f651334e1e
Starting at IPA v5.0, the number of event rings per EE is defined in a field in a new HW_PARAM_4 GSI register rather than HW_PARAM_2. Define this new register and its fields, and update the code that checks the number of rings supported by hardware to use the proper field based on IPA version. Signed-off-by: Alex Elder <elder@linaro.org> Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2432 lines
68 KiB
C
2432 lines
68 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
|
|
* Copyright (C) 2018-2023 Linaro Ltd.
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/bits.h>
|
|
#include <linux/bitfield.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/io.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/netdevice.h>
|
|
|
|
#include "gsi.h"
|
|
#include "reg.h"
|
|
#include "gsi_reg.h"
|
|
#include "gsi_private.h"
|
|
#include "gsi_trans.h"
|
|
#include "ipa_gsi.h"
|
|
#include "ipa_data.h"
|
|
#include "ipa_version.h"
|
|
|
|
/**
|
|
* DOC: The IPA Generic Software Interface
|
|
*
|
|
* The generic software interface (GSI) is an integral component of the IPA,
|
|
* providing a well-defined communication layer between the AP subsystem
|
|
* and the IPA core. The modem uses the GSI layer as well.
|
|
*
|
|
* -------- ---------
|
|
* | | | |
|
|
* | AP +<---. .----+ Modem |
|
|
* | +--. | | .->+ |
|
|
* | | | | | | | |
|
|
* -------- | | | | ---------
|
|
* v | v |
|
|
* --+-+---+-+--
|
|
* | GSI |
|
|
* |-----------|
|
|
* | |
|
|
* | IPA |
|
|
* | |
|
|
* -------------
|
|
*
|
|
* In the above diagram, the AP and Modem represent "execution environments"
|
|
* (EEs), which are independent operating environments that use the IPA for
|
|
* data transfer.
|
|
*
|
|
* Each EE uses a set of unidirectional GSI "channels," which allow transfer
|
|
* of data to or from the IPA. A channel is implemented as a ring buffer,
|
|
* with a DRAM-resident array of "transfer elements" (TREs) available to
|
|
* describe transfers to or from other EEs through the IPA. A transfer
|
|
* element can also contain an immediate command, requesting the IPA perform
|
|
* actions other than data transfer.
|
|
*
|
|
* Each TRE refers to a block of data--also located in DRAM. After writing
|
|
* one or more TREs to a channel, the writer (either the IPA or an EE) writes
|
|
* a doorbell register to inform the receiving side how many elements have
|
|
* been written.
|
|
*
|
|
* Each channel has a GSI "event ring" associated with it. An event ring
|
|
* is implemented very much like a channel ring, but is always directed from
|
|
* the IPA to an EE. The IPA notifies an EE (such as the AP) about channel
|
|
* events by adding an entry to the event ring associated with the channel.
|
|
* The GSI then writes its doorbell for the event ring, causing the target
|
|
* EE to be interrupted. Each entry in an event ring contains a pointer
|
|
* to the channel TRE whose completion the event represents.
|
|
*
|
|
* Each TRE in a channel ring has a set of flags. One flag indicates whether
|
|
* the completion of the transfer operation generates an entry (and possibly
|
|
* an interrupt) in the channel's event ring. Other flags allow transfer
|
|
* elements to be chained together, forming a single logical transaction.
|
|
* TRE flags are used to control whether and when interrupts are generated
|
|
* to signal completion of channel transfers.
|
|
*
|
|
* Elements in channel and event rings are completed (or consumed) strictly
|
|
* in order. Completion of one entry implies the completion of all preceding
|
|
* entries. A single completion interrupt can therefore communicate the
|
|
* completion of many transfers.
|
|
*
|
|
* Note that all GSI registers are little-endian, which is the assumed
|
|
* endianness of I/O space accesses. The accessor functions perform byte
|
|
* swapping if needed (i.e., for a big endian CPU).
|
|
*/
|
|
|
|
/* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */
|
|
#define GSI_EVT_RING_INT_MODT (32 * 1) /* 1ms under 32KHz clock */
|
|
|
|
#define GSI_CMD_TIMEOUT 50 /* milliseconds */
|
|
|
|
#define GSI_CHANNEL_STOP_RETRIES 10
|
|
#define GSI_CHANNEL_MODEM_HALT_RETRIES 10
|
|
#define GSI_CHANNEL_MODEM_FLOW_RETRIES 5 /* disable flow control only */
|
|
|
|
#define GSI_MHI_EVENT_ID_START 10 /* 1st reserved event id */
|
|
#define GSI_MHI_EVENT_ID_END 16 /* Last reserved event id */
|
|
|
|
#define GSI_ISR_MAX_ITER 50 /* Detect interrupt storms */
|
|
|
|
/* An entry in an event ring */
|
|
struct gsi_event {
|
|
__le64 xfer_ptr;
|
|
__le16 len;
|
|
u8 reserved1;
|
|
u8 code;
|
|
__le16 reserved2;
|
|
u8 type;
|
|
u8 chid;
|
|
};
|
|
|
|
/** gsi_channel_scratch_gpi - GPI protocol scratch register
|
|
* @max_outstanding_tre:
|
|
* Defines the maximum number of TREs allowed in a single transaction
|
|
* on a channel (in bytes). This determines the amount of prefetch
|
|
* performed by the hardware. We configure this to equal the size of
|
|
* the TLV FIFO for the channel.
|
|
* @outstanding_threshold:
|
|
* Defines the threshold (in bytes) determining when the sequencer
|
|
* should update the channel doorbell. We configure this to equal
|
|
* the size of two TREs.
|
|
*/
|
|
struct gsi_channel_scratch_gpi {
|
|
u64 reserved1;
|
|
u16 reserved2;
|
|
u16 max_outstanding_tre;
|
|
u16 reserved3;
|
|
u16 outstanding_threshold;
|
|
};
|
|
|
|
/** gsi_channel_scratch - channel scratch configuration area
|
|
*
|
|
* The exact interpretation of this register is protocol-specific.
|
|
* We only use GPI channels; see struct gsi_channel_scratch_gpi, above.
|
|
*/
|
|
union gsi_channel_scratch {
|
|
struct gsi_channel_scratch_gpi gpi;
|
|
struct {
|
|
u32 word1;
|
|
u32 word2;
|
|
u32 word3;
|
|
u32 word4;
|
|
} data;
|
|
};
|
|
|
|
/* Check things that can be validated at build time. */
|
|
static void gsi_validate_build(void)
|
|
{
|
|
/* This is used as a divisor */
|
|
BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE);
|
|
|
|
/* Code assumes the size of channel and event ring element are
|
|
* the same (and fixed). Make sure the size of an event ring
|
|
* element is what's expected.
