linux/drivers/crypto/cavium/cpt/cptpf_main.c
Jia-Ju Bai e9acf05255 crypto: cavium - Replace mdelay with msleep in cpt_device_init
cpt_device_init() is never called in atomic context.

The call chain ending up at cpt_device_init() is:
[1] cpt_device_init() <- cpt_probe()
cpt_probe() is only set as ".probe" in pci_driver structure
"cpt_pci_driver".

Despite never getting called from atomic context, cpt_device_init() calls
mdelay(100), i.e. busy wait for 100ms.
That is not necessary and can be replaced with msleep to
avoid busy waiting.

This is found by a static analysis tool named DCNS written by myself.

Signed-off-by: Jia-Ju Bai <baijiaju1990@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-03-23 23:48:43 +08:00

676 lines
17 KiB
C

/*
* Copyright (C) 2016 Cavium, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License
* as published by the Free Software Foundation.
*/
#include <linux/device.h>
#include <linux/firmware.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/pci.h>
#include <linux/printk.h>
#include <linux/version.h>
#include "cptpf.h"
#define DRV_NAME "thunder-cpt"
#define DRV_VERSION "1.0"
static u32 num_vfs = 4; /* Default 4 VF enabled */
module_param(num_vfs, uint, 0444);
MODULE_PARM_DESC(num_vfs, "Number of VFs to enable(1-16)");
/*
* Disable cores specified by coremask
*/
static void cpt_disable_cores(struct cpt_device *cpt, u64 coremask,
u8 type, u8 grp)
{
u64 pf_exe_ctl;
u32 timeout = 100;
u64 grpmask = 0;
struct device *dev = &cpt->pdev->dev;
if (type == AE_TYPES)
coremask = (coremask << cpt->max_se_cores);
/* Disengage the cores from groups */
grpmask = cpt_read_csr64(cpt->reg_base, CPTX_PF_GX_EN(0, grp));
cpt_write_csr64(cpt->reg_base, CPTX_PF_GX_EN(0, grp),
(grpmask & ~coremask));
udelay(CSR_DELAY);
grp = cpt_read_csr64(cpt->reg_base, CPTX_PF_EXEC_BUSY(0));
while (grp & coremask) {
dev_err(dev, "Cores still busy %llx", coremask);
grp = cpt_read_csr64(cpt->reg_base,
CPTX_PF_EXEC_BUSY(0));
if (timeout--)
break;
udelay(CSR_DELAY);
}
/* Disable the cores */
pf_exe_ctl = cpt_read_csr64(cpt->reg_base, CPTX_PF_EXE_CTL(0));
cpt_write_csr64(cpt->reg_base, CPTX_PF_EXE_CTL(0),
(pf_exe_ctl & ~coremask));
udelay(CSR_DELAY);
}
/*
* Enable cores specified by coremask
*/
static void cpt_enable_cores(struct cpt_device *cpt, u64 coremask,
u8 type)
{
u64 pf_exe_ctl;
if (type == AE_TYPES)
coremask = (coremask << cpt->max_se_cores);
pf_exe_ctl = cpt_read_csr64(cpt->reg_base, CPTX_PF_EXE_CTL(0));
cpt_write_csr64(cpt->reg_base, CPTX_PF_EXE_CTL(0),
(pf_exe_ctl | coremask));
udelay(CSR_DELAY);
}
static void cpt_configure_group(struct cpt_device *cpt, u8 grp,
u64 coremask, u8 type)
{
u64 pf_gx_en = 0;
if (type == AE_TYPES)
coremask = (coremask << cpt->max_se_cores);
pf_gx_en = cpt_read_csr64(cpt->reg_base, CPTX_PF_GX_EN(0, grp));
cpt_write_csr64(cpt->reg_base, CPTX_PF_GX_EN(0, grp),
(pf_gx_en | coremask));
udelay(CSR_DELAY);
}
static void cpt_disable_mbox_interrupts(struct cpt_device *cpt)
{
/* Clear mbox(0) interupts for all vfs */
cpt_write_csr64(cpt->reg_base, CPTX_PF_MBOX_ENA_W1CX(0, 0), ~0ull);
}
static void cpt_disable_ecc_interrupts(struct cpt_device *cpt)
{
/* Clear ecc(0) interupts for all vfs */
cpt_write_csr64(cpt->reg_base, CPTX_PF_ECC0_ENA_W1C(0), ~0ull);
}
static void cpt_disable_exec_interrupts(struct cpt_device *cpt)
{
/* Clear exec interupts for all vfs */
cpt_write_csr64(cpt->reg_base, CPTX_PF_EXEC_ENA_W1C(0), ~0ull);
}
static void cpt_disable_all_interrupts(struct cpt_device *cpt)
{
cpt_disable_mbox_interrupts(cpt);
cpt_disable_ecc_interrupts(cpt);
cpt_disable_exec_interrupts(cpt);
}
