0db7058e8e
Based on a patch by Mark Hemment <markhemm@googlemail.com> and incorporating very sane suggestions from Linus. The point here is to have the default case with FSRM - which is supposed to be the majority of x86 hw out there - if not now then soon - be directly inlined into the instruction stream so that no function call overhead is taking place. Drop the early clobbers from the @size and @addr operands as those are not needed anymore since we have single instruction alternatives. The benchmarks I ran would show very small improvements and a PF benchmark would even show weird things like slowdowns with higher core counts. So for a ~6m running the git test suite, the function gets called under 700K times, all from padzero(): <...>-2536 [006] ..... 261.208801: padzero: to: 0x55b0663ed214, size: 3564, cycles: 21900 <...>-2536 [006] ..... 261.208819: padzero: to: 0x7f061adca078, size: 3976, cycles: 17160 <...>-2537 [008] ..... 261.211027: padzero: to: 0x5572d019e240, size: 3520, cycles: 23850 <...>-2537 [008] ..... 261.211049: padzero: to: 0x7f1288dc9078, size: 3976, cycles: 15900 ... which is around 1%-ish of the total time and which is consistent with the benchmark numbers. So Mel gave me the idea to simply measure how fast the function becomes. I.e.: start = rdtsc_ordered(); ret = __clear_user(to, n); end = rdtsc_ordered(); Computing the mean average of all the samples collected during the test suite run then shows some improvement: clear_user_original: Amean: 9219.71 (Sum: 6340154910, samples: 687674) fsrm: Amean: 8030.63 (Sum: 5522277720, samples: 687652) That's on Zen3. The situation looks a lot more confusing on Intel: Icelake: clear_user_original: Amean: 19679.4 (Sum: 13652560764, samples: 693750) Amean: 19743.7 (Sum: 13693470604, samples: 693562) (I ran it twice just to be sure.) ERMS: Amean: 20374.3 (Sum: 13910601024, samples: 682752) Amean: 20453.7 (Sum: 14186223606, samples: 693576) FSRM: Amean: 20458.2 (Sum: 13918381386, sample s: 680331) The original microbenchmark which people were complaining about: for i in $(seq 1 10); do dd if=/dev/zero of=/dev/null bs=1M status=progress count=65536; done 2>&1 | grep copied 32207011840 bytes (32 GB, 30 GiB) copied, 1 s, 32.2 GB/s 68719476736 bytes (69 GB, 64 GiB) copied, 1.93069 s, 35.6 GB/s 37597741056 bytes (38 GB, 35 GiB) copied, 1 s, 37.6 GB/s 68719476736 bytes (69 GB, 64 GiB) copied, 1.78017 s, 38.6 GB/s 62020124672 bytes (62 GB, 58 GiB) copied, 2 s, 31.0 GB/s 68719476736 bytes (69 GB, 64 GiB) copied, 2.13716 s, 32.2 GB/s 60010004480 bytes (60 GB, 56 GiB) copied, 1 s, 60.0 GB/s 68719476736 bytes (69 GB, 64 GiB) copied, 1.14129 s, 60.2 GB/s 53212086272 bytes (53 GB, 50 GiB) copied, 1 s, 53.2 GB/s 68719476736 bytes (69 GB, 64 GiB) copied, 1.28398 s, 53.5 GB/s 55698259968 bytes (56 GB, 52 GiB) copied, 1 s, 55.7 GB/s 68719476736 bytes (69 GB, 64 GiB) copied, 1.22507 s, 56.1 GB/s 55306092544 bytes (55 GB, 52 GiB) copied, 1 s, 55.3 GB/s 68719476736 bytes (69 GB, 64 GiB) copied, 1.23647 s, 55.6 GB/s 54387539968 bytes (54 GB, 51 