|
|
*/
|
|
BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE);
|
|
|
|
/* Hardware requires a 2^n ring size. We ensure the number of
|
|
* elements in an event ring is a power of 2 elsewhere; this
|
|
* ensure the elements themselves meet the requirement.
|
|
*/
|
|
BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE));
|
|
}
|
|
|
|
/* Return the channel id associated with a given channel */
|
|
static u32 gsi_channel_id(struct gsi_channel *channel)
|
|
{
|
|
return channel - &channel->gsi->channel[0];
|
|
}
|
|
|
|
/* An initialized channel has a non-null GSI pointer */
|
|
static bool gsi_channel_initialized(struct gsi_channel *channel)
|
|
{
|
|
return !!channel->gsi;
|
|
}
|
|
|
|
/* Encode the channel protocol for the CH_C_CNTXT_0 register */
|
|
static u32 ch_c_cntxt_0_type_encode(enum ipa_version version,
|
|
const struct reg *reg,
|
|
enum gsi_channel_type type)
|
|
{
|
|
u32 val;
|
|
|
|
val = reg_encode(reg, CHTYPE_PROTOCOL, type);
|
|
if (version < IPA_VERSION_4_5 || version >= IPA_VERSION_5_0)
|
|
return val;
|
|
|
|
type >>= hweight32(reg_fmask(reg, CHTYPE_PROTOCOL));
|
|
|
|
return val | reg_encode(reg, CHTYPE_PROTOCOL_MSB, type);
|
|
}
|
|
|
|
/* Update the GSI IRQ type register with the cached value */
|
|
static void gsi_irq_type_update(struct gsi *gsi, u32 val)
|
|
{
|
|
const struct reg *reg = gsi_reg(gsi, CNTXT_TYPE_IRQ_MSK);
|
|
|
|
gsi->type_enabled_bitmap = val;
|
|
iowrite32(val, gsi->virt + reg_offset(reg));
|
|
}
|
|
|
|
static void gsi_irq_type_enable(struct gsi *gsi, enum gsi_irq_type_id type_id)
|
|
{
|
|
gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | type_id);
|
|
}
|
|
|
|
static void gsi_irq_type_disable(struct gsi *gsi, enum gsi_irq_type_id type_id)
|
|
{
|
|
gsi_irq_type_update(gsi, gsi->type_enabled_bitmap & ~type_id);
|
|
}
|
|
|
|
/* Event ring commands are performed one at a time. Their completion
|
|
* is signaled by the event ring control GSI interrupt type, which is
|
|
* only enabled when we issue an event ring command. Only the event
|
|
* ring being operated on has this interrupt enabled.
|
|
*/
|
|
static void gsi_irq_ev_ctrl_enable(struct gsi *gsi, u32 evt_ring_id)
|
|
{
|
|
u32 val = BIT(evt_ring_id);
|
|
const struct reg *reg;
|
|
|
|
/* There's a small chance that a previous command completed
|
|
* after the interrupt was disabled, so make sure we have no
|
|
* pending interrupts before we enable them.
|
|
*/
|
|
reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_CLR);
|
|
iowrite32(~0, gsi->virt + reg_offset(reg));
|
|
|
|
reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_MSK);
|
|
iowrite32(val, gsi->virt + reg_offset(reg));
|
|
gsi_irq_type_enable(gsi, GSI_EV_CTRL);
|
|
}
|
|
|
|
/* Disable event ring control interrupts */
|
|
static void gsi_irq_ev_ctrl_disable(struct gsi *gsi)
|
|
{
|
|
const struct reg *reg;
|
|
|
|
gsi_irq_type_disable(gsi, GSI_EV_CTRL);
|
|
|
|
reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_MSK);
|
|
iowrite32(0, gsi->virt + reg_offset(reg));
|
|
}
|
|
|
|
/* Channel commands are performed one at a time. Their completion is
|
|
* signaled by the channel control GSI interrupt type, which is only
|
|
* enabled when we issue a channel command. Only the channel being
|
|
* operated on has this interrupt enabled.
|
|
*/
|
|
static void gsi_irq_ch_ctrl_enable(struct gsi *gsi, u32 channel_id)
|
|
{
|
|
u32 val = BIT(channel_id);
|
|
const struct reg *reg;
|
|
|
|
/* There's a small chance that a previous command completed
|
|
* after the interrupt was disabled, so make sure we have no
|
|
* pending interrupts before we enable them.
|
|
*/
|
|
reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_CLR);
|
|
iowrite32(~0, gsi->virt + reg_offset(reg));
|
|
|
|
reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_MSK);
|
|
iowrite32(val, gsi->virt + reg_offset(reg));
|
|
|
|
gsi_irq_type_enable(gsi, GSI_CH_CTRL);
|
|
}
|
|
|
|
/* Disable channel control interrupts */
|
|
static void gsi_irq_ch_ctrl_disable(struct gsi *gsi)
|
|
{
|
|
const struct reg *reg;
|
|
|
|
gsi_irq_type_disable(gsi, GSI_CH_CTRL);
|
|
|
|
reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_MSK);
|
|
iowrite32(0, gsi->virt + reg_offset(reg));
|
|
}
|
|
|
|
static void gsi_irq_ieob_enable_one(struct gsi *gsi, u32 evt_ring_id)
|
|
{
|
|
bool enable_ieob = !gsi->ieob_enabled_bitmap;
|
|
const struct reg *reg;
|
|
u32 val;
|
|
|
|
gsi->ieob_enabled_bitmap |= BIT(evt_ring_id);
|
|
|
|
reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_MSK);
|
|
val = gsi->ieob_enabled_bitmap;
|
|
iowrite32(val, gsi->virt + reg_offset(reg));
|
|
|
|
/* Enable the interrupt type if this is the first channel enabled */
|
|
if (enable_ieob)
|
|
gsi_irq_type_enable(gsi, GSI_IEOB);
|
|
}
|
|
|
|
static void gsi_irq_ieob_disable(struct gsi *gsi, u32 event_mask)
|
|
{
|
|
const struct reg *reg;
|
|
u32 val;
|
|
|
|
gsi->ieob_enabled_bitmap &= ~event_mask;
|
|
|
|
/* Disable the interrupt type if this was the last enabled channel */
|
|
if (!gsi->ieob_enabled_bitmap)
|
|
gsi_irq_type_disable(gsi, GSI_IEOB);
|
|
|
|
reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_MSK);
|
|
val = gsi->ieob_enabled_bitmap;
|
|
iowrite32(val, gsi->virt + reg_offset(reg));
|
|
}
|
|
|
|
static void gsi_irq_ieob_disable_one(struct gsi *gsi, u32 evt_ring_id)
|
|
{
|
|
gsi_irq_ieob_disable(gsi, BIT(evt_ring_id));
|
|
}
|
|
|
|
/* Enable all GSI_interrupt types */
|
|
static void gsi_irq_enable(struct gsi *gsi)
|
|
{
|
|
const struct reg *reg;
|
|
u32 val;
|
|
|
|
/* Global interrupts include hardware error reports. Enable
|
|
* that so we can at least report the error should it occur.