static void cpt_enable_mbox_interrupts(struct cpt_device *cpt)
{
/* Set mbox(0) interupts for all vfs */
cpt_write_csr64(cpt->reg_base, CPTX_PF_MBOX_ENA_W1SX(0, 0), ~0ull);
}
static int cpt_load_microcode(struct cpt_device *cpt, struct microcode *mcode)
{
int ret = 0, core = 0, shift = 0;
u32 total_cores = 0;
struct device *dev = &cpt->pdev->dev;
if (!mcode || !mcode->code) {
dev_err(dev, "Either the mcode is null or data is NULL\n");
return -EINVAL;
}
if (mcode->code_size == 0) {
dev_err(dev, "microcode size is 0\n");
return -EINVAL;
}
/* Assumes 0-9 are SE cores for UCODE_BASE registers and
* AE core bases follow
*/
if (mcode->is_ae) {
core = CPT_MAX_SE_CORES; /* start couting from 10 */
total_cores = CPT_MAX_TOTAL_CORES; /* upto 15 */
} else {
core = 0; /* start couting from 0 */
total_cores = CPT_MAX_SE_CORES; /* upto 9 */
}
/* Point to microcode for each core of the group */
for (; core < total_cores ; core++, shift++) {
if (mcode->core_mask & (1 << shift)) {
cpt_write_csr64(cpt->reg_base,
CPTX_PF_ENGX_UCODE_BASE(0, core),
(u64)mcode->phys_base);
}
}
return ret;
}
static int do_cpt_init(struct cpt_device *cpt, struct microcode *mcode)
{
int ret = 0;
struct device *dev = &cpt->pdev->dev;
/* Make device not ready */
cpt->flags &= ~CPT_FLAG_DEVICE_READY;
/* Disable All PF interrupts */
cpt_disable_all_interrupts(cpt);
/* Calculate mcode group and coremasks */
if (mcode->is_ae) {
if (mcode->num_cores > cpt->max_ae_cores) {
dev_err(dev, "Requested for more cores than available AE cores\n");
ret = -EINVAL;
goto cpt_init_fail;
}
if (cpt->next_group >= CPT_MAX_CORE_GROUPS) {
dev_err(dev, "Can't load, all eight microcode groups in use");
return -ENFILE;
}
mcode->group = cpt->next_group;
/* Convert requested cores to mask */
mcode->core_mask = GENMASK(mcode->num_cores, 0);
cpt_disable_cores(cpt, mcode->core_mask, AE_TYPES,
mcode->group);
/* Load microcode for AE engines */
ret = cpt_load_microcode(cpt, mcode);
if (ret) {
dev_err(dev, "Microcode load Failed for %s\n",
mcode->version);
goto cpt_init_fail;
}
cpt->next_group++;
/* Configure group mask for the mcode */
cpt_configure_group(cpt, mcode->group, mcode->core_mask,
AE_TYPES);
/* Enable AE cores for the group mask */
cpt_enable_cores(cpt, mcode->core_mask, AE_TYPES);
} else {
if (mcode->num_cores > cpt->max_se_cores) {
dev_err(dev, "Requested for more cores than available SE cores\n");
ret = -EINVAL;
goto cpt_init_fail;
}
if (cpt->next_group >= CPT_MAX_CORE_GROUPS) {
dev_err(dev, "Can't load, all eight microcode groups in use");
return -ENFILE;
}
mcode->group = cpt->next_group;
/* Covert requested cores to mask */
mcode->core_mask = GENMASK(mcode->num_cores, 0);
cpt_disable_cores(cpt, mcode->core_mask, SE_TYPES,
mcode->group);
/* Load microcode for SE engines */
ret = cpt_load_microcode(cpt, mcode);
if (ret) {
dev_err(dev, "Microcode load Failed for %s\n",
mcode->version);
goto cpt_init_fail;
}
cpt->next_group++;
/* Configure group mask for the mcode */
cpt_configure_group(cpt, mcode->group, mcode->core_mask,
SE_TYPES);
/* Enable SE cores for the group mask */
cpt_enable_cores(cpt, mcode->core_mask, SE_TYPES);
}
/* Enabled PF mailbox interrupts */
cpt_enable_mbox_interrupts(cpt);
cpt->flags |= CPT_FLAG_DEVICE_READY;
return ret;
cpt_init_fail:
/* Enabled PF mailbox interrupts */
cpt_enable_mbox_interrupts(cpt);
return ret;
}
struct ucode_header {
u8 version[CPT_UCODE_VERSION_SZ];
u32 code_length;
u32 data_length;
u64 sram_address;
};
static int cpt_ucode_load_fw(struct cpt_device *cpt, const u8 *fw, bool is_ae)
{
const struct firmware *fw_entry;
struct device *dev = &cpt->pdev->dev;
struct ucode_header *ucode;
struct microcode *mcode;
