linux/drivers/perf/fsl_imx9_ddr_perf.c
Christophe JAILLET 79c03ed4b8 drivers/perf: Remove usage of the deprecated ida_simple_xx() API
ida_alloc() and ida_free() should be preferred to the deprecated
ida_simple_get() and ida_simple_remove().

This is less verbose.

Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Link: https://lore.kernel.org/r/85b0b73a1b2f743dd5db15d4765c7685100de27f.1702230488.git.christophe.jaillet@wanadoo.fr
Signed-off-by: Will Deacon <will@kernel.org>
2023-12-12 09:20:38 +00:00

710 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0
// Copyright 2023 NXP
#include <linux/bitfield.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/perf_event.h>
/* Performance monitor configuration */
#define PMCFG1 0x00
#define PMCFG1_RD_TRANS_FILT_EN BIT(31)
#define PMCFG1_WR_TRANS_FILT_EN BIT(30)
#define PMCFG1_RD_BT_FILT_EN BIT(29)
#define PMCFG1_ID_MASK GENMASK(17, 0)
#define PMCFG2 0x04
#define PMCFG2_ID GENMASK(17, 0)
/* Global control register affects all counters and takes priority over local control registers */
#define PMGC0 0x40
/* Global control register bits */
#define PMGC0_FAC BIT(31)
#define PMGC0_PMIE BIT(30)
#define PMGC0_FCECE BIT(29)
/*
* 64bit counter0 exclusively dedicated to counting cycles
* 32bit counters monitor counter-specific events in addition to counting reference events
*/
#define PMLCA(n) (0x40 + 0x10 + (0x10 * n))
#define PMLCB(n) (0x40 + 0x14 + (0x10 * n))
#define PMC(n) (0x40 + 0x18 + (0x10 * n))
/* Local control register bits */
#define PMLCA_FC BIT(31)
#define PMLCA_CE BIT(26)
#define PMLCA_EVENT GENMASK(22, 16)
#define NUM_COUNTERS 11
#define CYCLES_COUNTER 0
#define to_ddr_pmu(p) container_of(p, struct ddr_pmu, pmu)
#define DDR_PERF_DEV_NAME "imx9_ddr"
#define DDR_CPUHP_CB_NAME DDR_PERF_DEV_NAME "_perf_pmu"
static DEFINE_IDA(ddr_ida);
struct imx_ddr_devtype_data {
const char *identifier; /* system PMU identifier for userspace */
};
struct ddr_pmu {
struct pmu pmu;
void __iomem *base;
unsigned int cpu;
struct hlist_node node;
struct device *dev;
struct perf_event *events[NUM_COUNTERS];
int active_events;
enum cpuhp_state cpuhp_state;
const struct imx_ddr_devtype_data *devtype_data;
int irq;
int id;
};
static const struct imx_ddr_devtype_data imx93_devtype_data = {
.identifier = "imx93",
};
static const struct of_device_id imx_ddr_pmu_dt_ids[] = {
{.compatible = "fsl,imx93-ddr-pmu", .data = &imx93_devtype_data},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, imx_ddr_pmu_dt_ids);
static ssize_t ddr_perf_identifier_show(struct device *dev,
struct device_attribute *attr,
char *page)
{
struct ddr_pmu *pmu = dev_get_drvdata(dev);
return sysfs_emit(page, "%s\n", pmu->devtype_data->identifier);
}
static struct device_attribute ddr_perf_identifier_attr =
__ATTR(identifier, 0444, ddr_perf_identifier_show, NULL);
static struct attribute *ddr_perf_identifier_attrs[] = {
&ddr_perf_identifier_attr.attr,
NULL,
};
static struct attribute_group ddr_perf_identifier_attr_group = {
.attrs = ddr_perf_identifier_attrs,
};
static ssize_t ddr_perf_cpumask_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ddr_pmu *pmu = dev_get_drvdata(dev);
return cpumap_print_to_pagebuf(true, buf, cpumask_of(pmu->cpu));
}
static struct device_attribute ddr_perf_cpumask_attr =
__ATTR(cpumask, 0444, ddr_perf_cpumask_show, NULL);
static struct attribute *ddr_perf_cpumask_attrs[] = {
&ddr_perf_cpumask_attr.attr,
NULL,
};
static const struct attribute_group ddr_perf_cpumask_attr_group = {
.attrs = ddr_perf_cpumask_attrs,
};
static ssize_t ddr_pmu_event_show(struct device *dev,
struct device_attribute *attr, char *page)
{
struct perf_pmu_events_attr *pmu_attr;
pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
return sysfs_emit(page, "event=0x%02llx\n", pmu_attr->id);
}
#define IMX9_DDR_PMU_EVENT_ATTR(_name, _id) \
(&((struct perf_pmu_events_attr[]) { \
{ .attr = __ATTR(_name, 0444, ddr_pmu_event_show, NULL),\
.id = _id, } \
})[0].attr.attr)
static struct attribute *ddr_perf_events_attrs[] = {
/* counter0 cycles event */
