b291fdcf51
Extend the rcar_du_device_info structure and rcar_du_output enum to support DSI outputs and utilise these additions to provide support for the R8A779A0 V3U platform. Signed-off-by: Kieran Bingham <kieran.bingham+renesas@ideasonboard.com> Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
366 lines
11 KiB
C
366 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* rcar_du_group.c -- R-Car Display Unit Channels Pair
|
|
*
|
|
* Copyright (C) 2013-2015 Renesas Electronics Corporation
|
|
*
|
|
* Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
|
|
*/
|
|
|
|
/*
|
|
* The R8A7779 DU is split in per-CRTC resources (scan-out engine, blending
|
|
* unit, timings generator, ...) and device-global resources (start/stop
|
|
* control, planes, ...) shared between the two CRTCs.
|
|
*
|
|
* The R8A7790 introduced a third CRTC with its own set of global resources.
|
|
* This would be modeled as two separate DU device instances if it wasn't for
|
|
* a handful or resources that are shared between the three CRTCs (mostly
|
|
* related to input and output routing). For this reason the R8A7790 DU must be
|
|
* modeled as a single device with three CRTCs, two sets of "semi-global"
|
|
* resources, and a few device-global resources.
|
|
*
|
|
* The rcar_du_group object is a driver specific object, without any real
|
|
* counterpart in the DU documentation, that models those semi-global resources.
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/io.h>
|
|
|
|
#include "rcar_du_drv.h"
|
|
#include "rcar_du_group.h"
|
|
#include "rcar_du_regs.h"
|
|
|
|
u32 rcar_du_group_read(struct rcar_du_group *rgrp, u32 reg)
|
|
{
|
|
return rcar_du_read(rgrp->dev, rgrp->mmio_offset + reg);
|
|
}
|
|
|
|
void rcar_du_group_write(struct rcar_du_group *rgrp, u32 reg, u32 data)
|
|
{
|
|
rcar_du_write(rgrp->dev, rgrp->mmio_offset + reg, data);
|
|
}
|
|
|
|
static void rcar_du_group_setup_pins(struct rcar_du_group *rgrp)
|
|
{
|
|
u32 defr6 = DEFR6_CODE;
|
|
|
|
if (rgrp->channels_mask & BIT(0))
|
|
defr6 |= DEFR6_ODPM02_DISP;
|
|
|
|
if (rgrp->channels_mask & BIT(1))
|
|
defr6 |= DEFR6_ODPM12_DISP;
|
|
|
|
rcar_du_group_write(rgrp, DEFR6, defr6);
|
|
}
|
|
|
|
static void rcar_du_group_setup_defr8(struct rcar_du_group *rgrp)
|
|
{
|
|
struct rcar_du_device *rcdu = rgrp->dev;
|
|
u32 defr8 = DEFR8_CODE;
|
|
|
|
if (rcdu->info->gen < 3) {
|
|
defr8 |= DEFR8_DEFE8;
|
|
|
|
/*
|
|
* On Gen2 the DEFR8 register for the first group also controls
|
|
* RGB output routing to DPAD0 and VSPD1 routing to DU0/1/2 for
|
|
* DU instances that support it.
|
|
*/
|
|
if (rgrp->index == 0) {
|
|
defr8 |= DEFR8_DRGBS_DU(rcdu->dpad0_source);
|
|
if (rgrp->dev->vspd1_sink == 2)
|
|
defr8 |= DEFR8_VSCS;
|
|
}
|
|
} else {
|
|
/*
|
|
* On Gen3 VSPD routing can't be configured, and DPAD routing
|
|
* is set in the group corresponding to the DPAD output (no Gen3
|
|
* SoC has multiple DPAD sources belonging to separate groups).
|
|
*/
|
|
if (rgrp->index == rcdu->dpad0_source / 2)
|
|
defr8 |= DEFR8_DRGBS_DU(rcdu->dpad0_source);
|
|
}
|
|
|
|
rcar_du_group_write(rgrp, DEFR8, defr8);
|
|
}
|
|
|
|
static void rcar_du_group_setup_didsr(struct rcar_du_group *rgrp)
|
|
{
|
|
struct rcar_du_device *rcdu = rgrp->dev;
|
|
struct rcar_du_crtc *rcrtc;
|
|
unsigned int num_crtcs = 0;
|
|
unsigned int i;
|
|
u32 didsr;
|
|
|
|
/*
|
|
* Configure input dot clock routing with a hardcoded configuration. If
|
|
* the DU channel can use the LVDS encoder output clock as the dot
|
|
* clock, do so. Otherwise route DU_DOTCLKINn signal to DUn.
