GPL(can_dlc2len);
|
|
|
|
static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, /* 0 - 8 */
|
|
9, 9, 9, 9, /* 9 - 12 */
|
|
10, 10, 10, 10, /* 13 - 16 */
|
|
11, 11, 11, 11, /* 17 - 20 */
|
|
12, 12, 12, 12, /* 21 - 24 */
|
|
13, 13, 13, 13, 13, 13, 13, 13, /* 25 - 32 */
|
|
14, 14, 14, 14, 14, 14, 14, 14, /* 33 - 40 */
|
|
14, 14, 14, 14, 14, 14, 14, 14, /* 41 - 48 */
|
|
15, 15, 15, 15, 15, 15, 15, 15, /* 49 - 56 */
|
|
15, 15, 15, 15, 15, 15, 15, 15}; /* 57 - 64 */
|
|
|
|
/* map the sanitized data length to an appropriate data length code */
|
|
u8 can_len2dlc(u8 len)
|
|
{
|
|
if (unlikely(len > 64))
|
|
return 0xF;
|
|
|
|
return len2dlc[len];
|
|
}
|
|
EXPORT_SYMBOL_GPL(can_len2dlc);
|
|
|
|
#ifdef CONFIG_CAN_CALC_BITTIMING
|
|
#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
|
|
|
|
/*
|
|
* Bit-timing calculation derived from:
|
|
*
|
|
* Code based on LinCAN sources and H8S2638 project
|
|
* Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
|
|
* Copyright 2005 Stanislav Marek
|
|
* email: pisa@cmp.felk.cvut.cz
|
|
*
|
|
* Calculates proper bit-timing parameters for a specified bit-rate
|
|
* and sample-point, which can then be used to set the bit-timing
|
|
* registers of the CAN controller. You can find more information
|
|
* in the header file linux/can/netlink.h.
|
|
*/
|
|
static int can_update_spt(const struct can_bittiming_const *btc,
|
|
int sampl_pt, int tseg, int *tseg1, int *tseg2)
|
|
{
|
|
*tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
|
|
if (*tseg2 < btc->tseg2_min)
|
|
*tseg2 = btc->tseg2_min;
|
|
if (*tseg2 > btc->tseg2_max)
|
|
*tseg2 = btc->tseg2_max;
|
|
*tseg1 = tseg - *tseg2;
|
|
if (*tseg1 > btc->tseg1_max) {
|
|
*tseg1 = btc->tseg1_max;
|
|
*tseg2 = tseg - *tseg1;
|
|
}
|
|
return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
|
|
}
|
|
|
|
static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
|
|
const struct can_bittiming_const *btc)
|
|
{
|
|
struct can_priv *priv = netdev_priv(dev);
|
|
long best_error = 1000000000, error = 0;
|
|
int best_tseg = 0, best_brp = 0, brp = 0;
|
|
int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
|
|
int spt_error = 1000, spt = 0, sampl_pt;
|
|
long rate;
|
|
u64 v64;
|
|
|
|
/* Use CiA recommended sample points */
|
|
if (bt->sample_point) {
|
|
sampl_pt = bt->sample_point;
|
|
} else {
|
|
if (bt->bitrate > 800000)
|
|
sampl_pt = 750;
|
|
else if (bt->bitrate > 500000)
|
|
sampl_pt = 800;
|
|
else
|
|
sampl_pt = 875;
|
|
}
|
|
|
|
/* tseg even = round down, odd = round up */
|
|
for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
|
|
tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
|
|
tsegall = 1 + tseg / 2;
|
|
/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
|
|
brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
|
|
/* chose brp step which is possible in system */
|
|
brp = (brp / btc->brp_inc) * btc->brp_inc;
|
|
if ((brp < btc->brp_min) || (brp > btc->brp_max))
|
|
continue;
|
|
rate = priv->clock.freq / (brp * tsegall);
|
|
error = bt->bitrate - rate;
|
|
/* tseg brp biterror */
|
|
if (error < 0)
|
|
error = -error;
|
|
if (error > best_error)
|
|
continue;
|
|
best_error = error;
|
|
if (error == 0) {
|
|
spt = can_update_spt(btc, sampl_pt, tseg / 2,
|
|
&tseg1, &tseg2);
|
|
error = sampl_pt - spt;
|
|
if (error < 0)
