Shuo Liu
72f293de3f
virt: acrn: Introduce I/O request management
An I/O request of a User VM, which is constructed by the hypervisor, is distributed by the ACRN Hypervisor Service Module to an I/O client corresponding to the address range of the I/O request. For each User VM, there is a shared 4-KByte memory region used for I/O requests communication between the hypervisor and Service VM. An I/O request is a 256-byte structure buffer, which is 'struct acrn_io_request', that is filled by an I/O handler of the hypervisor when a trapped I/O access happens in a User VM. ACRN userspace in the Service VM first allocates a 4-KByte page and passes the GPA (Guest Physical Address) of the buffer to the hypervisor. The buffer is used as an array of 16 I/O request slots with each I/O request slot being 256 bytes. This array is indexed by vCPU ID. An I/O client, which is 'struct acrn_ioreq_client', is responsible for handling User VM I/O requests whose accessed GPA falls in a certain range. Multiple I/O clients can be associated with each User VM. There is a special client associated with each User VM, called the default client, that handles all I/O requests that do not fit into the range of any other I/O clients. The ACRN userspace acts as the default client for each User VM. The state transitions of a ACRN I/O request are as follows. FREE -> PENDING -> PROCESSING -> COMPLETE -> FREE -> ... FREE: this I/O request slot is empty PENDING: a valid I/O request is pending in this slot PROCESSING: the I/O request is being processed COMPLETE: the I/O request has been processed An I/O request in COMPLETE or FREE state is owned by the hypervisor. HSM and ACRN userspace are in charge of processing the others. The processing flow of I/O requests are listed as following: a) The I/O handler of the hypervisor will fill an I/O request with PENDING state when a trapped I/O access happens in a User VM. b) The hypervisor makes an upcall, which is a notification interrupt, to the Service VM. c) The upcall handler schedules a worker to dispatch I/O requests. d) The worker looks for the PENDING I/O requests, assigns them to different registered clients based on the address of the I/O accesses, updates their state to PROCESSING, and notifies the corresponding client to handle. e) The notified client handles the assigned I/O requests. f) The HSM updates I/O requests states to COMPLETE and notifies the hypervisor of the completion via hypercalls. Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Zhi Wang <zhi.a.wang@intel.com> Cc: Zhenyu Wang <zhenyuw@linux.intel.com> Cc: Yu Wang <yu1.wang@intel.com> Cc: Reinette Chatre <reinette.chatre@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Zhi Wang <zhi.a.wang@intel.com> Reviewed-by: Reinette Chatre <reinette.chatre@intel.com> Acked-by: Davidlohr Bueso <dbueso@suse.de> Signed-off-by: Shuo Liu <shuo.a.liu@intel.com> Link: https://lore.kernel.org/r/20210207031040.49576-10-shuo.a.liu@intel.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Linux kernel ============ There are several guides for kernel developers and users. These guides can be rendered in a number of formats, like HTML and PDF. Please read Documentation/admin-guide/README.rst first. In order to build the documentation, use ``make htmldocs`` or ``make pdfdocs``. The formatted documentation can also be read online at: https://www.kernel.org/doc/html/latest/ There are various text files in the Documentation/ subdirectory, several of them using the Restructured Text markup notation. Please read the Documentation/process/changes.rst file, as it contains the requirements for building and running the kernel, and information about the problems which may result by upgrading your kernel.
Description
Languages
C
97.6%
Assembly
1%
Shell
0.5%
Python
0.3%
Makefile
0.3%