|
|
*
|
|
* Each channel can then select between the dot clock configured here
|
|
* and the clock provided by the CPG through the ESCR register.
|
|
*/
|
|
if (rcdu->info->gen < 3 && rgrp->index == 0) {
|
|
/*
|
|
* On Gen2 a single register in the first group controls dot
|
|
* clock selection for all channels.
|
|
*/
|
|
rcrtc = rcdu->crtcs;
|
|
num_crtcs = rcdu->num_crtcs;
|
|
} else if (rcdu->info->gen == 3 && rgrp->num_crtcs > 1) {
|
|
/*
|
|
* On Gen3 dot clocks are setup through per-group registers,
|
|
* only available when the group has two channels.
|
|
*/
|
|
rcrtc = &rcdu->crtcs[rgrp->index * 2];
|
|
num_crtcs = rgrp->num_crtcs;
|
|
}
|
|
|
|
if (!num_crtcs)
|
|
return;
|
|
|
|
didsr = DIDSR_CODE;
|
|
for (i = 0; i < num_crtcs; ++i, ++rcrtc) {
|
|
if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index))
|
|
didsr |= DIDSR_LDCS_LVDS0(i)
|
|
| DIDSR_PDCS_CLK(i, 0);
|
|
else if (rcdu->info->dsi_clk_mask & BIT(rcrtc->index))
|
|
didsr |= DIDSR_LDCS_DSI(i);
|
|
else
|
|
didsr |= DIDSR_LDCS_DCLKIN(i)
|
|
| DIDSR_PDCS_CLK(i, 0);
|
|
}
|
|
|
|
rcar_du_group_write(rgrp, DIDSR, didsr);
|
|
}
|
|
|
|
static void rcar_du_group_setup(struct rcar_du_group *rgrp)
|
|
{
|
|
struct rcar_du_device *rcdu = rgrp->dev;
|
|
u32 defr7 = DEFR7_CODE;
|
|
|
|
/* Enable extended features */
|
|
rcar_du_group_write(rgrp, DEFR, DEFR_CODE | DEFR_DEFE);
|
|
if (rcdu->info->gen < 3) {
|
|
rcar_du_group_write(rgrp, DEFR2, DEFR2_CODE | DEFR2_DEFE2G);
|
|
rcar_du_group_write(rgrp, DEFR3, DEFR3_CODE | DEFR3_DEFE3);
|
|
rcar_du_group_write(rgrp, DEFR4, DEFR4_CODE);
|
|
}
|
|
rcar_du_group_write(rgrp, DEFR5, DEFR5_CODE | DEFR5_DEFE5);
|
|
|
|
rcar_du_group_setup_pins(rgrp);
|
|
|
|
/*
|
|
* TODO: Handle routing of the DU output to CMM dynamically, as we
|
|
* should bypass CMM completely when no color management feature is
|
|
* used.
|
|
*/
|
|
defr7 |= (rgrp->cmms_mask & BIT(1) ? DEFR7_CMME1 : 0) |
|
|
(rgrp->cmms_mask & BIT(0) ? DEFR7_CMME0 : 0);
|
|
rcar_du_group_write(rgrp, DEFR7, defr7);
|
|
|
|
if (rcdu->info->gen >= 2) {
|
|
rcar_du_group_setup_defr8(rgrp);
|
|
rcar_du_group_setup_didsr(rgrp);
|
|
}
|
|
|
|
if (rcdu->info->gen >= 3)
|
|
rcar_du_group_write(rgrp, DEFR10, DEFR10_CODE | DEFR10_DEFE10);
|
|
|
|
/*
|
|
* Use DS1PR and DS2PR to configure planes priorities and connects the
|
|
* superposition 0 to DU0 pins. DU1 pins will be configured dynamically.
