a0995c0805
Currently, there are several issues with how MPU is setup: 1. We won't boot if MPU is missing 2. We won't boot if use XIP 3. Further extension of MPU setup requires asm skills The 1st point can be relaxed, so we can continue with boot CPU even if MPU is missed and fail boot for secondaries only. To address the 2nd point we could create region covering CONFIG_XIP_PHYS_ADDR - _end and that might work for the first stage of MPU enable, but due to MPU's alignment requirement we could cover too much, IOW we need more flexibility in how we're partitioning memory regions... and it'd be hardly possible to archive because of the 3rd point. This patch is trying to address 1st and 3rd issues and paves the path for 2nd and further improvements. The most visible change introduced with this patch is that we start using mpu_rgn_info array (as it was supposed?), so change in MPU setup done by boot CPU is recorded there and feed to secondaries. It allows us to keep minimal region setup for boot CPU and do the rest in C. Since we start programming MPU regions in C evaluation of MPU constrains (number of regions supported and minimal region order) can be done once, which in turn open possibility to free-up "probe" region early. Tested-by: Szemző András <sza@esh.hu> Tested-by: Alexandre TORGUE <alexandre.torgue@st.com> Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org> Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com> Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
759 lines
17 KiB
C
759 lines
17 KiB
C
/*
|
|
* linux/arch/arm/kernel/smp.c
|
|
*
|
|
* Copyright (C) 2002 ARM Limited, All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/init.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/sched/hotplug.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/err.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/clockchips.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/irq_work.h>
|
|
|
|
#include <linux/atomic.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/cputype.h>
|
|
#include <asm/exception.h>
|
|
#include <asm/idmap.h>
|
|
#include <asm/topology.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/smp_plat.h>
|
|
#include <asm/virt.h>
|
|
#include <asm/mach/arch.h>
|
|
#include <asm/mpu.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/ipi.h>
|
|
|
|
/*
|
|
* as from 2.5, kernels no longer have an init_tasks structure
|
|
* so we need some other way of telling a new secondary core
|
|
* where to place its SVC stack
|
|
*/
|
|
struct secondary_data secondary_data;
|
|
|
|
/*
|
|
* control for which core is the next to come out of the secondary
|
|
* boot "holding pen"
|
|
*/
|
|
volatile int pen_release = -1;
|
|
|
|
enum ipi_msg_type {
|
|
IPI_WAKEUP,
|
|
IPI_TIMER,
|
|
IPI_RESCHEDULE,
|
|
IPI_CALL_FUNC,
|
|
IPI_CPU_STOP,
|
|
IPI_IRQ_WORK,
|
|
IPI_COMPLETION,
|
|
IPI_CPU_BACKTRACE,
|
|
/*
|
|
* SGI8-15 can be reserved by secure firmware, and thus may
|
|
* not be usable by the kernel. Please keep the above limited
|
|
* to at most 8 entries.
|
|
*/
|
|
};
|
|
|
|
static DECLARE_COMPLETION(cpu_running);
|
|
|
|
static struct smp_operations smp_ops __ro_after_init;
|
|
|
|
void __init smp_set_ops(const struct smp_operations *ops)
|
|
{
|
|
if (ops)
|
|
smp_ops = *ops;
|
|
};
|
|
|
|
static unsigned long get_arch_pgd(pgd_t *pgd)
|
|
{
|
|
#ifdef CONFIG_ARM_LPAE
|
|
return __phys_to_pfn(virt_to_phys(pgd));
|
|
#else
|
|
return virt_to_phys(pgd);
|
|
#endif
|
|
}
|
|
|
|
int __cpu_up(unsigned int cpu, struct task_struct *idle)
|
|
{
|
|
int ret;
|
|
|
|
if (!smp_ops.smp_boot_secondary)
|
|
return -ENOSYS;
|
|
|
|
/*
|
|
* We need to tell the secondary core where to find
|
|
* its stack and the page tables.
|
|
*/
|
|
secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
|
|
#ifdef CONFIG_ARM_MPU
|
|
secondary_data.mpu_rgn_info = &mpu_rgn_info;
|
|
#endif
|
|
|
|
#ifdef CONFIG_MMU
|
|
secondary_data.pgdir = virt_to_phys(idmap_pgd);
|
|
secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
|
|
#endif
|
|
sync_cache_w(&secondary_data);
|
|
|
|
/*
|
|
* Now bring the CPU into our world.