|
|
*/
|
|
reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN);
|
|
iowrite32(ERROR_INT, gsi->virt + reg_offset(reg));
|
|
|
|
gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | GSI_GLOB_EE);
|
|
|
|
/* General GSI interrupts are reported to all EEs; if they occur
|
|
* they are unrecoverable (without reset). A breakpoint interrupt
|
|
* also exists, but we don't support that. We want to be notified
|
|
* of errors so we can report them, even if they can't be handled.
|
|
*/
|
|
reg = gsi_reg(gsi, CNTXT_GSI_IRQ_EN);
|
|
val = BUS_ERROR;
|
|
val |= CMD_FIFO_OVRFLOW;
|
|
val |= MCS_STACK_OVRFLOW;
|
|
iowrite32(val, gsi->virt + reg_offset(reg));
|
|
|
|
gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | GSI_GENERAL);
|
|
}
|
|
|
|
/* Disable all GSI interrupt types */
|
|
static void gsi_irq_disable(struct gsi *gsi)
|
|
{
|
|
const struct reg *reg;
|
|
|
|
gsi_irq_type_update(gsi, 0);
|
|
|
|
/* Clear the type-specific interrupt masks set by gsi_irq_enable() */
|
|
reg = gsi_reg(gsi, CNTXT_GSI_IRQ_EN);
|
|
iowrite32(0, gsi->virt + reg_offset(reg));
|
|
|
|
reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN);
|
|
iowrite32(0, gsi->virt + reg_offset(reg));
|
|
}
|
|
|
|
/* Return the virtual address associated with a ring index */
|
|
void *gsi_ring_virt(struct gsi_ring *ring, u32 index)
|
|
{
|
|
/* Note: index *must* be used modulo the ring count here */
|
|
return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE;
|
|
}
|
|
|
|
/* Return the 32-bit DMA address associated with a ring index */
|
|
static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index)
|
|
{
|
|
return lower_32_bits(ring->addr) + index * GSI_RING_ELEMENT_SIZE;
|
|
}
|
|
|
|
/* Return the ring index of a 32-bit ring offset */
|
|
static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset)
|
|
{
|
|
return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE;
|
|
}
|
|
|
|
/* Issue a GSI command by writing a value to a register, then wait for
|
|
* completion to be signaled. Returns true if the command completes
|
|
* or false if it times out.
|
|
*/
|
|
static bool gsi_command(struct gsi *gsi, u32 reg, u32 val)
|
|
{
|
|
unsigned long timeout = msecs_to_jiffies(GSI_CMD_TIMEOUT);
|
|
struct completion *completion = &gsi->completion;
|
|
|
|
reinit_completion(completion);
|
|
|
|
iowrite32(val, gsi->virt + reg);
|
|
|
|
return !!wait_for_completion_timeout(completion, timeout);
|
|
}
|
|
|
|
/* Return the hardware's notion of the current state of an event ring */
|
|
static enum gsi_evt_ring_state
|
|
gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id)
|
|
{
|
|
const struct reg *reg = gsi_reg(gsi, EV_CH_E_CNTXT_0);
|
|
u32 val;
|
|
|
|
val = ioread32(gsi->virt + reg_n_offset(reg, evt_ring_id));
|
|
|
|
return reg_decode(reg, EV_CHSTATE, val);
|
|
}
|
|
|
|
/* Issue an event ring command and wait for it to complete */
|
|
static void gsi_evt_ring_command(struct gsi *gsi, u32 evt_ring_id,
|
|
enum gsi_evt_cmd_opcode opcode)
|
|
{
|
|
struct device *dev = gsi->dev;
|
|
const struct reg *reg;
|
|
bool timeout;
|
|
u32 val;
|
|
|
|
/* Enable the completion interrupt for the command */
|
|
gsi_irq_ev_ctrl_enable(gsi, evt_ring_id);
|
|
|
|
reg = gsi_reg(gsi, EV_CH_CMD);
|
|
val = reg_encode(reg, EV_CHID, evt_ring_id);
|
|
val |= reg_encode(reg, EV_OPCODE, opcode);
|
|
|
|
timeout = !gsi_command(gsi, reg_offset(reg), val);
|
|
|
|
gsi_irq_ev_ctrl_disable(gsi);
|
|
|
|
if (!timeout)
|
|
return;
|
|
|
|
dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n",
|
|
opcode, evt_ring_id, gsi_evt_ring_state(gsi, evt_ring_id));
|
|
}
|
|
|
|
/* Allocate an event ring in NOT_ALLOCATED state */
|
|
static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id)
|
|
{
|
|
enum gsi_evt_ring_state state;
|
|
|
|
/* Get initial event ring state */
|
|
state = gsi_evt_ring_state(gsi, evt_ring_id);
|
|
if (state != GSI_EVT_RING_STATE_NOT_ALLOCATED) {
|
|
dev_err(gsi->dev, "event ring %u bad state %u before alloc\n",
|
|
evt_ring_id, state);
|
|
return -EINVAL;
|
|
}
|
|
|
|
gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE);
|
|
|
|
/* If successful the event ring state will have changed */
|
|
state = gsi_evt_ring_state(gsi, evt_ring_id);
|
|
if (state == GSI_EVT_RING_STATE_ALLOCATED)
|
|
return 0;
|
|
|
|
dev_err(gsi->dev, "event ring %u bad state %u after alloc\n",
|
|
evt_ring_id, state);
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
/* Reset a GSI event ring in ALLOCATED or ERROR state. */
|
|
static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id)
|
|
{
|
|
enum gsi_evt_ring_state state;
|
|
|
|
state = gsi_evt_ring_state(gsi, evt_ring_id);
|
|
if (state != GSI_EVT_RING_STATE_ALLOCATED &&
|
|
state != GSI_EVT_RING_STATE_ERROR) {
|
|
dev_err(gsi->dev, "event ring %u bad state %u before reset\n",
|
|
evt_ring_id, state);
|
|
return;
|
|
}
|
|
|
|
gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET);
|
|
|
|
/* If successful the event ring state will have changed */
|
|
state = gsi_evt_ring_state(gsi, evt_ring_id);
|
|
if (state == GSI_EVT_RING_STATE_ALLOCATED)
|
|
return;
|
|
|
|
dev_err(gsi->dev, "event ring %u bad state %u after reset\n",
|
|
evt_ring_id, state);
|
|
}
|
|
|
|
/* Issue a hardware de-allocation request for an allocated event ring */
|
|
static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id)
|
|
{
|
|
enum gsi_evt_ring_state state;
|
|
|
|
state = gsi_evt_ring_state(gsi, evt_ring_id);
|
|
if (state != GSI_EVT_RING_STATE_ALLOCATED) {
|
|
dev_err(gsi->dev, "event ring %u state %u before dealloc\n",
|
|
evt_ring_id, state);
|
|
return;
|
|
}
|
|
|
|
gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC);
|
|
|
|
/* If successful the event ring state will have changed */
|
|
state = gsi_evt_ring_state(gsi, evt_ring_id);
|
|
if (state == GSI_EVT_RING_STATE_NOT_ALLOCATED)
|
|
return;
|
|
|
|
dev_err(gsi->dev, "event ring %u bad state %u after dealloc\n",
|
|
evt_ring_id, state);
|
|
}
|
|
|
|