|
|
error = -error;
|
|
if (error > spt_error)
|
|
continue;
|
|
spt_error = error;
|
|
}
|
|
best_tseg = tseg / 2;
|
|
best_brp = brp;
|
|
if (error == 0)
|
|
break;
|
|
}
|
|
|
|
if (best_error) {
|
|
/* Error in one-tenth of a percent */
|
|
error = (best_error * 1000) / bt->bitrate;
|
|
if (error > CAN_CALC_MAX_ERROR) {
|
|
netdev_err(dev,
|
|
"bitrate error %ld.%ld%% too high\n",
|
|
error / 10, error % 10);
|
|
return -EDOM;
|
|
} else {
|
|
netdev_warn(dev, "bitrate error %ld.%ld%%\n",
|
|
error / 10, error % 10);
|
|
}
|
|
}
|
|
|
|
/* real sample point */
|
|
bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
|
|
&tseg1, &tseg2);
|
|
|
|
v64 = (u64)best_brp * 1000000000UL;
|
|
do_div(v64, priv->clock.freq);
|
|
bt->tq = (u32)v64;
|
|
bt->prop_seg = tseg1 / 2;
|
|
bt->phase_seg1 = tseg1 - bt->prop_seg;
|
|
bt->phase_seg2 = tseg2;
|
|
|
|
/* check for sjw user settings */
|
|
if (!bt->sjw || !btc->sjw_max)
|
|
bt->sjw = 1;
|
|
else {
|
|
/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
|
|
if (bt->sjw > btc->sjw_max)
|
|
bt->sjw = btc->sjw_max;
|
|
/* bt->sjw must not be higher than tseg2 */
|
|
if (tseg2 < bt->sjw)
|
|
bt->sjw = tseg2;
|
|
}
|
|
|
|
bt->brp = best_brp;
|
|
/* real bit-rate */
|
|
bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
|
|
|
|
return 0;
|
|
}
|
|
#else /* !CONFIG_CAN_CALC_BITTIMING */
|
|
static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
|
|
const struct can_bittiming_const *btc)
|
|
{
|
|
netdev_err(dev, "bit-timing calculation not available\n");
|
|
return -EINVAL;
|
|
}
|
|
#endif /* CONFIG_CAN_CALC_BITTIMING */
|
|
|
|
/*
|
|
* Checks the validity of the specified bit-timing parameters prop_seg,
|
|
* phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
|
|
* prescaler value brp. You can find more information in the header
|
|
* file linux/can/netlink.h.
|
|
*/
|
|
static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
|
|
const struct can_bittiming_const *btc)
|
|
{
|
|
struct can_priv *priv = netdev_priv(dev);
|
|
int tseg1, alltseg;
|
|
u64 brp64;
|
|
|
|
tseg1 = bt->prop_seg + bt->phase_seg1;
|
|
if (!bt->sjw)
|
|
bt->sjw = 1;
|
|
if (bt->sjw > btc->sjw_max ||
|
|
tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
|
|
bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
|
|
return -ERANGE;
|
|
|
|
brp64 = (u64)priv->clock.freq * (u64)bt->tq;
|
|
if (btc->brp_inc > 1)
|
|
do_div(brp64, btc->brp_inc);
|
|
brp64 += 500000000UL - 1;
|
|
do_div(brp64, 1000000000UL); /* the practicable BRP */
|
|
if (btc->brp_inc > 1)
|
|
brp64 *= btc->brp_inc;
|
|
bt->brp = (u32)brp64;
|
|
|
|
if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
|
|
return -EINVAL;
|
|
|
|
alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
|
|
bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
|
|
bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
|
|
const struct can_bittiming_const *btc)
|
|
{
|
|
int err;
|
|
|
|
/* Check if the CAN device has bit-timing parameters */
|
|
if (!btc)
|
|
return -EOPNOTSUPP;
|
|
|
|
/*
|
|
* Depending on the given can_bittiming parameter structure the CAN
|
|
* timing parameters are calculated based on the provided bitrate OR
|
|
* alternatively the CAN timing parameters (tq, prop_seg, etc.) are
|
|
* provided directly which are then checked and fixed up.