GiB) copied, 1 s, 54.4 GB/s 68719476736 bytes (69 GB, 64 GiB) copied, 1.25693 s, 54.7 GB/s 50566529024 bytes (51 GB, 47 GiB) copied, 1 s, 50.6 GB/s 68719476736 bytes (69 GB, 64 GiB) copied, 1.35096 s, 50.9 GB/s 58308165632 bytes (58 GB, 54 GiB) copied, 1 s, 58.3 GB/s 68719476736 bytes (69 GB, 64 GiB) copied, 1.17394 s, 58.5 GB/s Now the same thing with smaller buffers: for i in $(seq 1 10); do dd if=/dev/zero of=/dev/null bs=1M status=progress count=8192; done 2>&1 | grep copied 8589934592 bytes (8.6 GB, 8.0 GiB) copied, 0.28485 s, 30.2 GB/s 8589934592 bytes (8.6 GB, 8.0 GiB) copied, 0.276112 s, 31.1 GB/s 8589934592 bytes (8.6 GB, 8.0 GiB) copied, 0.29136 s, 29.5 GB/s 8589934592 bytes (8.6 GB, 8.0 GiB) copied, 0.283803 s, 30.3 GB/s 8589934592 bytes (8.6 GB, 8.0 GiB) copied, 0.306503 s, 28.0 GB/s 8589934592 bytes (8.6 GB, 8.0 GiB) copied, 0.349169 s, 24.6 GB/s 8589934592 bytes (8.6 GB, 8.0 GiB) copied, 0.276912 s, 31.0 GB/s 8589934592 bytes (8.6 GB, 8.0 GiB) copied, 0.265356 s, 32.4 GB/s 8589934592 bytes (8.6 GB, 8.0 GiB) copied, 0.28464 s, 30.2 GB/s 8589934592 bytes (8.6 GB, 8.0 GiB) copied, 0.242998 s, 35.3 GB/s is also not conclusive because it all depends on the buffer sizes, their alignments and when the microcode detects that cachelines can be aggregated properly and copied in bigger sizes. Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lore.kernel.org/r/CAHk-=wh=Mu_EYhtOmPn6AxoQZyEh-4fo2Zx3G7rBv1g7vwoKiw@mail.gmail.com
191 lines
3.7 KiB
ArmAsm
191 lines
3.7 KiB
ArmAsm
/* SPDX-License-Identifier: GPL-2.0-only */
|
|
#include <linux/linkage.h>
|
|
#include <asm/asm.h>
|
|
#include <asm/export.h>
|
|
|
|
/*
|
|
* Most CPUs support enhanced REP MOVSB/STOSB instructions. It is
|
|
* recommended to use this when possible and we do use them by default.
|
|
* If enhanced REP MOVSB/STOSB is not available, try to use fast string.
|
|
* Otherwise, use original.
|
|
*/
|
|
|
|
/*
|
|
* Zero a page.
|
|
* %rdi - page
|
|
*/
|
|
SYM_FUNC_START(clear_page_rep)
|
|
movl $4096/8,%ecx
|
|
xorl %eax,%eax
|
|
rep stosq
|
|
RET
|
|
SYM_FUNC_END(clear_page_rep)
|
|
EXPORT_SYMBOL_GPL(clear_page_rep)
|
|
|
|
SYM_FUNC_START(clear_page_orig)
|
|
xorl %eax,%eax
|
|
movl $4096/64,%ecx
|
|
.p2align 4
|
|
.Lloop:
|
|
decl %ecx
|
|
#define PUT(x) movq %rax,x*8(%rdi)
|
|
movq %rax,(%rdi)
|
|
PUT(1)
|
|
PUT(2)
|
|
PUT(3)
|
|
PUT(4)
|
|
PUT(5)
|
|
PUT(6)
|
|
PUT(7)
|
|
leaq 64(%rdi),%rdi
|
|
jnz .Lloop
|
|
nop
|
|
RET
|
|
SYM_FUNC_END(clear_page_orig)
|
|
EXPORT_SYMBOL_GPL(clear_page_orig)
|
|
|
|
SYM_FUNC_START(clear_page_erms)
|
|
movl $4096,%ecx
|
|
xorl %eax,%eax
|
|
rep stosb
|
|
RET
|
|
SYM_FUNC_END(clear_page_erms)
|
|
EXPORT_SYMBOL_GPL(clear_page_erms)
|
|
|
|
/*
|
|
* Default clear user-space.
|
|
* Input:
|
|
* rdi destination
|
|
* rcx count
|
|
*
|
|
* Output:
|
|
* rcx: uncleared bytes or 0 if successful.
|
|
*/
|
|
SYM_FUNC_START(clear_user_original)
|
|
/*
|
|
* Copy only the lower 32 bits of size as that is enough to handle the rest bytes,
|
|
* i.e., no need for a 'q' suffix and thus a REX prefix.