IMX9_DDR_PMU_EVENT_ATTR(cycles, 0),
/* reference events for all normal counters, need assert DEBUG19[21] bit */
IMX9_DDR_PMU_EVENT_ATTR(ddrc_ddrc1_rmw_for_ecc, 12),
IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pmon_rreorder, 13),
IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pmon_wreorder, 14),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_pm_0, 15),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_pm_1, 16),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_pm_2, 17),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_pm_3, 18),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_pm_4, 19),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_pm_5, 22),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_pm_6, 23),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_pm_7, 24),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_pm_8, 25),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_pm_9, 26),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_pm_10, 27),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_pm_11, 28),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_pm_12, 31),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_pm_13, 59),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_pm_15, 61),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_pm_29, 63),
/* counter1 specific events */
IMX9_DDR_PMU_EVENT_ATTR(ddrc_ld_riq_0, 64),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_ld_riq_1, 65),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_ld_riq_2, 66),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_ld_riq_3, 67),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_ld_riq_4, 68),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_ld_riq_5, 69),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_ld_riq_6, 70),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_ld_riq_7, 71),
/* counter2 specific events */
IMX9_DDR_PMU_EVENT_ATTR(ddrc_ld_wiq_0, 64),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_ld_wiq_1, 65),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_ld_wiq_2, 66),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_ld_wiq_3, 67),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_ld_wiq_4, 68),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_ld_wiq_5, 69),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_ld_wiq_6, 70),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_ld_wiq_7, 71),
IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pmon_empty, 72),
IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pm_rd_trans_filt, 73),
/* counter3 specific events */
IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_row_collision_0, 64),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_row_collision_1, 65),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_row_collision_2, 66),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_row_collision_3, 67),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_row_collision_4, 68),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_row_collision_5, 69),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_row_collision_6, 70),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_row_collision_7, 71),
IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pmon_full, 72),
IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pm_wr_trans_filt, 73),
/* counter4 specific events */
IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_row_open_0, 64),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_row_open_1, 65),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_row_open_2, 66),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_row_open_3, 67),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_row_open_4, 68),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_row_open_5, 69),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_row_open_6, 70),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_row_open_7, 71),
IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pmon_ld_rdq2_rmw, 72),
IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pm_rd_beat_filt, 73),
/* counter5 specific events */
IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_valid_start_0, 64),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_valid_start_1, 65),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_valid_start_2, 66),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_valid_start_3, 67),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_valid_start_4, 68),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_valid_start_5, 69),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_valid_start_6, 70),
IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_valid_start_7, 71),
IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pmon_ld_rdq1, 72),
/* counter6 specific events */
IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_valid_end_0, 64),
IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pmon_ld_rdq2, 72),
/* counter7 specific events */
IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pmon_1_2_full, 64),
IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pmon_ld_wrq0, 65),
/* counter8 specific events */
IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pmon_bias_switched, 64),
IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pmon_1_4_full, 65),
/* counter9 specific events */
IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pmon_ld_wrq1, 65),
IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pmon_3_4_full, 66),
/* counter10 specific events */
IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pmon_misc_mrk, 65),
IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pmon_ld_rdq0, 66),
NULL,
};
static const struct attribute_group ddr_perf_events_attr_group = {
.name = "events",
.attrs = ddr_perf_events_attrs,
};
PMU_FORMAT_ATTR(event, "config:0-7");
PMU_FORMAT_ATTR(counter, "config:8-15");
PMU_FORMAT_ATTR(axi_id, "config1:0-17");
PMU_FORMAT_ATTR(axi_mask, "config2:0-17");
static struct attribute *ddr_perf_format_attrs[] = {
&format_attr_event.attr,
&format_attr_counter.attr,
&format_attr_axi_id.attr,
&format_attr_axi_mask.attr,
NULL,
};
static const struct attribute_group ddr_perf_format_attr_group = {
.name = "format",
.attrs = ddr_perf_format_attrs,
};
static const struct attribute_group *attr_groups[] = {
&ddr_perf_identifier_attr_group,
&ddr_perf_cpumask_attr_group,
&ddr_perf_events_attr_group,
&ddr_perf_format_attr_group,
NULL,
};
static void ddr_perf_clear_counter(struct ddr_pmu *pmu, int counter)
{
if (counter == CYCLES_COUNTER) {
writel(0, pmu->base + PMC(counter) + 0x4);
writel(0, pmu->base + PMC(counter));
} else {
writel(0, pmu->base + PMC(counter));
}
}
static u64 ddr_perf_read_counter(struct ddr_pmu *pmu, int counter)
{
u32 val_lower, val_upper;
u64 val;
if (counter != CYCLES_COUNTER) {
val = readl_relaxed(pmu->base + PMC(counter));
goto out;
}
/* special handling for reading 64bit cycle counter */
do {
val_upper = readl_relaxed(pmu->base + PMC(counter) + 0x4);
val_lower = readl_relaxed(pmu->base + PMC(counter));
} while (val_upper != readl_relaxed(pmu->base + PMC(counter) + 0x4));
val = val_upper;
val = (val << 32);
val |= val_lower;
out:
return val;
}
static void ddr_perf_counter_global_config(struct ddr_pmu *pmu, bool enable)
{
u32 ctrl;
ctrl = readl_relaxed(pmu->base + PMGC0);
if (enable) {
/*
* The performance monitor must be reset before event counting
* sequences. The performance monitor can be reset by first freezing
* one or more counters and then clearing the freeze condition to
* allow the counters to count according to the settings in the
* performance monitor registers. Counters can be frozen individually
* by setting PMLCAn[FC] bits, or simultaneously by setting PMGC0[FAC].
* Simply clearing these freeze bits will then allow the performance
* monitor to begin counting based on the register settings.
*/
ctrl |= PMGC0_FAC;
writel(ctrl, pmu->base + PMGC0);
/*
* Freeze all counters disabled, interrupt enabled, and freeze
* counters on condition enabled.