|
|
*/
|
|
rcar_du_group_write(rgrp, DORCR, DORCR_PG1D_DS1 | DORCR_DPRS);
|
|
|
|
/* Apply planes to CRTCs association. */
|
|
mutex_lock(&rgrp->lock);
|
|
rcar_du_group_write(rgrp, DPTSR, (rgrp->dptsr_planes << 16) |
|
|
rgrp->dptsr_planes);
|
|
mutex_unlock(&rgrp->lock);
|
|
}
|
|
|
|
/*
|
|
* rcar_du_group_get - Acquire a reference to the DU channels group
|
|
*
|
|
* Acquiring the first reference setups core registers. A reference must be held
|
|
* before accessing any hardware registers.
|
|
*
|
|
* This function must be called with the DRM mode_config lock held.
|
|
*
|
|
* Return 0 in case of success or a negative error code otherwise.
|
|
*/
|
|
int rcar_du_group_get(struct rcar_du_group *rgrp)
|
|
{
|
|
if (rgrp->use_count)
|
|
goto done;
|
|
|
|
rcar_du_group_setup(rgrp);
|
|
|
|
done:
|
|
rgrp->use_count++;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* rcar_du_group_put - Release a reference to the DU
|
|
*
|
|
* This function must be called with the DRM mode_config lock held.
|
|
*/
|
|
void rcar_du_group_put(struct rcar_du_group *rgrp)
|
|
{
|
|
--rgrp->use_count;
|
|
}
|
|
|
|
static void __rcar_du_group_start_stop(struct rcar_du_group *rgrp, bool start)
|
|
{
|
|
struct rcar_du_device *rcdu = rgrp->dev;
|
|
|
|
/*
|
|
* Group start/stop is controlled by the DRES and DEN bits of DSYSR0
|
|
* for the first group and DSYSR2 for the second group. On most DU
|
|
* instances, this maps to the first CRTC of the group, and we can just
|
|
* use rcar_du_crtc_dsysr_clr_set() to access the correct DSYSR. On
|
|
* M3-N, however, DU2 doesn't exist, but DSYSR2 does. We thus need to
|
|
* access the register directly using group read/write.
|
|
*/
|
|
if (rcdu->info->channels_mask & BIT(rgrp->index * 2)) {
|
|
struct rcar_du_crtc *rcrtc = &rgrp->dev->crtcs[rgrp->index * 2];
|
|
|
|
rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_DRES | DSYSR_DEN,
|
|
start ? DSYSR_DEN : DSYSR_DRES);
|
|
} else {
|
|
rcar_du_group_write(rgrp, DSYSR,
|
|
start ? DSYSR_DEN : DSYSR_DRES);
|
|
}
|
|
}
|
|
|
|
void rcar_du_group_start_stop(struct rcar_du_group *rgrp, bool start)
|
|
{
|
|
/*
|
|
* Many of the configuration bits are only updated when the display
|
|
* reset (DRES) bit in DSYSR is set to 1, disabling *both* CRTCs. Some
|
|
* of those bits could be pre-configured, but others (especially the
|
|
* bits related to plane assignment to display timing controllers) need
|
|
* to be modified at runtime.
|
|
*
|
|
* Restart the display controller if a start is requested. Sorry for the
|
|
* flicker. It should be possible to move most of the "DRES-update" bits
|
|
* setup to driver initialization time and minimize the number of cases
|
|
* when the display controller will have to be restarted.
|
|
*/
|
|
if (start) {
|
|
if (rgrp->used_crtcs++ != 0)
|
|
__rcar_du_group_start_stop(rgrp, false);
|
|
__rcar_du_group_start_stop(rgrp, true);
|
|
} else {
|
|
if (--rgrp->used_crtcs == 0)
|
|
__rcar_du_group_start_stop(rgrp, false);
|
|
}
|
|
}
|
|
|
|
void rcar_du_group_restart(struct rcar_du_group *rgrp)
|
|
{
|
|
rgrp->need_restart = false;
|
|
|
|
__rcar_du_group_start_stop(rgrp, false);
|
|
__rcar_du_group_start_stop(rgrp, true);
|
|
}
|
|
|
|
int rcar_du_set_dpad0_vsp1_routing(struct rcar_du_device *rcdu)
|
|
{
|
|
struct rcar_du_group *rgrp;
|
|
struct rcar_du_crtc *crtc;
|
|
unsigned int index;
|
|
int ret;
|
|
|
|
if (rcdu->info->gen < 2)
|
|
return 0;
|
|
|
|
/*
|
|
* RGB output routing to DPAD0 and VSP1D routing to DU0/1/2 are
|
|
* configured in the DEFR8 register of the first group on Gen2 and the
|
|
* last group on Gen3. As this function can be called with the DU
|
|
* channels of the corresponding CRTCs disabled, we need to enable the
|
|
* group clock before accessing the register.