|
|
*/
|
|
mov %ecx,%eax
|
|
shr $3,%rcx
|
|
jz .Lrest_bytes
|
|
|
|
# do the qwords first
|
|
.p2align 4
|
|
.Lqwords:
|
|
movq $0,(%rdi)
|
|
lea 8(%rdi),%rdi
|
|
dec %rcx
|
|
jnz .Lqwords
|
|
|
|
.Lrest_bytes:
|
|
and $7, %eax
|
|
jz .Lexit
|
|
|
|
# now do the rest bytes
|
|
.Lbytes:
|
|
movb $0,(%rdi)
|
|
inc %rdi
|
|
dec %eax
|
|
jnz .Lbytes
|
|
|
|
.Lexit:
|
|
/*
|
|
* %rax still needs to be cleared in the exception case because this function is called
|
|
* from inline asm and the compiler expects %rax to be zero when exiting the inline asm,
|
|
* in case it might reuse it somewhere.
|
|
*/
|
|
xor %eax,%eax
|
|
RET
|
|
|
|
.Lqwords_exception:
|
|
# convert remaining qwords back into bytes to return to caller
|
|
shl $3, %rcx
|
|
and $7, %eax
|
|
add %rax,%rcx
|
|
jmp .Lexit
|
|
|
|
.Lbytes_exception:
|
|
mov %eax,%ecx
|
|
jmp .Lexit
|
|
|
|
_ASM_EXTABLE_UA(.Lqwords, .Lqwords_exception)
|
|
_ASM_EXTABLE_UA(.Lbytes, .Lbytes_exception)
|
|
SYM_FUNC_END(clear_user_original)
|
|
EXPORT_SYMBOL(clear_user_original)
|
|
|
|
/*
|
|
* Alternative clear user-space when CPU feature X86_FEATURE_REP_GOOD is
|
|
* present.
|
|
* Input:
|
|
* rdi destination
|
|
* rcx count
|
|
*
|
|
* Output:
|
|
* rcx: uncleared bytes or 0 if successful.
|
|
*/
|
|
SYM_FUNC_START(clear_user_rep_good)
|
|
# call the original thing for less than a cacheline
|
|
cmp $64, %rcx
|
|
jb clear_user_original
|
|
|
|
.Lprep:
|
|
# copy lower 32-bits for rest bytes
|
|
mov %ecx, %edx
|
|
shr $3, %rcx
|
|
jz .Lrep_good_rest_bytes
|
|
|
|
.Lrep_good_qwords:
|
|
rep stosq
|
|
|
|
.Lrep_good_rest_bytes:
|
|
and $7, %edx
|
|
jz .Lrep_good_exit
|
|
|
|
.Lrep_good_bytes:
|
|
mov %edx, %ecx
|
|
rep stosb
|
|
|
|
.Lrep_good_exit:
|
|
# see .Lexit comment above
|
|
xor %eax, %eax
|
|
RET
|
|
|
|
.Lrep_good_qwords_exception:
|
|
# convert remaining qwords back into bytes to return to caller
|
|
shl $3, %rcx
|
|
and $7, %edx
|
|
add %rdx, %rcx
|
|
jmp .Lrep_good_exit
|
|
|
|
_ASM_EXTABLE_UA(.Lrep_good_qwords, .Lrep_good_qwords_exception)
|
|
_ASM_EXTABLE_UA(.Lrep_good_bytes, .Lrep_good_exit)
|
|
SYM_FUNC_END(clear_user_rep_good)
|
|
EXPORT_SYMBOL(clear_user_rep_good)
|
|
|
|
/*
|
|
* Alternative clear user-space when CPU feature X86_FEATURE_ERMS is present.
|
|
* Input:
|
|
* rdi destination
|
|
* rcx count
|
|
*
|
|
* Output:
|
|
* rcx: uncleared bytes or 0 if successful.
|
|
*
|
|
*/
|
|
SYM_FUNC_START(clear_user_erms)
|
|
# call the original thing for less than a cacheline
|
|
cmp $64, %rcx
|
|
jb clear_user_original
|
|
|
|
.Lerms_bytes:
|
|
rep stosb
|
|
|
|
.Lerms_exit:
|
|
xorl %eax,%eax
|
|
RET
|
|
|
|
_ASM_EXTABLE_UA(.Lerms_bytes, .Lerms_exit)
|
|
SYM_FUNC_END(clear_user_erms)
|
|
EXPORT_SYMBOL(clear_user_erms)
|