|
|
*/
|
|
ret = smp_ops.smp_boot_secondary(cpu, idle);
|
|
if (ret == 0) {
|
|
/*
|
|
* CPU was successfully started, wait for it
|
|
* to come online or time out.
|
|
*/
|
|
wait_for_completion_timeout(&cpu_running,
|
|
msecs_to_jiffies(1000));
|
|
|
|
if (!cpu_online(cpu)) {
|
|
pr_crit("CPU%u: failed to come online\n", cpu);
|
|
ret = -EIO;
|
|
}
|
|
} else {
|
|
pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
|
|
}
|
|
|
|
|
|
memset(&secondary_data, 0, sizeof(secondary_data));
|
|
return ret;
|
|
}
|
|
|
|
/* platform specific SMP operations */
|
|
void __init smp_init_cpus(void)
|
|
{
|
|
if (smp_ops.smp_init_cpus)
|
|
smp_ops.smp_init_cpus();
|
|
}
|
|
|
|
int platform_can_secondary_boot(void)
|
|
{
|
|
return !!smp_ops.smp_boot_secondary;
|
|
}
|
|
|
|
int platform_can_cpu_hotplug(void)
|
|
{
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
if (smp_ops.cpu_kill)
|
|
return 1;
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
static int platform_cpu_kill(unsigned int cpu)
|
|
{
|
|
if (smp_ops.cpu_kill)
|
|
return smp_ops.cpu_kill(cpu);
|
|
return 1;
|
|
}
|
|
|
|
static int platform_cpu_disable(unsigned int cpu)
|
|
{
|
|
if (smp_ops.cpu_disable)
|
|
return smp_ops.cpu_disable(cpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int platform_can_hotplug_cpu(unsigned int cpu)
|
|
{
|
|
/* cpu_die must be specified to support hotplug */
|
|
if (!smp_ops.cpu_die)
|
|
return 0;
|
|
|
|
if (smp_ops.cpu_can_disable)
|
|
return smp_ops.cpu_can_disable(cpu);
|
|
|
|
/*
|
|
* By default, allow disabling all CPUs except the first one,
|
|
* since this is special on a lot of platforms, e.g. because
|
|
* of clock tick interrupts.
|
|
*/
|
|
return cpu != 0;
|
|
}
|
|
|
|
/*
|
|
* __cpu_disable runs on the processor to be shutdown.
|
|
*/
|
|
int __cpu_disable(void)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
int ret;
|
|
|
|
ret = platform_cpu_disable(cpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Take this CPU offline. Once we clear this, we can't return,
|
|
* and we must not schedule until we're ready to give up the cpu.
|
|
*/
|
|
set_cpu_online(cpu, false);
|
|
|
|
/*
|
|
* OK - migrate IRQs away from this CPU
|
|
*/
|
|
migrate_irqs();
|
|
|
|
/*
|
|
* Flush user cache and TLB mappings, and then remove this CPU
|
|
* from the vm mask set of all processes.
|
|
*
|
|
* Caches are flushed to the Level of Unification Inner Shareable
|
|
* to write-back dirty lines to unified caches shared by all CPUs.
|
|
*/
|
|
flush_cache_louis();
|
|
local_flush_tlb_all();
|
|
|
|
clear_tasks_mm_cpumask(cpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static DECLARE_COMPLETION(cpu_died);
|
|
|
|
/*
|
|
* called on the thread which is asking for a CPU to be shutdown -
|
|
* waits until shutdown has completed, or it is timed out.
|
|
*/
|
|
void __cpu_die(unsigned int cpu)
|
|
{
|
|
if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
|
|
pr_err("CPU%u: cpu didn't die\n", cpu);
|
|
return;
|
|
}
|
|
pr_debug("CPU%u: shutdown\n", cpu);
|
|
|
|
/*
|
|
* platform_cpu_kill() is generally expected to do the powering off
|
|
* and/or cutting of clocks to the dying CPU. Optionally, this may
|
|
* be done by the CPU which is dying in preference to supporting
|
|
* this call, but that means there is _no_ synchronisation between
|
|
* the requesting CPU and the dying CPU actually losing power.