/* Fetch the current state of a channel from hardware */
|
|
static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel)
|
|
{
|
|
const struct reg *reg = gsi_reg(channel->gsi, CH_C_CNTXT_0);
|
|
u32 channel_id = gsi_channel_id(channel);
|
|
struct gsi *gsi = channel->gsi;
|
|
void __iomem *virt = gsi->virt;
|
|
u32 val;
|
|
|
|
reg = gsi_reg(gsi, CH_C_CNTXT_0);
|
|
val = ioread32(virt + reg_n_offset(reg, channel_id));
|
|
|
|
return reg_decode(reg, CHSTATE, val);
|
|
}
|
|
|
|
/* Issue a channel command and wait for it to complete */
|
|
static void
|
|
gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode)
|
|
{
|
|
u32 channel_id = gsi_channel_id(channel);
|
|
struct gsi *gsi = channel->gsi;
|
|
struct device *dev = gsi->dev;
|
|
const struct reg *reg;
|
|
bool timeout;
|
|
u32 val;
|
|
|
|
/* Enable the completion interrupt for the command */
|
|
gsi_irq_ch_ctrl_enable(gsi, channel_id);
|
|
|
|
reg = gsi_reg(gsi, CH_CMD);
|
|
val = reg_encode(reg, CH_CHID, channel_id);
|
|
val |= reg_encode(reg, CH_OPCODE, opcode);
|
|
|
|
timeout = !gsi_command(gsi, reg_offset(reg), val);
|
|
|
|
gsi_irq_ch_ctrl_disable(gsi);
|
|
|
|
if (!timeout)
|
|
return;
|
|
|
|
dev_err(dev, "GSI command %u for channel %u timed out, state %u\n",
|
|
opcode, channel_id, gsi_channel_state(channel));
|
|
}
|
|
|
|
/* Allocate GSI channel in NOT_ALLOCATED state */
|
|
static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id)
|
|
{
|
|
struct gsi_channel *channel = &gsi->channel[channel_id];
|
|
struct device *dev = gsi->dev;
|
|
enum gsi_channel_state state;
|
|
|
|
/* Get initial channel state */
|
|
state = gsi_channel_state(channel);
|
|
if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) {
|
|
dev_err(dev, "channel %u bad state %u before alloc\n",
|
|
channel_id, state);
|
|
return -EINVAL;
|
|
}
|
|
|
|
gsi_channel_command(channel, GSI_CH_ALLOCATE);
|
|
|
|
/* If successful the channel state will have changed */
|
|
state = gsi_channel_state(channel);
|
|
if (state == GSI_CHANNEL_STATE_ALLOCATED)
|
|
return 0;
|
|
|
|
dev_err(dev, "channel %u bad state %u after alloc\n",
|
|
channel_id, state);
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
/* Start an ALLOCATED channel */
|
|
static int gsi_channel_start_command(struct gsi_channel *channel)
|
|
{
|
|
struct device *dev = channel->gsi->dev;
|
|
enum gsi_channel_state state;
|
|
|
|
state = gsi_channel_state(channel);
|
|
if (state != GSI_CHANNEL_STATE_ALLOCATED &&
|
|
state != GSI_CHANNEL_STATE_STOPPED) {
|
|
dev_err(dev, "channel %u bad state %u before start\n",
|
|
gsi_channel_id(channel), state);
|
|
return -EINVAL;
|
|
}
|
|
|
|
gsi_channel_command(channel, GSI_CH_START);
|
|
|
|
/* If successful the channel state will have changed */
|
|
state = gsi_channel_state(channel);
|
|
if (state == GSI_CHANNEL_STATE_STARTED)
|
|
return 0;
|
|
|
|
dev_err(dev, "channel %u bad state %u after start\n",
|
|
gsi_channel_id(channel), state);
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
/* Stop a GSI channel in STARTED state */
|
|
static int gsi_channel_stop_command(struct gsi_channel *channel)
|
|
{
|
|
struct device *dev = channel->gsi->dev;
|
|
enum gsi_channel_state state;
|
|
|
|
state = gsi_channel_state(channel);
|
|
|
|
/* Channel could have entered STOPPED state since last call
|
|
* if it timed out. If so, we're done.
|
|
*/
|
|
if (state == GSI_CHANNEL_STATE_STOPPED)
|
|
return 0;
|
|
|
|
if (state != GSI_CHANNEL_STATE_STARTED &&
|
|
state != GSI_CHANNEL_STATE_STOP_IN_PROC) {
|
|
dev_err(dev, "channel %u bad state %u before stop\n",
|
|
gsi_channel_id(channel), state);
|
|
return -EINVAL;
|
|
}
|
|
|
|
gsi_channel_command(channel, GSI_CH_STOP);
|
|
|
|
/* If successful the channel state will have changed */
|
|
state = gsi_channel_state(channel);
|
|
if (state == GSI_CHANNEL_STATE_STOPPED)
|
|
return 0;
|
|
|
|
/* We may have to try again if stop is in progress */
|
|
if (state == GSI_CHANNEL_STATE_STOP_IN_PROC)
|
|
return -EAGAIN;
|
|
|
|
dev_err(dev, "channel %u bad state %u after stop\n",
|
|
gsi_channel_id(channel), state);
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
/* Reset a GSI channel in ALLOCATED or ERROR state. */
|
|
static void gsi_channel_reset_command(struct gsi_channel *channel)
|
|
{
|
|
struct device *dev = channel->gsi->dev;
|
|
enum gsi_channel_state state;
|
|
|
|
/* A short delay is required before a RESET command */
|
|
usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
|
|
|
|
state = gsi_channel_state(channel);
|
|
if (state != GSI_CHANNEL_STATE_STOPPED &&
|
|
state != GSI_CHANNEL_STATE_ERROR) {
|
|
/* No need to reset a channel already in ALLOCATED state */
|
|
if (state != GSI_CHANNEL_STATE_ALLOCATED)
|
|
dev_err(dev, "channel %u bad state %u before reset\n",
|
|
gsi_channel_id(channel), state);
|
|
return;
|
|
}
|
|
|
|
gsi_channel_command(channel, GSI_CH_RESET);
|
|
|
|
/* If successful the channel state will have changed */
|
|
state = gsi_channel_state(channel);
|
|
if (state != GSI_CHANNEL_STATE_ALLOCATED)
|
|
dev_err(dev, "channel %u bad state %u after reset\n",
|
|
gsi_channel_id(channel), state);
|
|
}
|
|
|
|
/* Deallocate an ALLOCATED GSI channel */
|
|
static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id)
|
|
{
|
|
struct gsi_channel *channel = &gsi->channel[channel_id];
|
|
struct device *dev = gsi->dev;
|
|
enum gsi_channel_state state;
|
|
|
|
state = gsi_channel_state(channel);
|
|
if (state != GSI_CHANNEL_STATE_ALLOCATED) {
|
|
dev_err(dev, "channel %u bad state %u before dealloc\n",
|
|
channel_id, state);
|
|
return;
|
|
}
|
|
|
|
gsi_channel_command(channel, GSI_CH_DE_ALLOC);
|
|
|
|
/* If successful the channel state will have changed */
|
|
state = gsi_channel_state(channel);
|
|
|
|
if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED)
|
|
dev_err(dev, "channel %u bad state %u after dealloc\n",
|
|
channel_id, state);
|
|
}
|
|
|
|
/* Ring an event ring doorbell, reporting the last entry processed by the AP.