*/
ctrl &= ~PMGC0_FAC;
ctrl |= PMGC0_PMIE | PMGC0_FCECE;
writel(ctrl, pmu->base + PMGC0);
} else {
ctrl |= PMGC0_FAC;
ctrl &= ~(PMGC0_PMIE | PMGC0_FCECE);
writel(ctrl, pmu->base + PMGC0);
}
}
static void ddr_perf_counter_local_config(struct ddr_pmu *pmu, int config,
int counter, bool enable)
{
u32 ctrl_a;
ctrl_a = readl_relaxed(pmu->base + PMLCA(counter));
if (enable) {
ctrl_a |= PMLCA_FC;
writel(ctrl_a, pmu->base + PMLCA(counter));
ddr_perf_clear_counter(pmu, counter);
/* Freeze counter disabled, condition enabled, and program event.*/
ctrl_a &= ~PMLCA_FC;
ctrl_a |= PMLCA_CE;
ctrl_a &= ~FIELD_PREP(PMLCA_EVENT, 0x7F);
ctrl_a |= FIELD_PREP(PMLCA_EVENT, (config & 0x000000FF));
writel(ctrl_a, pmu->base + PMLCA(counter));
} else {
/* Freeze counter. */
ctrl_a |= PMLCA_FC;
writel(ctrl_a, pmu->base + PMLCA(counter));
}
}
static void ddr_perf_monitor_config(struct ddr_pmu *pmu, int cfg, int cfg1, int cfg2)
{
u32 pmcfg1, pmcfg2;
int event, counter;
event = cfg & 0x000000FF;
counter = (cfg & 0x0000FF00) >> 8;
pmcfg1 = readl_relaxed(pmu->base + PMCFG1);
if (counter == 2 && event == 73)
pmcfg1 |= PMCFG1_RD_TRANS_FILT_EN;
else if (counter == 2 && event != 73)
pmcfg1 &= ~PMCFG1_RD_TRANS_FILT_EN;
if (counter == 3 && event == 73)
pmcfg1 |= PMCFG1_WR_TRANS_FILT_EN;
else if (counter == 3 && event != 73)
pmcfg1 &= ~PMCFG1_WR_TRANS_FILT_EN;
if (counter == 4 && event == 73)
pmcfg1 |= PMCFG1_RD_BT_FILT_EN;
else if (counter == 4 && event != 73)
pmcfg1 &= ~PMCFG1_RD_BT_FILT_EN;
pmcfg1 &= ~FIELD_PREP(PMCFG1_ID_MASK, 0x3FFFF);
pmcfg1 |= FIELD_PREP(PMCFG1_ID_MASK, cfg2);
writel(pmcfg1, pmu->base + PMCFG1);
pmcfg2 = readl_relaxed(pmu->base + PMCFG2);
pmcfg2 &= ~FIELD_PREP(PMCFG2_ID, 0x3FFFF);
pmcfg2 |= FIELD_PREP(PMCFG2_ID, cfg1);
writel(pmcfg2, pmu->base + PMCFG2);
}
static void ddr_perf_event_update(struct perf_event *event)
{
struct ddr_pmu *pmu = to_ddr_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
int counter = hwc->idx;
u64 new_raw_count;
new_raw_count = ddr_perf_read_counter(pmu, counter);
local64_add(new_raw_count, &event->count);
/* clear counter's value every time */
ddr_perf_clear_counter(pmu, counter);
}
static int ddr_perf_event_init(struct perf_event *event)
{
struct ddr_pmu *pmu = to_ddr_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
struct perf_event *sibling;
if (event->attr.type != event->pmu->type)
return -ENOENT;
if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK)
return -EOPNOTSUPP;
if (event->cpu < 0) {
dev_warn(pmu->dev, "Can't provide per-task data!\n");
return -EOPNOTSUPP;
}
/*
* We must NOT create groups containing mixed PMUs, although software
* events are acceptable (for example to create a CCN group
* periodically read when a hrtimer aka cpu-clock leader triggers).