|
|
*/
|
|
if (!platform_cpu_kill(cpu))
|
|
pr_err("CPU%u: unable to kill\n", cpu);
|
|
}
|
|
|
|
/*
|
|
* Called from the idle thread for the CPU which has been shutdown.
|
|
*
|
|
* Note that we disable IRQs here, but do not re-enable them
|
|
* before returning to the caller. This is also the behaviour
|
|
* of the other hotplug-cpu capable cores, so presumably coming
|
|
* out of idle fixes this.
|
|
*/
|
|
void arch_cpu_idle_dead(void)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
|
|
idle_task_exit();
|
|
|
|
local_irq_disable();
|
|
|
|
/*
|
|
* Flush the data out of the L1 cache for this CPU. This must be
|
|
* before the completion to ensure that data is safely written out
|
|
* before platform_cpu_kill() gets called - which may disable
|
|
* *this* CPU and power down its cache.
|
|
*/
|
|
flush_cache_louis();
|
|
|
|
/*
|
|
* Tell __cpu_die() that this CPU is now safe to dispose of. Once
|
|
* this returns, power and/or clocks can be removed at any point
|
|
* from this CPU and its cache by platform_cpu_kill().
|
|
*/
|
|
complete(&cpu_died);
|
|
|
|
/*
|
|
* Ensure that the cache lines associated with that completion are
|
|
* written out. This covers the case where _this_ CPU is doing the
|
|
* powering down, to ensure that the completion is visible to the
|
|
* CPU waiting for this one.
|
|
*/
|
|
flush_cache_louis();
|
|
|
|
/*
|
|
* The actual CPU shutdown procedure is at least platform (if not
|
|
* CPU) specific. This may remove power, or it may simply spin.
|
|
*
|
|
* Platforms are generally expected *NOT* to return from this call,
|
|
* although there are some which do because they have no way to
|
|
* power down the CPU. These platforms are the _only_ reason we
|
|
* have a return path which uses the fragment of assembly below.
|
|
*
|
|
* The return path should not be used for platforms which can
|
|
* power off the CPU.
|
|
*/
|
|
if (smp_ops.cpu_die)
|
|
smp_ops.cpu_die(cpu);
|
|
|
|
pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
|
|
cpu);
|
|
|
|
/*
|
|
* Do not return to the idle loop - jump back to the secondary
|
|
* cpu initialisation. There's some initialisation which needs
|
|
* to be repeated to undo the effects of taking the CPU offline.
|
|
*/
|
|
__asm__("mov sp, %0\n"
|
|
" mov fp, #0\n"
|
|
" b secondary_start_kernel"
|
|
:
|
|
: "r" (task_stack_page(current) + THREAD_SIZE - 8));
|
|
}
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
/*
|
|
* Called by both boot and secondaries to move global data into
|
|
* per-processor storage.
|
|
*/
|
|
static void smp_store_cpu_info(unsigned int cpuid)
|
|
{
|
|
struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
|
|
|
|
cpu_info->loops_per_jiffy = loops_per_jiffy;
|
|
cpu_info->cpuid = read_cpuid_id();
|
|
|
|
store_cpu_topology(cpuid);
|
|
}
|
|
|
|
/*
|
|
* This is the secondary CPU boot entry. We're using this CPUs
|
|
* idle thread stack, but a set of temporary page tables.
|
|
*/
|
|
asmlinkage void secondary_start_kernel(void)
|
|
{
|
|
struct mm_struct *mm = &init_mm;
|
|
unsigned int cpu;
|
|
|
|
/*
|
|
* The identity mapping is uncached (strongly ordered), so
|
|
* switch away from it before attempting any exclusive accesses.
|
|
*/
|
|
cpu_switch_mm(mm->pgd, mm);
|
|
local_flush_bp_all();
|
|
enter_lazy_tlb(mm, current);
|
|
local_flush_tlb_all();
|
|
|
|
/*
|
|
* All kernel threads share the same mm context; grab a
|
|
* reference and switch to it.