|
|
* The index argument (modulo the ring count) is the first unfilled entry, so
|
|
* we supply one less than that with the doorbell. Update the event ring
|
|
* index field with the value provided.
|
|
*/
|
|
static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index)
|
|
{
|
|
const struct reg *reg = gsi_reg(gsi, EV_CH_E_DOORBELL_0);
|
|
struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring;
|
|
u32 val;
|
|
|
|
ring->index = index; /* Next unused entry */
|
|
|
|
/* Note: index *must* be used modulo the ring count here */
|
|
val = gsi_ring_addr(ring, (index - 1) % ring->count);
|
|
iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
|
|
}
|
|
|
|
/* Program an event ring for use */
|
|
static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id)
|
|
{
|
|
struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
|
|
struct gsi_ring *ring = &evt_ring->ring;
|
|
const struct reg *reg;
|
|
u32 val;
|
|
|
|
reg = gsi_reg(gsi, EV_CH_E_CNTXT_0);
|
|
/* We program all event rings as GPI type/protocol */
|
|
val = reg_encode(reg, EV_CHTYPE, GSI_CHANNEL_TYPE_GPI);
|
|
/* EV_EE field is 0 (GSI_EE_AP) */
|
|
val |= reg_bit(reg, EV_INTYPE);
|
|
val |= reg_encode(reg, EV_ELEMENT_SIZE, GSI_RING_ELEMENT_SIZE);
|
|
iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
|
|
|
|
reg = gsi_reg(gsi, EV_CH_E_CNTXT_1);
|
|
val = reg_encode(reg, R_LENGTH, ring->count * GSI_RING_ELEMENT_SIZE);
|
|
iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
|
|
|
|
/* The context 2 and 3 registers store the low-order and
|
|
* high-order 32 bits of the address of the event ring,
|
|
* respectively.
|
|
*/
|
|
reg = gsi_reg(gsi, EV_CH_E_CNTXT_2);
|
|
val = lower_32_bits(ring->addr);
|
|
iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
|
|
|
|
reg = gsi_reg(gsi, EV_CH_E_CNTXT_3);
|
|
val = upper_32_bits(ring->addr);
|
|
iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
|
|
|
|
/* Enable interrupt moderation by setting the moderation delay */
|
|
reg = gsi_reg(gsi, EV_CH_E_CNTXT_8);
|
|
val = reg_encode(reg, EV_MODT, GSI_EVT_RING_INT_MODT);
|
|
val |= reg_encode(reg, EV_MODC, 1); /* comes from channel */
|
|
/* EV_MOD_CNT is 0 (no counter-based interrupt coalescing) */
|
|
iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
|
|
|
|
/* No MSI write data, and MSI high and low address is 0 */
|
|
reg = gsi_reg(gsi, EV_CH_E_CNTXT_9);
|
|
iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id));
|
|
|
|
reg = gsi_reg(gsi, EV_CH_E_CNTXT_10);
|
|
iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id));
|
|
|
|
reg = gsi_reg(gsi, EV_CH_E_CNTXT_11);
|
|
iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id));
|
|
|
|
/* We don't need to get event read pointer updates */
|
|
reg = gsi_reg(gsi, EV_CH_E_CNTXT_12);
|
|
iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id));
|
|
|
|
reg = gsi_reg(gsi, EV_CH_E_CNTXT_13);
|
|
iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id));
|
|
|
|
/* Finally, tell the hardware our "last processed" event (arbitrary) */
|
|
gsi_evt_ring_doorbell(gsi, evt_ring_id, ring->index);
|
|
}
|
|
|
|
/* Find the transaction whose completion indicates a channel is quiesced */
|
|
static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel)
|
|
{
|
|
struct gsi_trans_info *trans_info = &channel->trans_info;
|
|
u32 pending_id = trans_info->pending_id;
|
|
struct gsi_trans *trans;
|
|
u16 trans_id;
|
|
|
|
if (channel->toward_ipa && pending_id != trans_info->free_id) {
|
|
/* There is a small chance a TX transaction got allocated
|
|
* just before we disabled transmits, so check for that.
|
|
* The last allocated, committed, or pending transaction
|
|
* precedes the first free transaction.
|
|
*/
|
|
trans_id = trans_info->free_id - 1;
|
|
} else if (trans_info->polled_id != pending_id) {
|
|
/* Otherwise (TX or RX) we want to wait for anything that
|
|
* has completed, or has been polled but not released yet.
|
|
*
|
|
* The last completed or polled transaction precedes the
|
|
* first pending transaction.