|
|
*/
|
|
index = rcdu->info->gen < 3 ? 0 : DIV_ROUND_UP(rcdu->num_crtcs, 2) - 1;
|
|
rgrp = &rcdu->groups[index];
|
|
crtc = &rcdu->crtcs[index * 2];
|
|
|
|
ret = clk_prepare_enable(crtc->clock);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
rcar_du_group_setup_defr8(rgrp);
|
|
|
|
clk_disable_unprepare(crtc->clock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rcar_du_group_set_dpad_levels(struct rcar_du_group *rgrp)
|
|
{
|
|
static const u32 doflr_values[2] = {
|
|
DOFLR_HSYCFL0 | DOFLR_VSYCFL0 | DOFLR_ODDFL0 |
|
|
DOFLR_DISPFL0 | DOFLR_CDEFL0 | DOFLR_RGBFL0,
|
|
DOFLR_HSYCFL1 | DOFLR_VSYCFL1 | DOFLR_ODDFL1 |
|
|
DOFLR_DISPFL1 | DOFLR_CDEFL1 | DOFLR_RGBFL1,
|
|
};
|
|
static const u32 dpad_mask = BIT(RCAR_DU_OUTPUT_DPAD1)
|
|
| BIT(RCAR_DU_OUTPUT_DPAD0);
|
|
struct rcar_du_device *rcdu = rgrp->dev;
|
|
u32 doflr = DOFLR_CODE;
|
|
unsigned int i;
|
|
|
|
if (rcdu->info->gen < 2)
|
|
return;
|
|
|
|
/*
|
|
* The DPAD outputs can't be controlled directly. However, the parallel
|
|
* output of the DU channels routed to DPAD can be set to fixed levels
|
|
* through the DOFLR group register. Use this to turn the DPAD on or off
|
|
* by driving fixed low-level signals at the output of any DU channel
|
|
* not routed to a DPAD output. This doesn't affect the DU output
|
|
* signals going to other outputs, such as the internal LVDS and HDMI
|
|
* encoders.
|
|
*/
|
|
|
|
for (i = 0; i < rgrp->num_crtcs; ++i) {
|
|
struct rcar_du_crtc_state *rstate;
|
|
struct rcar_du_crtc *rcrtc;
|
|
|
|
rcrtc = &rcdu->crtcs[rgrp->index * 2 + i];
|
|
rstate = to_rcar_crtc_state(rcrtc->crtc.state);
|
|
|
|
if (!(rstate->outputs & dpad_mask))
|
|
doflr |= doflr_values[i];
|
|
}
|
|
|
|
rcar_du_group_write(rgrp, DOFLR, doflr);
|
|
}
|
|
|
|
int rcar_du_group_set_routing(struct rcar_du_group *rgrp)
|
|
{
|
|
struct rcar_du_device *rcdu = rgrp->dev;
|
|
u32 dorcr = rcar_du_group_read(rgrp, DORCR);
|
|
|
|
dorcr &= ~(DORCR_PG2T | DORCR_DK2S | DORCR_PG2D_MASK);
|
|
|
|
/*
|
|
* Set the DPAD1 pins sources. Select CRTC 0 if explicitly requested and
|
|
* CRTC 1 in all other cases to avoid cloning CRTC 0 to DPAD0 and DPAD1
|
|
* by default.
|
|
*/
|
|
if (rcdu->dpad1_source == rgrp->index * 2)
|
|
dorcr |= DORCR_PG2D_DS1;
|
|
else
|
|
dorcr |= DORCR_PG2T | DORCR_DK2S | DORCR_PG2D_DS2;
|
|
|
|
rcar_du_group_write(rgrp, DORCR, dorcr);
|
|
|
|
rcar_du_group_set_dpad_levels(rgrp);
|
|
|
|
return rcar_du_set_dpad0_vsp1_routing(rgrp->dev);
|
|
}
|