linux/arch/x86/lib/clear_page_64.S
Borislav Petkov 0db7058e8e x86/clear_user: Make it faster
Based on a patch by Mark Hemment <markhemm@googlemail.com> and
incorporating very sane suggestions from Linus.

The point here is to have the default case with FSRM - which is supposed
to be the majority of x86 hw out there - if not now then soon - be
directly inlined into the instruction stream so that no function call
overhead is taking place.

Drop the early clobbers from the @size and @addr operands as those are
not needed anymore since we have single instruction alternatives.

The benchmarks I ran would show very small improvements and a PF
benchmark would even show weird things like slowdowns with higher core
counts.

So for a ~6m running the git test suite, the function gets called under
700K times, all from padzero():

  <...>-2536    [006] .....   261.208801: padzero: to: 0x55b0663ed214, size: 3564, cycles: 21900
  <...>-2536    [006] .....   261.208819: padzero: to: 0x7f061adca078, size: 3976, cycles: 17160
  <...>-2537    [008] .....   261.211027: padzero: to: 0x5572d019e240, size: 3520, cycles: 23850
  <...>-2537    [008] .....   261.211049: padzero: to: 0x7f1288dc9078, size: 3976, cycles: 15900
   ...

which is around 1%-ish of the total time and which is consistent with
the benchmark numbers.

So Mel gave me the idea to simply measure how fast the function becomes.
I.e.:

  start = rdtsc_ordered();
  ret = __clear_user(to, n);
  end = rdtsc_ordered();

Computing the mean average of all the samples collected during the test
suite run then shows some improvement:

  clear_user_original:
  Amean: 9219.71 (Sum: 6340154910, samples: 687674)

  fsrm:
  Amean: 8030.63 (Sum: 5522277720, samples: 687652)

That's on Zen3.

The situation looks a lot more confusing on Intel:

Icelake:

  clear_user_original:
  Amean: 19679.4 (Sum: 13652560764, samples: 693750)
  Amean: 19743.7 (Sum: 13693470604, samples: 693562)

(I ran it twice just to be sure.)

  ERMS:
  Amean: 20374.3 (Sum: 13910601024, samples: 682752)
  Amean: 20453.7 (Sum: 14186223606, samples: 693576)

  FSRM:
  Amean: 20458.2 (Sum: 13918381386, sample s: 680331)

The original microbenchmark which people were complaining about:

  for i in $(seq 1 10); do dd if=/dev/zero of=/dev/null bs=1M status=progress count=65536; done 2>&1 | grep copied
  32207011840 bytes (32 GB, 30 GiB) copied, 1 s, 32.2 GB/s
  68719476736 bytes (69 GB, 64 GiB) copied, 1.93069 s, 35.6 GB/s
  37597741056 bytes (38 GB, 35 GiB) copied, 1 s, 37.6 GB/s
  68719476736 bytes (69 GB, 64 GiB) copied, 1.78017 s, 38.6 GB/s
  62020124672 bytes (62 GB, 58 GiB) copied, 2 s, 31.0 GB/s
  68719476736 bytes (69 GB, 64 GiB) copied, 2.13716 s, 32.2 GB/s
  60010004480 bytes (60 GB, 56 GiB) copied, 1 s, 60.0 GB/s
  68719476736 bytes (69 GB, 64 GiB) copied, 1.14129 s, 60.2 GB/s
  53212086272 bytes (53 GB, 50 GiB) copied, 1 s, 53.2 GB/s
  68719476736 bytes (69 GB, 64 GiB) copied, 1.28398 s, 53.5 GB/s
  55698259968 bytes (56 GB, 52 GiB) copied, 1 s, 55.7 GB/s
  68719476736 bytes (69 GB, 64 GiB) copied, 1.22507 s, 56.1 GB/s
  55306092544 bytes (55 GB, 52 GiB) copied, 1 s, 55.3 GB/s
  68719476736 bytes (69 GB, 64 GiB) copied, 1.23647 s, 55.6 GB/s
  54387539968 bytes (54 GB, 51 GiB) copied, 1 s, 54.4 GB/s
  68719476736 bytes (69 GB, 64 GiB) copied, 1.25693 s, 54.7 GB/s
  50566529024 bytes (51 GB, 47 GiB) copied, 1 s, 50.6 GB/s
  68719476736 bytes (69 GB, 64 GiB) copied, 1.35096 s, 50.9 GB/s
  58308165632 bytes (58 GB, 54 GiB) copied, 1 s, 58.3 GB/s
  68719476736 bytes (69 GB, 64 GiB) copied, 1.17394 s, 58.5 GB/s

Now the same thing with smaller buffers:

  for i in $(seq 1 10); do dd if=/dev/zero of=/dev/null bs=1M status=progress count=8192; done 2>&1 | grep copied
  8589934592 bytes (8.6 GB, 8.0 GiB) copied, 0.28485 s, 30.2 GB/s
  8589934592 bytes (8.6 GB, 8.0 GiB) copied, 0.276112 s, 31.1 GB/s
  8589934592 bytes (8.6 GB, 8.0 GiB) copied, 0.29136 s, 29.5 GB/s
  8589934592 bytes (8.6 GB, 8.0 GiB) copied, 0.283803 s, 30.3 GB/s
  8589934592 bytes (8.6 GB, 8.0 GiB) copied, 0.306503 s, 28.0 GB/s
  8589934592 bytes (8.6 GB, 8.0 GiB) copied, 0.349169 s, 24.6 GB/s
  8589934592 bytes (8.6 GB, 8.0 GiB) copied, 0.276912 s, 31.0 GB/s
  8589934592 bytes (8.6 GB, 8.0 GiB) copied, 0.265356 s, 32.4 GB/s
  8589934592 bytes (8.6 GB, 8.0 GiB) copied, 0.28464 s, 30.2 GB/s
  8589934592 bytes (8.6 GB, 8.0 GiB) copied, 0.242998 s, 35.3 GB/s

is also not conclusive because it all depends on the buffer sizes,
their alignments and when the microcode detects that cachelines can be
aggregated properly and copied in bigger sizes.

Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/CAHk-=wh=Mu_EYhtOmPn6AxoQZyEh-4fo2Zx3G7rBv1g7vwoKiw@mail.gmail.com
2022-08-18 12:36:42 +02:00

191 lines
3.7 KiB
ArmAsm

/* SPDX-License-Identifier: GPL-2.0-only */
#include <linux/linkage.h>
#include <asm/asm.h>
#include <asm/export.h>
/*
* Most CPUs support enhanced REP MOVSB/STOSB instructions. It is
* recommended to use this when possible and we do use them by default.
* If enhanced REP MOVSB/STOSB is not available, try to use fast string.
* Otherwise, use original.
*/
/*
* Zero a page.
* %rdi - page
*/
SYM_FUNC_START(clear_page_rep)
movl $4096/8,%ecx
xorl %eax,%eax
rep stosq
RET
SYM_FUNC_END(clear_page_rep)
EXPORT_SYMBOL_GPL(clear_page_rep)
SYM_FUNC_START(clear_page_orig)
xorl %eax,%eax
movl $4096/64,%ecx
.p2align 4
.Lloop:
decl %ecx
#define PUT(x) movq %rax,x*8(%rdi)
movq %rax,(%rdi)
PUT(1)
PUT(2)
PUT(3)
PUT(4)
PUT(5)
PUT(6)
PUT(7)
leaq 64(%rdi),%rdi
jnz .Lloop
nop
RET
SYM_FUNC_END(clear_page_orig)
EXPORT_SYMBOL_GPL(clear_page_orig)
SYM_FUNC_START(clear_page_erms)
movl $4096,%ecx
xorl %eax,%eax
rep stosb
RET
SYM_FUNC_END(clear_page_erms)
EXPORT_SYMBOL_GPL(clear_page_erms)
/*
* Default clear user-space.
* Input:
* rdi destination
* rcx count
*
* Output:
* rcx: uncleared bytes or 0 if successful.
*/
SYM_FUNC_START(clear_user_original)
/*
* Copy only the lower 32 bits of size as that is enough to handle the rest bytes,
* i.e., no need for a 'q' suffix and thus a REX prefix.
*/
mov %ecx,%eax
shr $3,%rcx
jz .Lrest_bytes
# do the qwords first
.p2align 4
.Lqwords:
movq $0,(%rdi)
lea 8(%rdi),%rdi
dec %rcx
jnz .Lqwords
.Lrest_bytes:
and $7, %eax
jz .Lexit
# now do the rest bytes
.Lbytes:
movb $0,(%rdi)
inc %rdi
dec %eax
jnz .Lbytes
.Lexit:
/*
* %rax still needs to be cleared in the exception case because this function is called
* from inline asm and the compiler expects %rax to be zero when exiting the inline asm,
* in case it might reuse it somewhere.
*/
xor %eax,%eax
RET
.Lqwords_exception:
# convert remaining qwords back into bytes to return to caller
shl $3, %rcx
and $7, %eax
add %rax,%rcx
jmp .Lexit
.Lbytes_exception:
mov %eax,%ecx
jmp .Lexit
_ASM_EXTABLE_UA(.Lqwords, .Lqwords_exception)
_ASM_EXTABLE_UA(.Lbytes, .Lbytes_exception)
SYM_FUNC_END(clear_user_original)
EXPORT_SYMBOL(clear_user_original)
/*
* Alternative clear user-space when CPU feature X86_FEATURE_REP_GOOD is
* present.
* Input:
* rdi destination
* rcx count
*
* Output:
* rcx: uncleared bytes or 0 if successful.
*/
SYM_FUNC_START(clear_user_rep_good)
# call the original thing for less than a cacheline
cmp $64, %rcx
jb clear_user_original
.Lprep:
# copy lower 32-bits for rest bytes
mov %ecx, %edx
shr $3, %rcx
jz .Lrep_good_rest_bytes
.Lrep_good_qwords:
rep stosq
.Lrep_good_rest_bytes:
and $7, %edx
jz .Lrep_good_exit
.Lrep_good_bytes:
mov %edx, %ecx
rep stosb
.Lrep_good_exit:
# see .Lexit comment above
xor %eax, %eax
RET
.Lrep_good_qwords_exception:
# convert remaining qwords back into bytes to return to caller
shl $3, %rcx
and $7, %edx
add %rdx, %rcx
jmp .Lrep_good_exit
_ASM_EXTABLE_UA(.Lrep_good_qwords, .Lrep_good_qwords_exception)
_ASM_EXTABLE_UA(.Lrep_good_bytes, .Lrep_good_exit)
SYM_FUNC_END(clear_user_rep_good)
EXPORT_SYMBOL(clear_user_rep_good)
/*
* Alternative clear user-space when CPU feature X86_FEATURE_ERMS is present.
* Input:
* rdi destination
* rcx count
*
* Output:
* rcx: uncleared bytes or 0 if successful.
*
*/
SYM_FUNC_START(clear_user_erms)
# call the original thing for less than a cacheline
cmp $64, %rcx
jb clear_user_original
.Lerms_bytes:
rep stosb
.Lerms_exit:
xorl %eax,%eax
RET
_ASM_EXTABLE_UA(.Lerms_bytes, .Lerms_exit)
SYM_FUNC_END(clear_user_erms)
EXPORT_SYMBOL(clear_user_erms)