731a927438
The LP1 suspend mode will power off the CPU, clock gated the PLLs and put SDRAM to self-refresh mode. Any interrupt can wake up device from LP1. The sequence when LP1 suspending: * tunning off L1 data cache and the MMU * putting SDRAM into self-refresh * storing some EMC registers and SCLK burst policy * switching CPU to CLK_M (12MHz OSC) * switching SCLK to CLK_S (32KHz OSC) * tunning off PLLM, PLLP and PLLC * shutting off the CPU rail The sequence of LP1 resuming: * re-enabling PLLM, PLLP, and PLLC * restoring some EMC registers and SCLK burst policy * setting up CCLK burst policy to PLLP * resuming SDRAM to normal mode * jumping to the "tegra_resume" from PMC_SCRATCH41 Due to the SDRAM will be put into self-refresh mode, the low level procedures of LP1 suspending and resuming should be copied to TEGRA_IRAM_CODE_AREA (TEGRA_IRAM_BASE + SZ_4K) when suspending. Before restoring the CPU context when resuming, the SDRAM needs to be switched back to normal mode. And the PLLs need to be re-enabled, SCLK burst policy be restored, CCLK burst policy be set in PLLP. Then jumping to "tegra_resume" that was expected to be stored in PMC_SCRATCH41 to restore CPU context and back to kernel. Based on the work by: Colin Cross <ccross@android.com> Gary King <gking@nvidia.com> Signed-off-by: Joseph Lo <josephl@nvidia.com> Signed-off-by: Stephen Warren <swarren@nvidia.com> |
||
---|---|---|
.. | ||
alpha | ||
arc | ||
arm | ||
arm64 | ||
avr32 | ||
blackfin | ||
c6x | ||
cris | ||
frv | ||
h8300 | ||
hexagon | ||
ia64 | ||
m32r | ||
m68k | ||
metag | ||
microblaze | ||
mips | ||
mn10300 | ||
openrisc | ||
parisc | ||
powerpc | ||
s390 | ||
score | ||
sh | ||
sparc | ||
tile | ||
um | ||
unicore32 | ||
x86 | ||
xtensa | ||
.gitignore | ||
Kconfig |