|
|
*/
|
|
if (!bt->tq && bt->bitrate)
|
|
err = can_calc_bittiming(dev, bt, btc);
|
|
else if (bt->tq && !bt->bitrate)
|
|
err = can_fixup_bittiming(dev, bt, btc);
|
|
else
|
|
err = -EINVAL;
|
|
|
|
return err;
|
|
}
|
|
|
|
static void can_update_state_error_stats(struct net_device *dev,
|
|
enum can_state new_state)
|
|
{
|
|
struct can_priv *priv = netdev_priv(dev);
|
|
|
|
if (new_state <= priv->state)
|
|
return;
|
|
|
|
switch (new_state) {
|
|
case CAN_STATE_ERROR_WARNING:
|
|
priv->can_stats.error_warning++;
|
|
break;
|
|
case CAN_STATE_ERROR_PASSIVE:
|
|
priv->can_stats.error_passive++;
|
|
break;
|
|
case CAN_STATE_BUS_OFF:
|
|
priv->can_stats.bus_off++;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
|
|
{
|
|
switch (state) {
|
|
case CAN_STATE_ERROR_ACTIVE:
|
|
return CAN_ERR_CRTL_ACTIVE;
|
|
case CAN_STATE_ERROR_WARNING:
|
|
return CAN_ERR_CRTL_TX_WARNING;
|
|
case CAN_STATE_ERROR_PASSIVE:
|
|
return CAN_ERR_CRTL_TX_PASSIVE;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
|
|
{
|
|
switch (state) {
|
|
case CAN_STATE_ERROR_ACTIVE:
|
|
return CAN_ERR_CRTL_ACTIVE;
|
|
case CAN_STATE_ERROR_WARNING:
|
|
return CAN_ERR_CRTL_RX_WARNING;
|
|
case CAN_STATE_ERROR_PASSIVE:
|
|
return CAN_ERR_CRTL_RX_PASSIVE;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void can_change_state(struct net_device *dev, struct can_frame *cf,
|
|
enum can_state tx_state, enum can_state rx_state)
|
|
{
|
|
struct can_priv *priv = netdev_priv(dev);
|
|
enum can_state new_state = max(tx_state, rx_state);
|
|
|
|
if (unlikely(new_state == priv->state)) {
|
|
netdev_warn(dev, "%s: oops, state did not change", __func__);
|
|
return;
|
|
}
|
|
|
|
netdev_dbg(dev, "New error state: %d\n", new_state);
|
|
|
|
can_update_state_error_stats(dev, new_state);
|
|
priv->state = new_state;
|
|
|
|
if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
|
|
cf->can_id |= CAN_ERR_BUSOFF;
|
|
return;
|
|
}
|
|
|
|
cf->can_id |= CAN_ERR_CRTL;
|
|
cf->data[1] |= tx_state >= rx_state ?
|
|
can_tx_state_to_frame(dev, tx_state) : 0;
|
|
cf->data[1] |= tx_state <= rx_state ?
|
|
can_rx_state_to_frame(dev, rx_state) : 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(can_change_state);
|
|
|
|
/*
|
|
* Local echo of CAN messages
|
|
*
|
|
* CAN network devices *should* support a local echo functionality
|
|
* (see Documentation/networking/can.txt). To test the handling of CAN
|
|
* interfaces that do not support the local echo both driver types are
|
|
* implemented. In the case that the driver does not support the echo
|
|
* the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
|
|
* to perform the echo as a fallback solution.
|
|
*/
|
|
static void can_flush_echo_skb(struct net_device *dev)
|
|
{
|
|
struct can_priv *priv = netdev_priv(dev);
|
|
struct net_device_stats *stats = &dev->stats;
|
|
int i;
|
|
|
|
for (i = 0; i < priv->echo_skb_max; i++) {
|
|
if (priv->echo_skb[i]) {
|
|
kfree_skb(priv->echo_skb[i]);
|
|
priv->echo_skb[i] = NULL;
|
|
stats->tx_dropped++;
|
|
stats->tx_aborted_errors++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Put the skb on the stack to be looped backed locally lateron
|
|
*
|
|
* The function is typically called in the start_xmit function
|
|
* of the device driver. The driver must protect access to
|
|
* priv->echo_skb, if necessary.