int j, ret = 0;
ret = request_firmware(&fw_entry, fw, dev);
if (ret)
return ret;
ucode = (struct ucode_header *)fw_entry->data;
mcode = &cpt->mcode[cpt->next_mc_idx];
memcpy(mcode->version, (u8 *)fw_entry->data, CPT_UCODE_VERSION_SZ);
mcode->code_size = ntohl(ucode->code_length) * 2;
if (!mcode->code_size) {
ret = -EINVAL;
goto fw_release;
}
mcode->is_ae = is_ae;
mcode->core_mask = 0ULL;
mcode->num_cores = is_ae ? 6 : 10;
/* Allocate DMAable space */
mcode->code = dma_zalloc_coherent(&cpt->pdev->dev, mcode->code_size,
&mcode->phys_base, GFP_KERNEL);
if (!mcode->code) {
dev_err(dev, "Unable to allocate space for microcode");
ret = -ENOMEM;
goto fw_release;
}
memcpy((void *)mcode->code, (void *)(fw_entry->data + sizeof(*ucode)),
mcode->code_size);
/* Byte swap 64-bit */
for (j = 0; j < (mcode->code_size / 8); j++)
((u64 *)mcode->code)[j] = cpu_to_be64(((u64 *)mcode->code)[j]);
/* MC needs 16-bit swap */
for (j = 0; j < (mcode->code_size / 2); j++)
((u16 *)mcode->code)[j] = cpu_to_be16(((u16 *)mcode->code)[j]);
dev_dbg(dev, "mcode->code_size = %u\n", mcode->code_size);
dev_dbg(dev, "mcode->is_ae = %u\n", mcode->is_ae);
dev_dbg(dev, "mcode->num_cores = %u\n", mcode->num_cores);
dev_dbg(dev, "mcode->code = %llx\n", (u64)mcode->code);
dev_dbg(dev, "mcode->phys_base = %llx\n", mcode->phys_base);
ret = do_cpt_init(cpt, mcode);
if (ret) {
dev_err(dev, "do_cpt_init failed with ret: %d\n", ret);
goto fw_release;
}
dev_info(dev, "Microcode Loaded %s\n", mcode->version);
mcode->is_mc_valid = 1;
cpt->next_mc_idx++;
fw_release:
release_firmware(fw_entry);
return ret;
}
static int cpt_ucode_load(struct cpt_device *cpt)
{
int ret = 0;
struct device *dev = &cpt->pdev->dev;
ret = cpt_ucode_load_fw(cpt, "cpt8x-mc-ae.out", true);
if (ret) {
dev_err(dev, "ae:cpt_ucode_load failed with ret: %d\n", ret);
return ret;
}
ret = cpt_ucode_load_fw(cpt, "cpt8x-mc-se.out", false);
if (ret) {
dev_err(dev, "se:cpt_ucode_load failed with ret: %d\n", ret);
return ret;
}
return ret;
}
static irqreturn_t cpt_mbx0_intr_handler(int irq, void *cpt_irq)
{
struct cpt_device *cpt = (struct cpt_device *)cpt_irq;
cpt_mbox_intr_handler(cpt, 0);
return IRQ_HANDLED;
}
static void cpt_reset(struct cpt_device *cpt)
{
cpt_write_csr64(cpt->reg_base, CPTX_PF_RESET(0), 1);
}
static void cpt_find_max_enabled_cores(struct cpt_device *cpt)
{
union cptx_pf_constants pf_cnsts = {0};
pf_cnsts.u = cpt_read_csr64(cpt->reg_base, CPTX_PF_CONSTANTS(0));
cpt->max_se_cores = pf_cnsts.s.se;
cpt->max_ae_cores = pf_cnsts.s.ae;
}
static u32 cpt_check_bist_status(struct cpt_device *cpt)
{
union cptx_pf_bist_status bist_sts = {0};
bist_sts.u = cpt_read_csr64(cpt->reg_base,
CPTX_PF_BIST_STATUS(0));
return bist_sts.u;
}
static u64 cpt_check_exe_bist_status(struct cpt_device *cpt)
{
union cptx_pf_exe_bist_status bist_sts = {0};
bist_sts.u = cpt_read_csr64(cpt->reg_base,
CPTX_PF_EXE_BIST_STATUS(0));
return bist_sts.u;
}
static void cpt_disable_all_cores(struct cpt_device *cpt)
{
u32 grp, timeout = 100;
struct device *dev = &cpt->pdev->dev;
/* Disengage the cores from groups */
for (grp = 0; grp < CPT_MAX_CORE_GROUPS; grp++) {
cpt_write_csr64(cpt->reg_base, CPTX_PF_GX_EN(0, grp), 0);
udelay(CSR_DELAY);
}
grp = cpt_read_csr64(cpt->reg_base, CPTX_PF_EXEC_BUSY(0));
while (grp) {
dev_err(dev, "Cores still busy");
grp = cpt_read_csr64(cpt->reg_base,
CPTX_PF_EXEC_BUSY(0));
if (timeout--)
break;
udelay(CSR_DELAY);
}
/* Disable the cores */
cpt_write_csr64(cpt->reg_base, CPTX_PF_EXE_CTL(0), 0);
}
/**
* Ensure all cores are disengaged from all groups by
* calling cpt_disable_all_cores() before calling this
* function.