|
|
*/
|
|
cpu = smp_processor_id();
|
|
mmgrab(mm);
|
|
current->active_mm = mm;
|
|
cpumask_set_cpu(cpu, mm_cpumask(mm));
|
|
|
|
cpu_init();
|
|
|
|
pr_debug("CPU%u: Booted secondary processor\n", cpu);
|
|
|
|
preempt_disable();
|
|
trace_hardirqs_off();
|
|
|
|
/*
|
|
* Give the platform a chance to do its own initialisation.
|
|
*/
|
|
if (smp_ops.smp_secondary_init)
|
|
smp_ops.smp_secondary_init(cpu);
|
|
|
|
notify_cpu_starting(cpu);
|
|
|
|
calibrate_delay();
|
|
|
|
smp_store_cpu_info(cpu);
|
|
|
|
/*
|
|
* OK, now it's safe to let the boot CPU continue. Wait for
|
|
* the CPU migration code to notice that the CPU is online
|
|
* before we continue - which happens after __cpu_up returns.
|
|
*/
|
|
set_cpu_online(cpu, true);
|
|
complete(&cpu_running);
|
|
|
|
local_irq_enable();
|
|
local_fiq_enable();
|
|
local_abt_enable();
|
|
|
|
/*
|
|
* OK, it's off to the idle thread for us
|
|
*/
|
|
cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
|
|
}
|
|
|
|
void __init smp_cpus_done(unsigned int max_cpus)
|
|
{
|
|
int cpu;
|
|
unsigned long bogosum = 0;
|
|
|
|
for_each_online_cpu(cpu)
|
|
bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
|
|
|
|
printk(KERN_INFO "SMP: Total of %d processors activated "
|
|
"(%lu.%02lu BogoMIPS).\n",
|
|
num_online_cpus(),
|
|
bogosum / (500000/HZ),
|
|
(bogosum / (5000/HZ)) % 100);
|
|
|
|
hyp_mode_check();
|
|
}
|
|
|
|
void __init smp_prepare_boot_cpu(void)
|
|
{
|
|
set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
|
|
}
|
|
|
|
void __init smp_prepare_cpus(unsigned int max_cpus)
|
|
{
|
|
unsigned int ncores = num_possible_cpus();
|
|
|
|
init_cpu_topology();
|
|
|
|
smp_store_cpu_info(smp_processor_id());
|
|
|
|
/*
|
|
* are we trying to boot more cores than exist?
|
|
*/
|
|
if (max_cpus > ncores)
|
|
max_cpus = ncores;
|
|
if (ncores > 1 && max_cpus) {
|
|
/*
|
|
* Initialise the present map, which describes the set of CPUs
|
|
* actually populated at the present time. A platform should
|
|
* re-initialize the map in the platforms smp_prepare_cpus()
|
|
* if present != possible (e.g. physical hotplug).
|
|
*/
|
|
init_cpu_present(cpu_possible_mask);
|
|
|
|
/*
|
|
* Initialise the SCU if there are more than one CPU
|
|
* and let them know where to start.
|
|
*/
|
|
if (smp_ops.smp_prepare_cpus)
|
|
smp_ops.smp_prepare_cpus(max_cpus);
|
|
}
|
|
}
|
|
|
|
static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
|
|
|
|
void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
|
|
{
|
|
if (!__smp_cross_call)
|
|
__smp_cross_call = fn;
|
|
}
|
|
|
|
static const char *ipi_types[NR_IPI] __tracepoint_string = {
|
|
#define S(x,s) [x] = s
|
|
S(IPI_WAKEUP, "CPU wakeup interrupts"),
|
|
S(IPI_TIMER, "Timer broadcast interrupts"),
|
|
S(IPI_RESCHEDULE, "Rescheduling interrupts"),
|
|
S(IPI_CALL_FUNC, "Function call interrupts"),
|
|
S(IPI_CPU_STOP, "CPU stop interrupts"),
|
|
S(IPI_IRQ_WORK, "IRQ work interrupts"),
|
|
S(IPI_COMPLETION, "completion interrupts"),
|
|
};
|
|
|
|
static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
|
|
{
|
|
trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
|
|
__smp_cross_call(target, ipinr);
|
|
}
|
|
|
|
void show_ipi_list(struct seq_file *p, int prec)
|
|
{
|
|
unsigned int cpu, i;
|
|
|
|
for (i = 0; i < NR_IPI; i++) {
|
|
seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
|
|
|
|
for_each_online_cpu(cpu)
|
|
seq_printf(p, "%10u ",
|
|
__get_irq_stat(cpu, ipi_irqs[i]));
|
|
|
|
seq_printf(p, " %s\n", ipi_types[i]);
|
|
}
|
|
}
|
|
|
|
u64 smp_irq_stat_cpu(unsigned int cpu)
|
|
{
|
|
u64 sum = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < NR_IPI; i++)
|
|
sum += __get_irq_stat(cpu, ipi_irqs[i]);
|
|
|
|
return sum;
|
|
}
|
|
|
|
void arch_send_call_function_ipi_mask(const struct cpumask *mask)
|
|
{
|
|
smp_cross_call(mask, IPI_CALL_FUNC);
|
|
}
|
|
|
|
void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
|
|
{
|
|
smp_cross_call(mask, IPI_WAKEUP);
|
|
}
|
|
|
|
void arch_send_call_function_single_ipi(int cpu)
|
|
{
|
|
smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
|
|
}
|
|
|
|
#ifdef CONFIG_IRQ_WORK
|
|
void arch_irq_work_raise(void)
|
|
{
|
|
if (arch_irq_work_has_interrupt())
|
|
smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
|
|
void tick_broadcast(const struct cpumask *mask)
|
|
{
|
|
smp_cross_call(mask, IPI_TIMER);
|
|
}
|
|
#endif
|
|
|
|
static DEFINE_RAW_SPINLOCK(stop_lock);
|
|
|
|
/*
|
|
* ipi_cpu_stop - handle IPI from smp_send_stop()
|
|
*/
|
|
static void ipi_cpu_stop(unsigned int cpu)
|
|
{
|
|
if (system_state <= SYSTEM_RUNNING) {
|
|
raw_spin_lock(&stop_lock);
|
|
pr_crit("CPU%u: stopping\n", cpu);
|
|
dump_stack();
|
|
raw_spin_unlock(&stop_lock);
|
|
}
|
|
|
|
set_cpu_online(cpu, false);
|
|
|
|
local_fiq_disable();
|
|
local_irq_disable();
|
|
|
|
while (1)
|
|
cpu_relax();
|
|
}
|
|
|
|
static DEFINE_PER_CPU(struct completion *, cpu_completion);
|
|
|
|
int register_ipi_completion(struct completion *completion, int cpu)
|
|
{
|
|
per_cpu(cpu_completion, cpu) = completion;
|
|
return IPI_COMPLETION;
|
|
}
|
|
|
|
static void ipi_complete(unsigned int cpu)
|
|
{
|
|
complete(per_cpu(cpu_completion, cpu));
|
|
}
|
|
|
|
/*
|
|
* Main handler for inter-processor interrupts
|
|
*/
|
|
asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
|
|
{
|
|
handle_IPI(ipinr, regs);
|
|
}
|
|
|
|
void handle_IPI(int ipinr, struct pt_regs *regs)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
struct pt_regs *old_regs = set_irq_regs(regs);
|
|
|
|
if ((unsigned)ipinr < NR_IPI) {
|
|
trace_ipi_entry_rcuidle(ipi_types[ipinr]);
|
|
__inc_irq_stat(cpu, ipi_irqs[ipinr]);
|
|
}
|
|
|
|
switch (ipinr) {
|
|
case IPI_WAKEUP:
|
|
break;
|
|
|
|
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
|
|
case IPI_TIMER:
|
|
irq_enter();
|
|
tick_receive_broadcast();
|
|
irq_exit();
|
|
break;
|
|
#endif
|
|
|
|
case IPI_RESCHEDULE:
|
|
scheduler_ipi();
|
|
break;
|
|
|
|
case IPI_CALL_FUNC:
|
|
irq_enter();
|
|
generic_smp_call_function_interrupt();
|
|
irq_exit();
|
|
break;
|
|
|
|
case IPI_CPU_STOP:
|
|
irq_enter();
|
|
ipi_cpu_stop(cpu);
|
|
irq_exit();
|
|
break;
|
|
|
|