|
|
*/
|
|
void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
|
|
unsigned int idx)
|
|
{
|
|
struct can_priv *priv = netdev_priv(dev);
|
|
|
|
BUG_ON(idx >= priv->echo_skb_max);
|
|
|
|
/* check flag whether this packet has to be looped back */
|
|
if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
|
|
(skb->protocol != htons(ETH_P_CAN) &&
|
|
skb->protocol != htons(ETH_P_CANFD))) {
|
|
kfree_skb(skb);
|
|
return;
|
|
}
|
|
|
|
if (!priv->echo_skb[idx]) {
|
|
|
|
skb = can_create_echo_skb(skb);
|
|
if (!skb)
|
|
return;
|
|
|
|
/* make settings for echo to reduce code in irq context */
|
|
skb->pkt_type = PACKET_BROADCAST;
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
skb->dev = dev;
|
|
|
|
/* save this skb for tx interrupt echo handling */
|
|
priv->echo_skb[idx] = skb;
|
|
} else {
|
|
/* locking problem with netif_stop_queue() ?? */
|
|
netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
|
|
kfree_skb(skb);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(can_put_echo_skb);
|
|
|
|
/*
|
|
* Get the skb from the stack and loop it back locally
|
|
*
|
|
* The function is typically called when the TX done interrupt
|
|
* is handled in the device driver. The driver must protect
|
|
* access to priv->echo_skb, if necessary.
|
|
*/
|
|
unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
|
|
{
|
|
struct can_priv *priv = netdev_priv(dev);
|
|
|
|
BUG_ON(idx >= priv->echo_skb_max);
|
|
|
|
if (priv->echo_skb[idx]) {
|
|
struct sk_buff *skb = priv->echo_skb[idx];
|
|
struct can_frame *cf = (struct can_frame *)skb->data;
|
|
u8 dlc = cf->can_dlc;
|
|
|
|
netif_rx(priv->echo_skb[idx]);
|
|
priv->echo_skb[idx] = NULL;
|
|
|
|
return dlc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(can_get_echo_skb);
|
|
|
|
/*
|
|
* Remove the skb from the stack and free it.
|
|
*
|
|
* The function is typically called when TX failed.
|
|
*/
|
|
void can_free_echo_skb(struct net_device *dev, unsigned int idx)
|
|
{
|
|
struct can_priv *priv = netdev_priv(dev);
|
|
|
|
BUG_ON(idx >= priv->echo_skb_max);
|
|
|
|
if (priv->echo_skb[idx]) {
|
|
dev_kfree_skb_any(priv->echo_skb[idx]);
|
|
priv->echo_skb[idx] = NULL;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(can_free_echo_skb);
|
|
|
|
/*
|
|
* CAN device restart for bus-off recovery
|
|
*/
|
|
static void can_restart(unsigned long data)
|
|
{
|
|
struct net_device *dev = (struct net_device *)data;
|
|
struct can_priv *priv = netdev_priv(dev);
|
|
struct net_device_stats *stats = &dev->stats;
|
|
struct sk_buff *skb;
|
|
struct can_frame *cf;
|
|
int err;
|
|
|
|
BUG_ON(netif_carrier_ok(dev));
|
|
|
|
/*
|
|
* No synchronization needed because the device is bus-off and
|
|
* no messages can come in or go out.
|
|
*/
|
|
can_flush_echo_skb(dev);
|
|
|
|
/* send restart message upstream */
|
|
skb = alloc_can_err_skb(dev, &cf);
|
|
if (skb == NULL) {
|
|
err = -ENOMEM;
|
|
goto restart;
|
|
}
|
|
cf->can_id |= CAN_ERR_RESTARTED;
|
|
|
|
netif_rx(skb);
|
|
|
|
stats->rx_packets++;
|
|
stats->rx_bytes += cf->can_dlc;
|
|
|
|
restart:
|
|
netdev_dbg(dev, "restarted\n");
|
|
priv->can_stats.restarts++;
|
|
|
|
/* Now restart the device */
|
|
err = priv->do_set_mode(dev, CAN_MODE_START);
|
|
|
|
netif_carrier_on(dev);
|
|
if (err)
|
|
netdev_err(dev, "Error %d during restart", err);
|
|
}
|
|
|
|
int can_restart_now(struct net_device *dev)
|
|
{
|
|
struct can_priv *priv = netdev_priv(dev);
|
|
|
|
/*
|
|
* A manual restart is only permitted if automatic restart is
|
|
* disabled and the device is in the bus-off state
|
|
*/
|
|
if (priv->restart_ms)
|
|
return -EINVAL;
|
|
if (priv->state != CAN_STATE_BUS_OFF)
|
|
return -EBUSY;
|
|
|
|
/* Runs as soon as possible in the timer context */
|
|
mod_timer(&priv->restart_timer, jiffies);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* CAN bus-off
|
|
*
|
|
* This functions should be called when the device goes bus-off to
|
|
* tell the netif layer that no more packets can be sent or received.