|
|
*/
|
|
trans_id = pending_id - 1;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
|
|
/* Caller will wait for this, so take a reference */
|
|
trans = &trans_info->trans[trans_id % channel->tre_count];
|
|
refcount_inc(&trans->refcount);
|
|
|
|
return trans;
|
|
}
|
|
|
|
/* Wait for transaction activity on a channel to complete */
|
|
static void gsi_channel_trans_quiesce(struct gsi_channel *channel)
|
|
{
|
|
struct gsi_trans *trans;
|
|
|
|
/* Get the last transaction, and wait for it to complete */
|
|
trans = gsi_channel_trans_last(channel);
|
|
if (trans) {
|
|
wait_for_completion(&trans->completion);
|
|
gsi_trans_free(trans);
|
|
}
|
|
}
|
|
|
|
/* Program a channel for use; there is no gsi_channel_deprogram() */
|
|
static void gsi_channel_program(struct gsi_channel *channel, bool doorbell)
|
|
{
|
|
size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE;
|
|
u32 channel_id = gsi_channel_id(channel);
|
|
union gsi_channel_scratch scr = { };
|
|
struct gsi_channel_scratch_gpi *gpi;
|
|
struct gsi *gsi = channel->gsi;
|
|
const struct reg *reg;
|
|
u32 wrr_weight = 0;
|
|
u32 offset;
|
|
u32 val;
|
|
|
|
reg = gsi_reg(gsi, CH_C_CNTXT_0);
|
|
|
|
/* We program all channels as GPI type/protocol */
|
|
val = ch_c_cntxt_0_type_encode(gsi->version, reg, GSI_CHANNEL_TYPE_GPI);
|
|
if (channel->toward_ipa)
|
|
val |= reg_bit(reg, CHTYPE_DIR);
|
|
if (gsi->version < IPA_VERSION_5_0)
|
|
val |= reg_encode(reg, ERINDEX, channel->evt_ring_id);
|
|
val |= reg_encode(reg, ELEMENT_SIZE, GSI_RING_ELEMENT_SIZE);
|
|
iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
|
|
|
|
reg = gsi_reg(gsi, CH_C_CNTXT_1);
|
|
val = reg_encode(reg, CH_R_LENGTH, size);
|
|
if (gsi->version >= IPA_VERSION_5_0)
|
|
val |= reg_encode(reg, CH_ERINDEX, channel->evt_ring_id);
|
|
iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
|
|
|
|
/* The context 2 and 3 registers store the low-order and
|
|
* high-order 32 bits of the address of the channel ring,
|
|
* respectively.
|
|
*/
|
|
reg = gsi_reg(gsi, CH_C_CNTXT_2);
|
|
val = lower_32_bits(channel->tre_ring.addr);
|
|
iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
|
|
|
|
reg = gsi_reg(gsi, CH_C_CNTXT_3);
|
|
val = upper_32_bits(channel->tre_ring.addr);
|
|
iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
|
|
|
|
reg = gsi_reg(gsi, CH_C_QOS);
|
|
|
|
/* Command channel gets low weighted round-robin priority */
|
|
if (channel->command)
|
|
wrr_weight = reg_field_max(reg, WRR_WEIGHT);
|
|
val = reg_encode(reg, WRR_WEIGHT, wrr_weight);
|
|
|
|
/* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */
|
|
|
|
/* No need to use the doorbell engine starting at IPA v4.0 */
|
|
if (gsi->version < IPA_VERSION_4_0 && doorbell)
|
|
val |= reg_bit(reg, USE_DB_ENG);
|
|
|
|
/* v4.0 introduces an escape buffer for prefetch. We use it
|
|
* on all but the AP command channel.
|
|
*/
|
|
if (gsi->version >= IPA_VERSION_4_0 && !channel->command) {
|
|
/* If not otherwise set, prefetch buffers are used */
|
|
if (gsi->version < IPA_VERSION_4_5)
|
|
val |= reg_bit(reg, USE_ESCAPE_BUF_ONLY);
|
|
else
|
|
val |= reg_encode(reg, PREFETCH_MODE, ESCAPE_BUF_ONLY);
|
|
}
|
|
/* All channels set DB_IN_BYTES */
|
|
if (gsi->version >= IPA_VERSION_4_9)
|
|
val |= reg_bit(reg, DB_IN_BYTES);
|
|
|
|
iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
|
|
|
|
/* Now update the scratch registers for GPI protocol */
|
|
gpi = &scr.gpi;
|
|
gpi->max_outstanding_tre = channel->trans_tre_max *
|
|
GSI_RING_ELEMENT_SIZE;
|
|
gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE;
|
|
|
|
reg = gsi_reg(gsi, CH_C_SCRATCH_0);
|
|
val = scr.data.word1;
|
|
iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
|
|
|
|
reg = gsi_reg(gsi, CH_C_SCRATCH_1);
|
|
val = scr.data.word2;
|
|
iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
|
|
|
|
reg = gsi_reg(gsi, CH_C_SCRATCH_2);
|
|
val = scr.data.word3;
|
|
iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
|
|
|
|
/* We must preserve the upper 16 bits of the last scratch register.
|
|
* The next sequence assumes those bits remain unchanged between the
|
|
* read and the write.
|
|
*/
|
|
reg = gsi_reg(gsi, CH_C_SCRATCH_3);
|
|
offset = reg_n_offset(reg, channel_id);
|
|
val = ioread32(gsi->virt + offset);
|
|
val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0));
|
|
iowrite32(val, gsi->virt + offset);
|
|
|
|
/* All done! */
|
|
}
|
|
|
|
static int __gsi_channel_start(struct gsi_channel *channel, bool resume)
|
|
{
|
|
struct gsi *gsi = channel->gsi;
|
|
int ret;
|
|
|
|
/* Prior to IPA v4.0 suspend/resume is not implemented by GSI */
|
|
if (resume && gsi->version < IPA_VERSION_4_0)
|
|
return 0;
|
|
|
|
mutex_lock(&gsi->mutex);
|
|
|
|
ret = gsi_channel_start_command(channel);
|
|
|
|
mutex_unlock(&gsi->mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Start an allocated GSI channel */
|
|
int gsi_channel_start(struct gsi *gsi, u32 channel_id)
|
|
{
|
|
struct gsi_channel *channel = &gsi->channel[channel_id];
|
|
int ret;
|
|
|
|
/* Enable NAPI and the completion interrupt */
|
|
napi_enable(&channel->napi);
|
|
gsi_irq_ieob_enable_one(gsi, channel->evt_ring_id);
|
|
|
|
ret = __gsi_channel_start(channel, false);
|
|
if (ret) {
|
|
gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id);
|
|
napi_disable(&channel->napi);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int gsi_channel_stop_retry(struct gsi_channel *channel)
|
|
{
|
|
u32 retries = GSI_CHANNEL_STOP_RETRIES;
|
|
int ret;
|
|
|
|
do {
|
|
ret = gsi_channel_stop_command(channel);
|
|
if (ret != -EAGAIN)
|
|
break;
|
|
usleep_range(3 * USEC_PER_MSEC, 5 * USEC_PER_MSEC);
|
|
