Sarah Sharp 72937e1e34 USB: Set wakeup bits for all children hubs.
This patch takes care of the race condition between the Function Wake
Device Notification and the auto-suspend timeout for this situation:

Roothub
  | (U3)
hub A
  | (U3)
hub B
  | (U3)
device C

When device C signals a resume, the xHCI driver will set the wakeup_bits
for the roothub port that hub A is attached to.  However, since USB 3.0
hubs do not set a link state change bit on device-initiated resume, hub
A will not indicate a port event when polled.  Without this patch, khubd
will notice the wakeup-bits are set for the roothub port, it will resume
hub A, and then it will poll the events bits for hub A and notice that
nothing has changed.  Then it will be suspended after 2 seconds.

Change hub_activate() to look at the port link state for each USB 3.0
hub port, and set hub->change_bits if the link state is U0, indicating
the device has finished resume.  Change the resume function called by
hub_events(), hub_handle_remote_wakeup(), to check the link status
for resume instead of just the port's wakeup_bits.

Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
2012-02-14 12:12:27 -08:00
..
2012-01-24 12:08:36 -08:00
2012-02-03 09:29:13 +02:00
2012-02-02 12:46:35 -08:00
2012-01-26 11:22:42 -08:00
2011-11-26 19:58:47 -08:00

To understand all the Linux-USB framework, you'll use these resources:

    * This source code.  This is necessarily an evolving work, and
      includes kerneldoc that should help you get a current overview.
      ("make pdfdocs", and then look at "usb.pdf" for host side and
      "gadget.pdf" for peripheral side.)  Also, Documentation/usb has
      more information.

    * The USB 2.0 specification (from www.usb.org), with supplements
      such as those for USB OTG and the various device classes.
      The USB specification has a good overview chapter, and USB
      peripherals conform to the widely known "Chapter 9".

    * Chip specifications for USB controllers.  Examples include
      host controllers (on PCs, servers, and more); peripheral
      controllers (in devices with Linux firmware, like printers or
      cell phones); and hard-wired peripherals like Ethernet adapters.

    * Specifications for other protocols implemented by USB peripheral
      functions.  Some are vendor-specific; others are vendor-neutral
      but just standardized outside of the www.usb.org team.

Here is a list of what each subdirectory here is, and what is contained in
them.

core/		- This is for the core USB host code, including the
		  usbfs files and the hub class driver ("khubd").

host/		- This is for USB host controller drivers.  This
		  includes UHCI, OHCI, EHCI, and others that might
		  be used with more specialized "embedded" systems.

gadget/		- This is for USB peripheral controller drivers and
		  the various gadget drivers which talk to them.


Individual USB driver directories.  A new driver should be added to the
first subdirectory in the list below that it fits into.

image/		- This is for still image drivers, like scanners or
		  digital cameras.
../input/	- This is for any driver that uses the input subsystem,
		  like keyboard, mice, touchscreens, tablets, etc.
../media/	- This is for multimedia drivers, like video cameras,
		  radios, and any other drivers that talk to the v4l
		  subsystem.
../net/		- This is for network drivers.
serial/		- This is for USB to serial drivers.
storage/	- This is for USB mass-storage drivers.
class/		- This is for all USB device drivers that do not fit
		  into any of the above categories, and work for a range
		  of USB Class specified devices. 
misc/		- This is for all USB device drivers that do not fit
		  into any of the above categories.