|
|
* If enabled, a timer is started to trigger bus-off recovery.
|
|
*/
|
|
void can_bus_off(struct net_device *dev)
|
|
{
|
|
struct can_priv *priv = netdev_priv(dev);
|
|
|
|
netdev_dbg(dev, "bus-off\n");
|
|
|
|
netif_carrier_off(dev);
|
|
|
|
if (priv->restart_ms)
|
|
mod_timer(&priv->restart_timer,
|
|
jiffies + (priv->restart_ms * HZ) / 1000);
|
|
}
|
|
EXPORT_SYMBOL_GPL(can_bus_off);
|
|
|
|
static void can_setup(struct net_device *dev)
|
|
{
|
|
dev->type = ARPHRD_CAN;
|
|
dev->mtu = CAN_MTU;
|
|
dev->hard_header_len = 0;
|
|
dev->addr_len = 0;
|
|
dev->tx_queue_len = 10;
|
|
|
|
/* New-style flags. */
|
|
dev->flags = IFF_NOARP;
|
|
dev->features = NETIF_F_HW_CSUM;
|
|
}
|
|
|
|
struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
|
|
sizeof(struct can_frame));
|
|
if (unlikely(!skb))
|
|
return NULL;
|
|
|
|
skb->protocol = htons(ETH_P_CAN);
|
|
skb->pkt_type = PACKET_BROADCAST;
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
|
|
skb_reset_mac_header(skb);
|
|
skb_reset_network_header(skb);
|
|
skb_reset_transport_header(skb);
|
|
|
|
can_skb_reserve(skb);
|
|
can_skb_prv(skb)->ifindex = dev->ifindex;
|
|
can_skb_prv(skb)->skbcnt = 0;
|
|
|
|
*cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
|
|
memset(*cf, 0, sizeof(struct can_frame));
|
|
|
|
return skb;
|
|
}
|
|
EXPORT_SYMBOL_GPL(alloc_can_skb);
|
|
|
|
struct sk_buff *alloc_canfd_skb(struct net_device *dev,
|
|
struct canfd_frame **cfd)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
|
|
sizeof(struct canfd_frame));
|
|
if (unlikely(!skb))
|
|
return NULL;
|
|
|
|
skb->protocol = htons(ETH_P_CANFD);
|
|
skb->pkt_type = PACKET_BROADCAST;
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
|
|
skb_reset_mac_header(skb);
|
|
skb_reset_network_header(skb);
|
|
skb_reset_transport_header(skb);
|
|
|
|
can_skb_reserve(skb);
|
|
can_skb_prv(skb)->ifindex = dev->ifindex;
|
|
can_skb_prv(skb)->skbcnt = 0;
|
|
|
|
*cfd = (struct canfd_frame *)skb_put(skb, sizeof(struct canfd_frame));
|
|
memset(*cfd, 0, sizeof(struct canfd_frame));
|
|
|
|
return skb;
|
|
}
|
|
EXPORT_SYMBOL_GPL(alloc_canfd_skb);
|
|
|
|
struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
skb = alloc_can_skb(dev, cf);
|
|
if (unlikely(!skb))
|
|
return NULL;
|
|
|
|
(*cf)->can_id = CAN_ERR_FLAG;
|
|
(*cf)->can_dlc = CAN_ERR_DLC;
|
|
|
|
return skb;
|
|
}
|
|
EXPORT_SYMBOL_GPL(alloc_can_err_skb);
|
|
|
|
/*
|
|
* Allocate and setup space for the CAN network device
|
|
*/
|
|
struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
|
|
{
|
|
struct net_device *dev;
|
|
struct can_priv *priv;
|
|
int size;
|
|
|
|
if (echo_skb_max)
|
|
size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
|
|
echo_skb_max * sizeof(struct sk_buff *);
|
|
else
|
|
size = sizeof_priv;
|
|
|
|
dev = alloc_netdev(size, "can%d", NET_NAME_UNKNOWN, can_setup);
|
|
if (!dev)
|
|
return NULL;
|
|
|
|
priv = netdev_priv(dev);
|
|
|
|
if (echo_skb_max) {
|
|
priv->echo_skb_max = echo_skb_max;
|
|
priv->echo_skb = (void *)priv +
|
|
ALIGN(sizeof_priv, sizeof(struct sk_buff *));
|
|
}
|
|
|
|
priv->state = CAN_STATE_STOPPED;
|
|
|
|
init_timer(&priv->restart_timer);
|
|
|
|
return dev;
|
|
}
|
|
EXPORT_SYMBOL_GPL(alloc_candev);
|
|
|
|
/*
|
|
* Free space of the CAN network device
|
|
*/
|
|
void free_candev(struct net_device *dev)
|
|
{
|
|
free_netdev(dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(free_candev);