} while (retries--);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __gsi_channel_stop(struct gsi_channel *channel, bool suspend)
|
|
{
|
|
struct gsi *gsi = channel->gsi;
|
|
int ret;
|
|
|
|
/* Wait for any underway transactions to complete before stopping. */
|
|
gsi_channel_trans_quiesce(channel);
|
|
|
|
/* Prior to IPA v4.0 suspend/resume is not implemented by GSI */
|
|
if (suspend && gsi->version < IPA_VERSION_4_0)
|
|
return 0;
|
|
|
|
mutex_lock(&gsi->mutex);
|
|
|
|
ret = gsi_channel_stop_retry(channel);
|
|
|
|
mutex_unlock(&gsi->mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Stop a started channel */
|
|
int gsi_channel_stop(struct gsi *gsi, u32 channel_id)
|
|
{
|
|
struct gsi_channel *channel = &gsi->channel[channel_id];
|
|
int ret;
|
|
|
|
ret = __gsi_channel_stop(channel, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Disable the completion interrupt and NAPI if successful */
|
|
gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id);
|
|
napi_disable(&channel->napi);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Reset and reconfigure a channel, (possibly) enabling the doorbell engine */
|
|
void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool doorbell)
|
|
{
|
|
struct gsi_channel *channel = &gsi->channel[channel_id];
|
|
|
|
mutex_lock(&gsi->mutex);
|
|
|
|
gsi_channel_reset_command(channel);
|
|
/* Due to a hardware quirk we may need to reset RX channels twice. */
|
|
if (gsi->version < IPA_VERSION_4_0 && !channel->toward_ipa)
|
|
gsi_channel_reset_command(channel);
|
|
|
|
/* Hardware assumes this is 0 following reset */
|
|
channel->tre_ring.index = 0;
|
|
gsi_channel_program(channel, doorbell);
|
|
gsi_channel_trans_cancel_pending(channel);
|
|
|
|
mutex_unlock(&gsi->mutex);
|
|
}
|
|
|
|
/* Stop a started channel for suspend */
|
|
int gsi_channel_suspend(struct gsi *gsi, u32 channel_id)
|
|
{
|
|
struct gsi_channel *channel = &gsi->channel[channel_id];
|
|
int ret;
|
|
|
|
ret = __gsi_channel_stop(channel, true);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Ensure NAPI polling has finished. */
|
|
napi_synchronize(&channel->napi);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Resume a suspended channel (starting if stopped) */
|
|
int gsi_channel_resume(struct gsi *gsi, u32 channel_id)
|
|
{
|
|
struct gsi_channel *channel = &gsi->channel[channel_id];
|
|
|
|
return __gsi_channel_start(channel, true);
|
|
}
|
|
|
|
/* Prevent all GSI interrupts while suspended */
|
|
void gsi_suspend(struct gsi *gsi)
|
|
{
|
|
disable_irq(gsi->irq);
|
|
}
|
|
|
|
/* Allow all GSI interrupts again when resuming */
|
|
void gsi_resume(struct gsi *gsi)
|
|
{
|
|
enable_irq(gsi->irq);
|
|
}
|
|
|
|
void gsi_trans_tx_committed(struct gsi_trans *trans)
|
|
{
|
|
struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
|
|
|
|
channel->trans_count++;
|
|
channel->byte_count += trans->len;
|
|
|
|
trans->trans_count = channel->trans_count;
|
|
trans->byte_count = channel->byte_count;
|
|
}
|
|
|
|
void gsi_trans_tx_queued(struct gsi_trans *trans)
|
|
{
|
|
u32 channel_id = trans->channel_id;
|
|
struct gsi *gsi = trans->gsi;
|
|
struct gsi_channel *channel;
|
|
u32 trans_count;
|
|
u32 byte_count;
|
|
|
|
channel = &gsi->channel[channel_id];
|
|
|
|
byte_count = channel->byte_count - channel->queued_byte_count;
|
|
trans_count = channel->trans_count - channel->queued_trans_count;
|
|
channel->queued_byte_count = channel->byte_count;
|
|
channel->queued_trans_count = channel->trans_count;
|
|
|
|
ipa_gsi_channel_tx_queued(gsi, channel_id, trans_count, byte_count);
|
|
}
|
|
|
|
/**
|
|
* gsi_trans_tx_completed() - Report completed TX transactions
|
|
* @trans: TX channel transaction that has completed
|
|
*
|
|
* Report that a transaction on a TX channel has completed. At the time a
|
|
* transaction is committed, we record *in the transaction* its channel's
|
|
* committed transaction and byte counts. Transactions are completed in
|
|
* order, and the difference between the channel's byte/transaction count
|
|
* when the transaction was committed and when it completes tells us
|
|
* exactly how much data has been transferred while the transaction was
|
|
* pending.
|
|
*
|
|
* We report this information to the network stack, which uses it to manage
|
|
* the rate at which data is sent to hardware.
|
|
*/
|
|
static void gsi_trans_tx_completed(struct gsi_trans *trans)
|
|
{
|
|
u32 channel_id = trans->channel_id;
|
|
struct gsi *gsi = trans->gsi;
|
|
struct gsi_channel *channel;
|
|
u32 trans_count;
|
|
u32 byte_count;
|
|
|
|
channel = &gsi->channel[channel_id];
|
|
trans_count = trans->trans_count - channel->compl_trans_count;
|
|
byte_count = trans->byte_count - channel->compl_byte_count;
|
|
|
|
channel->compl_trans_count += trans_count;
|
|
channel->compl_byte_count += byte_count;
|
|
|
|
ipa_gsi_channel_tx_completed(gsi, channel_id, trans_count, byte_count);
|
|
}
|
|
|
|
/* Channel control interrupt handler */
|
|
static void gsi_isr_chan_ctrl(struct gsi *gsi)
|
|
{
|
|
const struct reg *reg;
|
|
u32 channel_mask;
|
|
|
|
reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ);
|
|
channel_mask = ioread32(gsi->virt + reg_offset(reg));
|
|
|
|
reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_CLR);
|
|
iowrite32(channel_mask, gsi->virt + reg_offset(reg));
|
|
|
|
while (channel_mask) {
|
|
u32 channel_id = __ffs(channel_mask);
|
|
|
|
channel_mask ^= BIT(channel_id);
|
|
|
|
complete(&gsi->completion);
|
|
}
|
|
}
|
|
|
|
/* Event ring control interrupt handler */
|
|
static void gsi_isr_evt_ctrl(struct gsi *gsi)
|
|
{
|
|
const struct reg *reg;
|
|
u32 event_mask;
|
|
|
|
reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ);