#ifdef CONFIG_IRQ_WORK
|
|
case IPI_IRQ_WORK:
|
|
irq_enter();
|
|
irq_work_run();
|
|
irq_exit();
|
|
break;
|
|
#endif
|
|
|
|
case IPI_COMPLETION:
|
|
irq_enter();
|
|
ipi_complete(cpu);
|
|
irq_exit();
|
|
break;
|
|
|
|
case IPI_CPU_BACKTRACE:
|
|
printk_nmi_enter();
|
|
irq_enter();
|
|
nmi_cpu_backtrace(regs);
|
|
irq_exit();
|
|
printk_nmi_exit();
|
|
break;
|
|
|
|
default:
|
|
pr_crit("CPU%u: Unknown IPI message 0x%x\n",
|
|
cpu, ipinr);
|
|
break;
|
|
}
|
|
|
|
if ((unsigned)ipinr < NR_IPI)
|
|
trace_ipi_exit_rcuidle(ipi_types[ipinr]);
|
|
set_irq_regs(old_regs);
|
|
}
|
|
|
|
void smp_send_reschedule(int cpu)
|
|
{
|
|
smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
|
|
}
|
|
|
|
void smp_send_stop(void)
|
|
{
|
|
unsigned long timeout;
|
|
struct cpumask mask;
|
|
|
|
cpumask_copy(&mask, cpu_online_mask);
|
|
cpumask_clear_cpu(smp_processor_id(), &mask);
|
|
if (!cpumask_empty(&mask))
|
|
smp_cross_call(&mask, IPI_CPU_STOP);
|
|
|
|
/* Wait up to one second for other CPUs to stop */
|
|
timeout = USEC_PER_SEC;
|
|
while (num_online_cpus() > 1 && timeout--)
|
|
udelay(1);
|
|
|
|
if (num_online_cpus() > 1)
|
|
pr_warn("SMP: failed to stop secondary CPUs\n");
|
|
}
|
|
|
|
/*
|
|
* not supported here
|
|
*/
|
|
int setup_profiling_timer(unsigned int multiplier)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
#ifdef CONFIG_CPU_FREQ
|
|
|
|
static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
|
|
static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
|
|
static unsigned long global_l_p_j_ref;
|
|
static unsigned long global_l_p_j_ref_freq;
|
|
|
|
static int cpufreq_callback(struct notifier_block *nb,
|
|
unsigned long val, void *data)
|
|
{
|
|
struct cpufreq_freqs *freq = data;
|
|
int cpu = freq->cpu;
|
|
|
|
if (freq->flags & CPUFREQ_CONST_LOOPS)
|
|
return NOTIFY_OK;
|
|
|
|
if (!per_cpu(l_p_j_ref, cpu)) {
|
|
per_cpu(l_p_j_ref, cpu) =
|
|
per_cpu(cpu_data, cpu).loops_per_jiffy;
|
|
per_cpu(l_p_j_ref_freq, cpu) = freq->old;
|
|
if (!global_l_p_j_ref) {
|
|
global_l_p_j_ref = loops_per_jiffy;
|
|
global_l_p_j_ref_freq = freq->old;
|
|
}
|
|
}
|
|
|
|
if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
|
|
(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
|
|
loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
|
|
global_l_p_j_ref_freq,
|
|
freq->new);
|
|
per_cpu(cpu_data, cpu).loops_per_jiffy =
|
|
cpufreq_scale(per_cpu(l_p_j_ref, cpu),
|
|
per_cpu(l_p_j_ref_freq, cpu),
|
|
freq->new);
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block cpufreq_notifier = {
|
|
.notifier_call = cpufreq_callback,
|
|
};
|
|
|
|
static int __init register_cpufreq_notifier(void)
|
|
{
|
|
return cpufreq_register_notifier(&cpufreq_notifier,
|
|
CPUFREQ_TRANSITION_NOTIFIER);
|
|
}
|
|
core_initcall(register_cpufreq_notifier);
|
|
|
|
#endif
|
|
|
|
static void raise_nmi(cpumask_t *mask)
|
|
{
|
|
smp_cross_call(mask, IPI_CPU_BACKTRACE);
|
|
}
|
|
|
|
void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
|
|
{
|
|
nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
|
|
}
|