|
|
|
|
/*
|
|
* changing MTU and control mode for CAN/CANFD devices
|
|
*/
|
|
int can_change_mtu(struct net_device *dev, int new_mtu)
|
|
{
|
|
struct can_priv *priv = netdev_priv(dev);
|
|
|
|
/* Do not allow changing the MTU while running */
|
|
if (dev->flags & IFF_UP)
|
|
return -EBUSY;
|
|
|
|
/* allow change of MTU according to the CANFD ability of the device */
|
|
switch (new_mtu) {
|
|
case CAN_MTU:
|
|
priv->ctrlmode &= ~CAN_CTRLMODE_FD;
|
|
break;
|
|
|
|
case CANFD_MTU:
|
|
if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD))
|
|
return -EINVAL;
|
|
|
|
priv->ctrlmode |= CAN_CTRLMODE_FD;
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
dev->mtu = new_mtu;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(can_change_mtu);
|
|
|
|
/*
|
|
* Common open function when the device gets opened.
|
|
*
|
|
* This function should be called in the open function of the device
|
|
* driver.
|
|
*/
|
|
int open_candev(struct net_device *dev)
|
|
{
|
|
struct can_priv *priv = netdev_priv(dev);
|
|
|
|
if (!priv->bittiming.bitrate) {
|
|
netdev_err(dev, "bit-timing not yet defined\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* For CAN FD the data bitrate has to be >= the arbitration bitrate */
|
|
if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
|
|
(!priv->data_bittiming.bitrate ||
|
|
(priv->data_bittiming.bitrate < priv->bittiming.bitrate))) {
|
|
netdev_err(dev, "incorrect/missing data bit-timing\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Switch carrier on if device was stopped while in bus-off state */
|
|
if (!netif_carrier_ok(dev))
|
|
netif_carrier_on(dev);
|
|
|
|
setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(open_candev);
|
|
|
|
/*
|
|
* Common close function for cleanup before the device gets closed.
|
|
*
|
|
* This function should be called in the close function of the device
|
|
* driver.
|
|
*/
|
|
void close_candev(struct net_device *dev)
|
|
{
|
|
struct can_priv *priv = netdev_priv(dev);
|
|
|
|
del_timer_sync(&priv->restart_timer);
|
|
can_flush_echo_skb(dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(close_candev);
|
|
|
|
/*
|
|
* CAN netlink interface
|
|
*/
|
|
static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
|
|
[IFLA_CAN_STATE] = { .type = NLA_U32 },
|
|
[IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) },
|
|
[IFLA_CAN_RESTART_MS] = { .type = NLA_U32 },
|
|
[IFLA_CAN_RESTART] = { .type = NLA_U32 },
|
|
[IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) },
|
|
[IFLA_CAN_BITTIMING_CONST]
|
|
= { .len = sizeof(struct can_bittiming_const) },
|
|
[IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) },
|
|
[IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) },
|
|
[IFLA_CAN_DATA_BITTIMING]
|
|
= { .len = sizeof(struct can_bittiming) },
|
|
[IFLA_CAN_DATA_BITTIMING_CONST]
|
|
= { .len = sizeof(struct can_bittiming_const) },
|
|
};
|
|
|
|
static int can_changelink(struct net_device *dev,
|
|
struct nlattr *tb[], struct nlattr *data[])
|
|
{
|
|
struct can_priv *priv = netdev_priv(dev);
|
|
int err;
|
|
|
|
/* We need synchronization with dev->stop() */
|
|
ASSERT_RTNL();
|
|
|
|
if (data[IFLA_CAN_BITTIMING]) {
|
|
struct can_bittiming bt;
|
|
|
|
/* Do not allow changing bittiming while running */
|
|
if (dev->flags & IFF_UP)
|
|
return -EBUSY;
|
|
memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
