97ceddbc94
During unwinding, unwind_done() is used as an end condition. Normally it unwind to the user stack and then set the stack type to unknown, which is a normal exit. When something unexpected happens in unwind process and we cannot unwind anymore, we should set the error flag, and also set the stack type to unknown to indicate that the unwind process can not continue. The error flag emphasizes that the unwind process produce an unexpected error. There is no unexpected things when we unwind the PT_REGS in the top of IRQ stack and find out that is an user mode PT_REGS. Thus, we should not set error flag and just set stack type to unknown. Reported-by: Hengqi Chen <hengqi.chen@gmail.com> Acked-by: Hengqi Chen <hengqi.chen@gmail.com> Signed-off-by: Jinyang He <hejinyang@loongson.cn> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
266 lines
6.1 KiB
C
266 lines
6.1 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2022 Loongson Technology Corporation Limited
|
|
*/
|
|
#include <linux/cpumask.h>
|
|
#include <linux/ftrace.h>
|
|
#include <linux/kallsyms.h>
|
|
|
|
#include <asm/inst.h>
|
|
#include <asm/loongson.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/unwind.h>
|
|
|
|
extern const int unwind_hint_ade;
|
|
extern const int unwind_hint_ale;
|
|
extern const int unwind_hint_bp;
|
|
extern const int unwind_hint_fpe;
|
|
extern const int unwind_hint_fpu;
|
|
extern const int unwind_hint_lsx;
|
|
extern const int unwind_hint_lasx;
|
|
extern const int unwind_hint_lbt;
|
|
extern const int unwind_hint_ri;
|
|
extern const int unwind_hint_watch;
|
|
extern unsigned long eentry;
|
|
#ifdef CONFIG_NUMA
|
|
extern unsigned long pcpu_handlers[NR_CPUS];
|
|
#endif
|
|
|
|
static inline bool scan_handlers(unsigned long entry_offset)
|
|
{
|
|
int idx, offset;
|
|
|
|
if (entry_offset >= EXCCODE_INT_START * VECSIZE)
|
|
return false;
|
|
|
|
idx = entry_offset / VECSIZE;
|
|
offset = entry_offset % VECSIZE;
|
|
switch (idx) {
|
|
case EXCCODE_ADE:
|
|
return offset == unwind_hint_ade;
|
|
case EXCCODE_ALE:
|
|
return offset == unwind_hint_ale;
|
|
case EXCCODE_BP:
|
|
return offset == unwind_hint_bp;
|
|
case EXCCODE_FPE:
|
|
return offset == unwind_hint_fpe;
|
|
case EXCCODE_FPDIS:
|
|
return offset == unwind_hint_fpu;
|
|
case EXCCODE_LSXDIS:
|
|
return offset == unwind_hint_lsx;
|
|
case EXCCODE_LASXDIS:
|
|
return offset == unwind_hint_lasx;
|
|
case EXCCODE_BTDIS:
|
|
return offset == unwind_hint_lbt;
|
|
case EXCCODE_INE:
|
|
return offset == unwind_hint_ri;
|
|
case EXCCODE_WATCH:
|
|
return offset == unwind_hint_watch;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static inline bool fix_exception(unsigned long pc)
|
|
{
|
|
#ifdef CONFIG_NUMA
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
if (!pcpu_handlers[cpu])
|
|
continue;
|
|
if (scan_handlers(pc - pcpu_handlers[cpu]))
|
|
return true;
|
|
}
|
|
#endif
|
|
return scan_handlers(pc - eentry);
|
|
}
|
|
|
|
/*
|
|
* As we meet ftrace_regs_entry, reset first flag like first doing
|
|
* tracing. Prologue analysis will stop soon because PC is at entry.
|
|
*/
|
|
static inline bool fix_ftrace(unsigned long pc)
|
|
{
|
|
#ifdef CONFIG_DYNAMIC_FTRACE
|
|
return pc == (unsigned long)ftrace_call + LOONGARCH_INSN_SIZE;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
static inline bool unwind_state_fixup(struct unwind_state *state)
|
|
{
|
|
if (!fix_exception(state->pc) && !fix_ftrace(state->pc))
|
|
return false;
|
|
|
|
state->reset = true;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* LoongArch function prologue is like follows,
|
|
* [instructions not use stack var]
|
|
* addi.d sp, sp, -imm
|
|
* st.d xx, sp, offset <- save callee saved regs and
|
|
* st.d yy, sp, offset save ra if function is nest.
|
|
* [others instructions]
|
|
*/
|
|
static bool unwind_by_prologue(struct unwind_state *state)
|
|
{
|
|
long frame_ra = -1;
|
|
unsigned long frame_size = 0;
|
|
unsigned long size, offset, pc;
|
|
struct pt_regs *regs;
|
|
struct stack_info *info = &state->stack_info;
|
|
union loongarch_instruction *ip, *ip_end;
|
|
|
|
if (state->sp >= info->end || state->sp < info->begin)
|
|
return false;
|
|
|
|
if (state->reset) {
|
|
regs = (struct pt_regs *)state->sp;
|
|
state->first = true;
|
|
state->reset = false;
|
|
state->pc = regs->csr_era;
|
|
state->ra = regs->regs[1];
|
|
state->sp = regs->regs[3];
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* When first is not set, the PC is a return address in the previous frame.