*/
static void cpt_unload_microcode(struct cpt_device *cpt)
{
u32 grp = 0, core;
/* Free microcode bases and reset group masks */
for (grp = 0; grp < CPT_MAX_CORE_GROUPS; grp++) {
struct microcode *mcode = &cpt->mcode[grp];
if (cpt->mcode[grp].code)
dma_free_coherent(&cpt->pdev->dev, mcode->code_size,
mcode->code, mcode->phys_base);
mcode->code = NULL;
}
/* Clear UCODE_BASE registers for all engines */
for (core = 0; core < CPT_MAX_TOTAL_CORES; core++)
cpt_write_csr64(cpt->reg_base,
CPTX_PF_ENGX_UCODE_BASE(0, core), 0ull);
}
static int cpt_device_init(struct cpt_device *cpt)
{
u64 bist;
struct device *dev = &cpt->pdev->dev;
/* Reset the PF when probed first */
cpt_reset(cpt);
msleep(100);
/*Check BIST status*/
bist = (u64)cpt_check_bist_status(cpt);
if (bist) {
dev_err(dev, "RAM BIST failed with code 0x%llx", bist);
return -ENODEV;
}
bist = cpt_check_exe_bist_status(cpt);
if (bist) {
dev_err(dev, "Engine BIST failed with code 0x%llx", bist);
return -ENODEV;
}
/*Get CLK frequency*/
/*Get max enabled cores */
cpt_find_max_enabled_cores(cpt);
/*Disable all cores*/
cpt_disable_all_cores(cpt);
/*Reset device parameters*/
cpt->next_mc_idx = 0;
cpt->next_group = 0;
/* PF is ready */
cpt->flags |= CPT_FLAG_DEVICE_READY;
return 0;
}
static int cpt_register_interrupts(struct cpt_device *cpt)
{
int ret;
struct device *dev = &cpt->pdev->dev;
/* Enable MSI-X */
ret = pci_alloc_irq_vectors(cpt->pdev, CPT_PF_MSIX_VECTORS,
CPT_PF_MSIX_VECTORS, PCI_IRQ_MSIX);
if (ret < 0) {
dev_err(&cpt->pdev->dev, "Request for #%d msix vectors failed\n",
CPT_PF_MSIX_VECTORS);
return ret;
}
/* Register mailbox interrupt handlers */
ret = request_irq(pci_irq_vector(cpt->pdev, CPT_PF_INT_VEC_E_MBOXX(0)),
cpt_mbx0_intr_handler, 0, "CPT Mbox0", cpt);
if (ret)
goto fail;
/* Enable mailbox interrupt */
cpt_enable_mbox_interrupts(cpt);
return 0;
fail:
dev_err(dev, "Request irq failed\n");
pci_disable_msix(cpt->pdev);
return ret;
}
static void cpt_unregister_interrupts(struct cpt_device *cpt)
{
free_irq(pci_irq_vector(cpt->pdev, CPT_PF_INT_VEC_E_MBOXX(0)), cpt);
pci_disable_msix(cpt->pdev);
}
static int cpt_sriov_init(struct cpt_device *cpt, int num_vfs)
{
int pos = 0;
int err;
u16 total_vf_cnt;
struct pci_dev *pdev = cpt->pdev;
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
if (!pos) {
dev_err(&pdev->dev, "SRIOV capability is not found in PCIe config space\n");
return -ENODEV;
}
cpt->num_vf_en = num_vfs; /* User requested VFs */
pci_read_config_word(pdev, (pos + PCI_SRIOV_TOTAL_VF), &total_vf_cnt);
if (total_vf_cnt < cpt->num_vf_en)
cpt->num_vf_en = total_vf_cnt;
if (!total_vf_cnt)
return 0;
/*Enabled the available VFs */
err = pci_enable_sriov(pdev, cpt->num_vf_en);
if (err) {
dev_err(&pdev->dev, "SRIOV enable failed, num VF is %d\n",
cpt->num_vf_en);
cpt->num_vf_en = 0;
return err;
}
/* TODO: Optionally enable static VQ priorities feature */
dev_info(&pdev->dev, "SRIOV enabled, number of VF available %d\n",
cpt->num_vf_en);
cpt->flags |= CPT_FLAG_SRIOV_ENABLED;