|
|
err = can_get_bittiming(dev, &bt, priv->bittiming_const);
|
|
if (err)
|
|
return err;
|
|
memcpy(&priv->bittiming, &bt, sizeof(bt));
|
|
|
|
if (priv->do_set_bittiming) {
|
|
/* Finally, set the bit-timing registers */
|
|
err = priv->do_set_bittiming(dev);
|
|
if (err)
|
|
return err;
|
|
}
|
|
}
|
|
|
|
if (data[IFLA_CAN_CTRLMODE]) {
|
|
struct can_ctrlmode *cm;
|
|
|
|
/* Do not allow changing controller mode while running */
|
|
if (dev->flags & IFF_UP)
|
|
return -EBUSY;
|
|
cm = nla_data(data[IFLA_CAN_CTRLMODE]);
|
|
|
|
/* check whether changed bits are allowed to be modified */
|
|
if (cm->mask & ~priv->ctrlmode_supported)
|
|
return -EOPNOTSUPP;
|
|
|
|
/* clear bits to be modified and copy the flag values */
|
|
priv->ctrlmode &= ~cm->mask;
|
|
priv->ctrlmode |= (cm->flags & cm->mask);
|
|
|
|
/* CAN_CTRLMODE_FD can only be set when driver supports FD */
|
|
if (priv->ctrlmode & CAN_CTRLMODE_FD)
|
|
dev->mtu = CANFD_MTU;
|
|
else
|
|
dev->mtu = CAN_MTU;
|
|
}
|
|
|
|
if (data[IFLA_CAN_RESTART_MS]) {
|
|
/* Do not allow changing restart delay while running */
|
|
if (dev->flags & IFF_UP)
|
|
return -EBUSY;
|
|
priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
|
|
}
|
|
|
|
if (data[IFLA_CAN_RESTART]) {
|
|
/* Do not allow a restart while not running */
|
|
if (!(dev->flags & IFF_UP))
|
|
return -EINVAL;
|
|
err = can_restart_now(dev);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
if (data[IFLA_CAN_DATA_BITTIMING]) {
|
|
struct can_bittiming dbt;
|
|
|
|
/* Do not allow changing bittiming while running */
|
|
if (dev->flags & IFF_UP)
|
|
return -EBUSY;
|
|
memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
|
|
sizeof(dbt));
|
|
err = can_get_bittiming(dev, &dbt, priv->data_bittiming_const);
|
|
if (err)
|
|
return err;
|
|
memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
|
|
|
|
if (priv->do_set_data_bittiming) {
|
|
/* Finally, set the bit-timing registers */
|
|
err = priv->do_set_data_bittiming(dev);
|
|
if (err)
|
|
return err;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static size_t can_get_size(const struct net_device *dev)
|
|
{
|
|
struct can_priv *priv = netdev_priv(dev);
|
|
size_t size = 0;
|
|
|
|
if (priv->bittiming.bitrate) /* IFLA_CAN_BITTIMING */
|
|
size += nla_total_size(sizeof(struct can_bittiming));
|
|
if (priv->bittiming_const) /* IFLA_CAN_BITTIMING_CONST */
|
|
size += nla_total_size(sizeof(struct can_bittiming_const));
|
|
size += nla_total_size(sizeof(struct can_clock)); /* IFLA_CAN_CLOCK */
|
|
size += nla_total_size(sizeof(u32)); /* IFLA_CAN_STATE */
|
|
size += nla_total_size(sizeof(struct can_ctrlmode)); /* IFLA_CAN_CTRLMODE */
|
|
size += nla_total_size(sizeof(u32)); /* IFLA_CAN_RESTART_MS */
|
|
if (priv->do_get_berr_counter) /* IFLA_CAN_BERR_COUNTER */
|
|
size += nla_total_size(sizeof(struct can_berr_counter));
|
|
if (priv->data_bittiming.bitrate) /* IFLA_CAN_DATA_BITTIMING */
|
|
size += nla_total_size(sizeof(struct can_bittiming));
|
|
if (priv->data_bittiming_const) /* IFLA_CAN_DATA_BITTIMING_CONST */
|
|
size += nla_total_size(sizeof(struct can_bittiming_const));
|
|
|
|
return size;
|
|
}
|
|
|
|
static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
|
|
{
|
|
struct can_priv *priv = netdev_priv(dev);
|
|
struct can_ctrlmode cm = {.flags = priv->ctrlmode};
|
|
struct can_berr_counter bec;
|
|