*/
if (event->group_leader->pmu != event->pmu &&
!is_software_event(event->group_leader))
return -EINVAL;
for_each_sibling_event(sibling, event->group_leader) {
if (sibling->pmu != event->pmu &&
!is_software_event(sibling))
return -EINVAL;
}
event->cpu = pmu->cpu;
hwc->idx = -1;
return 0;
}
static void ddr_perf_event_start(struct perf_event *event, int flags)
{
struct ddr_pmu *pmu = to_ddr_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
int counter = hwc->idx;
local64_set(&hwc->prev_count, 0);
ddr_perf_counter_local_config(pmu, event->attr.config, counter, true);
hwc->state = 0;
}
static int ddr_perf_event_add(struct perf_event *event, int flags)
{
struct ddr_pmu *pmu = to_ddr_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
int cfg = event->attr.config;
int cfg1 = event->attr.config1;
int cfg2 = event->attr.config2;
int counter;
counter = (cfg & 0x0000FF00) >> 8;
pmu->events[counter] = event;
pmu->active_events++;
hwc->idx = counter;
hwc->state |= PERF_HES_STOPPED;
if (flags & PERF_EF_START)
ddr_perf_event_start(event, flags);
/* read trans, write trans, read beat */
ddr_perf_monitor_config(pmu, cfg, cfg1, cfg2);
return 0;
}
static void ddr_perf_event_stop(struct perf_event *event, int flags)
{
struct ddr_pmu *pmu = to_ddr_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
int counter = hwc->idx;
ddr_perf_counter_local_config(pmu, event->attr.config, counter, false);
ddr_perf_event_update(event);
hwc->state |= PERF_HES_STOPPED;
}
static void ddr_perf_event_del(struct perf_event *event, int flags)
{
struct ddr_pmu *pmu = to_ddr_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
ddr_perf_event_stop(event, PERF_EF_UPDATE);
pmu->active_events--;
hwc->idx = -1;
}
static void ddr_perf_pmu_enable(struct pmu *pmu)
{
struct ddr_pmu *ddr_pmu = to_ddr_pmu(pmu);
ddr_perf_counter_global_config(ddr_pmu, true);
}
static void ddr_perf_pmu_disable(struct pmu *pmu)
{
struct ddr_pmu *ddr_pmu = to_ddr_pmu(pmu);
ddr_perf_counter_global_config(ddr_pmu, false);
}
static void ddr_perf_init(struct ddr_pmu *pmu, void __iomem *base,
struct device *dev)
{
*pmu = (struct ddr_pmu) {
.pmu = (struct pmu) {
.module = THIS_MODULE,
.capabilities = PERF_PMU_CAP_NO_EXCLUDE,
.task_ctx_nr = perf_invalid_context,
.attr_groups = attr_groups,
.event_init = ddr_perf_event_init,
.add = ddr_perf_event_add,
.del = ddr_perf_event_del,
.start = ddr_perf_event_start,
.stop = ddr_perf_event_stop,
.read = ddr_perf_event_update,
.pmu_enable = ddr_perf_pmu_enable,
.pmu_disable = ddr_perf_pmu_disable,
},
.base = base,
.dev = dev,
};
}
static irqreturn_t ddr_perf_irq_handler(int irq, void *p)
{
struct ddr_pmu *pmu = (struct ddr_pmu *)p;
struct perf_event *event;
int i;
/*
* Counters can generate an interrupt on an overflow when msb of a
* counter changes from 0 to 1. For the interrupt to be signalled,
* below condition mush be satisfied:
* PMGC0[PMIE] = 1, PMGC0[FCECE] = 1, PMLCAn[CE] = 1
* When an interrupt is signalled, PMGC0[FAC] is set by hardware and
* all of the registers are frozen.
* Software can clear the interrupt condition by resetting the performance
* monitor and clearing the most significant bit of the counter that
* generate the overflow.