|
|
* We need to adjust its value in case overflow to the next symbol.
|
|
*/
|
|
pc = state->pc - (state->first ? 0 : LOONGARCH_INSN_SIZE);
|
|
if (!kallsyms_lookup_size_offset(pc, &size, &offset))
|
|
return false;
|
|
|
|
ip = (union loongarch_instruction *)(pc - offset);
|
|
ip_end = (union loongarch_instruction *)pc;
|
|
|
|
while (ip < ip_end) {
|
|
if (is_stack_alloc_ins(ip)) {
|
|
frame_size = (1 << 12) - ip->reg2i12_format.immediate;
|
|
ip++;
|
|
break;
|
|
}
|
|
ip++;
|
|
}
|
|
|
|
/*
|
|
* Can't find stack alloc action, PC may be in a leaf function. Only the
|
|
* first being true is reasonable, otherwise indicate analysis is broken.
|
|
*/
|
|
if (!frame_size) {
|
|
if (state->first)
|
|
goto first;
|
|
|
|
return false;
|
|
}
|
|
|
|
while (ip < ip_end) {
|
|
if (is_ra_save_ins(ip)) {
|
|
frame_ra = ip->reg2i12_format.immediate;
|
|
break;
|
|
}
|
|
if (is_branch_ins(ip))
|
|
break;
|
|
ip++;
|
|
}
|
|
|
|
/* Can't find save $ra action, PC may be in a leaf function, too. */
|
|
if (frame_ra < 0) {
|
|
if (state->first) {
|
|
state->sp = state->sp + frame_size;
|
|
goto first;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
state->pc = *(unsigned long *)(state->sp + frame_ra);
|
|
state->sp = state->sp + frame_size;
|
|
goto out;
|
|
|
|
first:
|
|
state->pc = state->ra;
|
|
|
|
out:
|
|
state->first = false;
|
|
return unwind_state_fixup(state) || __kernel_text_address(state->pc);
|
|
}
|
|
|
|
static bool next_frame(struct unwind_state *state)
|
|
{
|
|
unsigned long pc;
|
|
struct pt_regs *regs;
|
|
struct stack_info *info = &state->stack_info;
|
|
|
|
if (unwind_done(state))
|
|
return false;
|
|
|
|
do {
|
|
if (unwind_by_prologue(state)) {
|
|
state->pc = unwind_graph_addr(state, state->pc, state->sp);
|
|
return true;
|
|
}
|
|
|
|
if (info->type == STACK_TYPE_IRQ && info->end == state->sp) {
|
|
regs = (struct pt_regs *)info->next_sp;
|
|
pc = regs->csr_era;
|
|
|
|
if (user_mode(regs) || !__kernel_text_address(pc))
|
|
goto out;
|
|
|
|
state->first = true;
|
|
state->pc = pc;
|
|
state->ra = regs->regs[1];
|
|
state->sp = regs->regs[3];
|
|
get_stack_info(state->sp, state->task, info);
|
|
|
|
return true;
|
|
}
|
|
|
|
state->sp = info->next_sp;
|
|
|
|
} while (!get_stack_info(state->sp, state->task, info));
|
|
|
|
out:
|
|
state->stack_info.type = STACK_TYPE_UNKNOWN;
|
|
return false;
|
|
}
|
|
|
|
unsigned long unwind_get_return_address(struct unwind_state *state)
|
|
{
|
|
return __unwind_get_return_address(state);
|
|
}
|
|
EXPORT_SYMBOL_GPL(unwind_get_return_address);
|
|
|
|
void unwind_start(struct unwind_state *state, struct task_struct *task,
|
|
struct pt_regs *regs)
|
|
{
|
|
__unwind_start(state, task, regs);
|
|
state->type = UNWINDER_PROLOGUE;
|
|
state->first = true;
|
|
|
|
/*
|
|
* The current PC is not kernel text address, we cannot find its
|
|
* relative symbol. Thus, prologue analysis will be broken. Luckily,
|
|
* we can use the default_next_frame().
|
|
*/
|
|
if (!__kernel_text_address(state->pc)) {
|
|
state->type = UNWINDER_GUESS;
|
|
if (!unwind_done(state))
|
|
unwind_next_frame(state);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(unwind_start);
|
|
|
|
bool unwind_next_frame(struct unwind_state *state)
|
|
{
|
|
return state->type == UNWINDER_PROLOGUE ?
|
|
next_frame(state) : default_next_frame(state);
|
|
}
|
|
EXPORT_SYMBOL_GPL(unwind_next_frame);
|