enum can_state state = priv->state;
|
|
|
|
if (priv->do_get_state)
|
|
priv->do_get_state(dev, &state);
|
|
|
|
if ((priv->bittiming.bitrate &&
|
|
nla_put(skb, IFLA_CAN_BITTIMING,
|
|
sizeof(priv->bittiming), &priv->bittiming)) ||
|
|
|
|
(priv->bittiming_const &&
|
|
nla_put(skb, IFLA_CAN_BITTIMING_CONST,
|
|
sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
|
|
|
|
nla_put(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock) ||
|
|
nla_put_u32(skb, IFLA_CAN_STATE, state) ||
|
|
nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
|
|
nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
|
|
|
|
(priv->do_get_berr_counter &&
|
|
!priv->do_get_berr_counter(dev, &bec) &&
|
|
nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
|
|
|
|
(priv->data_bittiming.bitrate &&
|
|
nla_put(skb, IFLA_CAN_DATA_BITTIMING,
|
|
sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
|
|
|
|
(priv->data_bittiming_const &&
|
|
nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
|
|
sizeof(*priv->data_bittiming_const),
|
|
priv->data_bittiming_const)))
|
|
return -EMSGSIZE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static size_t can_get_xstats_size(const struct net_device *dev)
|
|
{
|
|
return sizeof(struct can_device_stats);
|
|
}
|
|
|
|
static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
|
|
{
|
|
struct can_priv *priv = netdev_priv(dev);
|
|
|
|
if (nla_put(skb, IFLA_INFO_XSTATS,
|
|
sizeof(priv->can_stats), &priv->can_stats))
|
|
goto nla_put_failure;
|
|
return 0;
|
|
|
|
nla_put_failure:
|
|
return -EMSGSIZE;
|
|
}
|
|
|
|
static int can_newlink(struct net *src_net, struct net_device *dev,
|
|
struct nlattr *tb[], struct nlattr *data[])
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static struct rtnl_link_ops can_link_ops __read_mostly = {
|
|
.kind = "can",
|
|
.maxtype = IFLA_CAN_MAX,
|
|
.policy = can_policy,
|
|
.setup = can_setup,
|
|
.newlink = can_newlink,
|
|
.changelink = can_changelink,
|
|
.get_size = can_get_size,
|
|
.fill_info = can_fill_info,
|
|
.get_xstats_size = can_get_xstats_size,
|
|
.fill_xstats = can_fill_xstats,
|
|
};
|
|
|
|
/*
|
|
* Register the CAN network device
|
|
*/
|
|
int register_candev(struct net_device *dev)
|
|
{
|
|
dev->rtnl_link_ops = &can_link_ops;
|
|
return register_netdev(dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(register_candev);
|
|
|
|
/*
|
|
* Unregister the CAN network device
|
|
*/
|
|
void unregister_candev(struct net_device *dev)
|
|
{
|
|
unregister_netdev(dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(unregister_candev);
|
|
|
|
/*
|
|
* Test if a network device is a candev based device
|
|
* and return the can_priv* if so.
|
|
*/
|
|
struct can_priv *safe_candev_priv(struct net_device *dev)
|
|
{
|
|
if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
|
|
return NULL;
|
|
|
|
return netdev_priv(dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(safe_candev_priv);
|
|
|
|
static __init int can_dev_init(void)
|
|
{
|
|
int err;
|
|
|
|
can_led_notifier_init();
|
|
|
|
err = rtnl_link_register(&can_link_ops);
|
|
if (!err)
|
|
printk(KERN_INFO MOD_DESC "\n");
|
|
|
|
return err;
|
|
}
|
|
module_init(can_dev_init);
|
|
|
|
static __exit void can_dev_exit(void)
|
|
{
|
|
rtnl_link_unregister(&can_link_ops);
|
|
|
|
can_led_notifier_exit();
|
|
}
|
|
module_exit(can_dev_exit);
|
|
|
|
MODULE_ALIAS_RTNL_LINK("can");
|