*/
for (i = 0; i < NUM_COUNTERS; i++) {
if (!pmu->events[i])
continue;
event = pmu->events[i];
ddr_perf_event_update(event);
}
ddr_perf_counter_global_config(pmu, true);
return IRQ_HANDLED;
}
static int ddr_perf_offline_cpu(unsigned int cpu, struct hlist_node *node)
{
struct ddr_pmu *pmu = hlist_entry_safe(node, struct ddr_pmu, node);
int target;
if (cpu != pmu->cpu)
return 0;
target = cpumask_any_but(cpu_online_mask, cpu);
if (target >= nr_cpu_ids)
return 0;
perf_pmu_migrate_context(&pmu->pmu, cpu, target);
pmu->cpu = target;
WARN_ON(irq_set_affinity(pmu->irq, cpumask_of(pmu->cpu)));
return 0;
}
static int ddr_perf_probe(struct platform_device *pdev)
{
struct ddr_pmu *pmu;
void __iomem *base;
int ret, irq;
char *name;
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
pmu = devm_kzalloc(&pdev->dev, sizeof(*pmu), GFP_KERNEL);
if (!pmu)
return -ENOMEM;
ddr_perf_init(pmu, base, &pdev->dev);
pmu->devtype_data = of_device_get_match_data(&pdev->dev);
platform_set_drvdata(pdev, pmu);
pmu->id = ida_alloc(&ddr_ida, GFP_KERNEL);
name = devm_kasprintf(&pdev->dev, GFP_KERNEL, DDR_PERF_DEV_NAME "%d", pmu->id);
if (!name) {
ret = -ENOMEM;
goto format_string_err;
}
pmu->cpu = raw_smp_processor_id();
ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DDR_CPUHP_CB_NAME,
NULL, ddr_perf_offline_cpu);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to add callbacks for multi state\n");
goto cpuhp_state_err;
}
pmu->cpuhp_state = ret;
/* Register the pmu instance for cpu hotplug */
ret = cpuhp_state_add_instance_nocalls(pmu->cpuhp_state, &pmu->node);
if (ret) {
dev_err(&pdev->dev, "Error %d registering hotplug\n", ret);
goto cpuhp_instance_err;
}
/* Request irq */
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
ret = irq;
goto ddr_perf_err;
}
ret = devm_request_irq(&pdev->dev, irq, ddr_perf_irq_handler,
IRQF_NOBALANCING | IRQF_NO_THREAD,
DDR_CPUHP_CB_NAME, pmu);
if (ret < 0) {
dev_err(&pdev->dev, "Request irq failed: %d", ret);
goto ddr_perf_err;
}
pmu->irq = irq;
ret = irq_set_affinity(pmu->irq, cpumask_of(pmu->cpu));
if (ret) {
dev_err(pmu->dev, "Failed to set interrupt affinity\n");
goto ddr_perf_err;
}
ret = perf_pmu_register(&pmu->pmu, name, -1);
if (ret)
goto ddr_perf_err;
return 0;
ddr_perf_err:
cpuhp_state_remove_instance_nocalls(pmu->cpuhp_state, &pmu->node);
cpuhp_instance_err:
cpuhp_remove_multi_state(pmu->cpuhp_state);
cpuhp_state_err:
format_string_err:
ida_free(&ddr_ida, pmu->id);
dev_warn(&pdev->dev, "i.MX9 DDR Perf PMU failed (%d), disabled\n", ret);
return ret;
}
static int ddr_perf_remove(struct platform_device *pdev)
{
struct ddr_pmu *pmu = platform_get_drvdata(pdev);
cpuhp_state_remove_instance_nocalls(pmu->cpuhp_state, &pmu->node);
cpuhp_remove_multi_state(pmu->cpuhp_state);
perf_pmu_unregister(&pmu->pmu);
ida_free(&ddr_ida, pmu->id);
return 0;
}
static struct platform_driver imx_ddr_pmu_driver = {
.driver = {
.name = "imx9-ddr-pmu",
.of_match_table = imx_ddr_pmu_dt_ids,
.suppress_bind_attrs = true,
},
.probe = ddr_perf_probe,
.remove = ddr_perf_remove,
};
module_platform_driver(imx_ddr_pmu_driver);
MODULE_AUTHOR("Xu Yang <xu.yang_2@nxp.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("DDRC PerfMon for i.MX9 SoCs");