return 0;
}
static int cpt_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct device *dev = &pdev->dev;
struct cpt_device *cpt;
int err;
if (num_vfs > 16 || num_vfs < 4) {
dev_warn(dev, "Invalid vf count %d, Resetting it to 4(default)\n",
num_vfs);
num_vfs = 4;
}
cpt = devm_kzalloc(dev, sizeof(*cpt), GFP_KERNEL);
if (!cpt)
return -ENOMEM;
pci_set_drvdata(pdev, cpt);
cpt->pdev = pdev;
err = pci_enable_device(pdev);
if (err) {
dev_err(dev, "Failed to enable PCI device\n");
pci_set_drvdata(pdev, NULL);
return err;
}
err = pci_request_regions(pdev, DRV_NAME);
if (err) {
dev_err(dev, "PCI request regions failed 0x%x\n", err);
goto cpt_err_disable_device;
}
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(48));
if (err) {
dev_err(dev, "Unable to get usable DMA configuration\n");
goto cpt_err_release_regions;
}
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48));
if (err) {
dev_err(dev, "Unable to get 48-bit DMA for consistent allocations\n");
goto cpt_err_release_regions;
}
/* MAP PF's configuration registers */
cpt->reg_base = pcim_iomap(pdev, 0, 0);
if (!cpt->reg_base) {
dev_err(dev, "Cannot map config register space, aborting\n");
err = -ENOMEM;
goto cpt_err_release_regions;
}
/* CPT device HW initialization */
cpt_device_init(cpt);
/* Register interrupts */
err = cpt_register_interrupts(cpt);
if (err)
goto cpt_err_release_regions;
err = cpt_ucode_load(cpt);
if (err)
goto cpt_err_unregister_interrupts;
/* Configure SRIOV */
err = cpt_sriov_init(cpt, num_vfs);
if (err)
goto cpt_err_unregister_interrupts;
return 0;
cpt_err_unregister_interrupts:
cpt_unregister_interrupts(cpt);
cpt_err_release_regions:
pci_release_regions(pdev);
cpt_err_disable_device:
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
return err;
}
static void cpt_remove(struct pci_dev *pdev)
{
struct cpt_device *cpt = pci_get_drvdata(pdev);
/* Disengage SE and AE cores from all groups*/
cpt_disable_all_cores(cpt);
/* Unload microcodes */
cpt_unload_microcode(cpt);
cpt_unregister_interrupts(cpt);
pci_disable_sriov(pdev);
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
}
static void cpt_shutdown(struct pci_dev *pdev)
{
struct cpt_device *cpt = pci_get_drvdata(pdev);
if (!cpt)
return;
dev_info(&pdev->dev, "Shutdown device %x:%x.\n",
(u32)pdev->vendor, (u32)pdev->device);
cpt_unregister_interrupts(cpt);
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
}
/* Supported devices */
static const struct pci_device_id cpt_id_table[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, CPT_81XX_PCI_PF_DEVICE_ID) },
{ 0, } /* end of table */
};
static struct pci_driver cpt_pci_driver = {
.name = DRV_NAME,
.id_table = cpt_id_table,
.probe = cpt_probe,
.remove = cpt_remove,
.shutdown = cpt_shutdown,
};
module_pci_driver(cpt_pci_driver);
MODULE_AUTHOR("George Cherian <george.cherian@cavium.com>");
MODULE_DESCRIPTION("Cavium Thunder CPT Physical Function Driver");
MODULE_LICENSE("GPL v2");
MODULE_VERSION(DRV_VERSION);
MODULE_DEVICE_TABLE(pci, cpt_id_table);