|
|
event_mask = ioread32(gsi->virt + reg_offset(reg));
|
|
|
|
reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_CLR);
|
|
iowrite32(event_mask, gsi->virt + reg_offset(reg));
|
|
|
|
while (event_mask) {
|
|
u32 evt_ring_id = __ffs(event_mask);
|
|
|
|
event_mask ^= BIT(evt_ring_id);
|
|
|
|
complete(&gsi->completion);
|
|
}
|
|
}
|
|
|
|
/* Global channel error interrupt handler */
|
|
static void
|
|
gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code)
|
|
{
|
|
if (code == GSI_OUT_OF_RESOURCES) {
|
|
dev_err(gsi->dev, "channel %u out of resources\n", channel_id);
|
|
complete(&gsi->completion);
|
|
return;
|
|
}
|
|
|
|
/* Report, but otherwise ignore all other error codes */
|
|
dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n",
|
|
channel_id, err_ee, code);
|
|
}
|
|
|
|
/* Global event error interrupt handler */
|
|
static void
|
|
gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code)
|
|
{
|
|
if (code == GSI_OUT_OF_RESOURCES) {
|
|
struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
|
|
u32 channel_id = gsi_channel_id(evt_ring->channel);
|
|
|
|
complete(&gsi->completion);
|
|
dev_err(gsi->dev, "evt_ring for channel %u out of resources\n",
|
|
channel_id);
|
|
return;
|
|
}
|
|
|
|
/* Report, but otherwise ignore all other error codes */
|
|
dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n",
|
|
evt_ring_id, err_ee, code);
|
|
}
|
|
|
|
/* Global error interrupt handler */
|
|
static void gsi_isr_glob_err(struct gsi *gsi)
|
|
{
|
|
const struct reg *log_reg;
|
|
const struct reg *clr_reg;
|
|
enum gsi_err_type type;
|
|
enum gsi_err_code code;
|
|
u32 offset;
|
|
u32 which;
|
|
u32 val;
|
|
u32 ee;
|
|
|
|
/* Get the logged error, then reinitialize the log */
|
|
log_reg = gsi_reg(gsi, ERROR_LOG);
|
|
offset = reg_offset(log_reg);
|
|
val = ioread32(gsi->virt + offset);
|
|
iowrite32(0, gsi->virt + offset);
|
|
|
|
clr_reg = gsi_reg(gsi, ERROR_LOG_CLR);
|
|
iowrite32(~0, gsi->virt + reg_offset(clr_reg));
|
|
|
|
/* Parse the error value */
|
|
ee = reg_decode(log_reg, ERR_EE, val);
|
|
type = reg_decode(log_reg, ERR_TYPE, val);
|
|
which = reg_decode(log_reg, ERR_VIRT_IDX, val);
|
|
code = reg_decode(log_reg, ERR_CODE, val);
|
|
|
|
if (type == GSI_ERR_TYPE_CHAN)
|
|
gsi_isr_glob_chan_err(gsi, ee, which, code);
|
|
else if (type == GSI_ERR_TYPE_EVT)
|
|
gsi_isr_glob_evt_err(gsi, ee, which, code);
|
|
else /* type GSI_ERR_TYPE_GLOB should be fatal */
|
|
dev_err(gsi->dev, "unexpected global error 0x%08x\n", type);
|
|
}
|
|
|
|
/* Generic EE interrupt handler */
|
|
static void gsi_isr_gp_int1(struct gsi *gsi)
|
|
{
|
|
const struct reg *reg;
|
|
u32 result;
|
|
u32 val;
|
|
|
|
/* This interrupt is used to handle completions of GENERIC GSI
|
|
* commands. We use these to allocate and halt channels on the
|
|
* modem's behalf due to a hardware quirk on IPA v4.2. The modem
|
|
* "owns" channels even when the AP allocates them, and have no
|
|
* way of knowing whether a modem channel's state has been changed.
|
|
*
|
|
* We also use GENERIC commands to enable/disable channel flow
|
|
* control for IPA v4.2+.
|
|
*
|
|
* It is recommended that we halt the modem channels we allocated
|
|
* when shutting down, but it's possible the channel isn't running
|
|
* at the time we issue the HALT command. We'll get an error in
|
|
* that case, but it's harmless (the channel is already halted).
|
|
* Similarly, we could get an error back when updating flow control
|
|
* on a channel because it's not in the proper state.
|
|
*
|
|
* In either case, we silently ignore a INCORRECT_CHANNEL_STATE
|
|
* error if we receive it.
|
|
*/
|
|
reg = gsi_reg(gsi, CNTXT_SCRATCH_0);
|
|
val = ioread32(gsi->virt + reg_offset(reg));
|
|
result = reg_decode(reg, GENERIC_EE_RESULT, val);
|
|
|
|
switch (result) {
|
|
case GENERIC_EE_SUCCESS:
|
|
case GENERIC_EE_INCORRECT_CHANNEL_STATE:
|
|
gsi->result = 0;
|
|
break;
|
|
|
|
case GENERIC_EE_RETRY:
|
|
gsi->result = -EAGAIN;
|
|
break;
|
|
|
|
default:
|
|
dev_err(gsi->dev, "global INT1 generic result %u\n", result);
|
|
gsi->result = -EIO;
|
|
break;
|
|
}
|
|
|
|
complete(&gsi->completion);
|
|
}
|
|
|
|
/* Inter-EE interrupt handler */
|
|
static void gsi_isr_glob_ee(struct gsi *gsi)
|
|
{
|
|
const struct reg *reg;
|
|
u32 val;
|
|
|
|
reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_STTS);
|
|
val = ioread32(gsi->virt + reg_offset(reg));
|
|
|
|
if (val & ERROR_INT)
|
|
gsi_isr_glob_err(gsi);
|
|
|
|
reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_CLR);
|
|
iowrite32(val, gsi->virt + reg_offset(reg));
|
|
|
|
val &= ~ERROR_INT;
|
|
|
|
if (val & GP_INT1) {
|
|
val ^= GP_INT1;
|
|
gsi_isr_gp_int1(gsi);
|
|
}
|
|
|
|
if (val)
|
|
dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val);
|
|
}
|
|
|
|
/* I/O completion interrupt event */
|
|
static void gsi_isr_ieob(struct gsi *gsi)
|
|
{
|
|
const struct reg *reg;
|
|
u32 event_mask;
|
|
|
|
reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ);
|
|
event_mask = ioread32(gsi->virt + reg_offset(reg));
|
|
|
|
gsi_irq_ieob_disable(gsi, event_mask);
|
|
|
|
reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_CLR);
|
|
iowrite32(event_mask, gsi->virt + reg_offset(reg));
|
|
|
|
while (event_mask) {
|
|
u32 evt_ring_id = __ffs(event_mask);
|
|
|
|
event_mask ^= BIT(evt_ring_id);
|
|
|
|
napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi);
|
|
}
|
|
}
|
|
|
|
/* General event interrupts represent serious problems, so report them */
|
|
static void gsi_isr_general(struct gsi *gsi)
|
|
{
|
|
struct device *dev = gsi->dev;
|
|
const struct reg *reg;
|
|
u32 val;
|
|
|
|
reg = gsi_reg(gsi, CNTXT_GSI_IRQ_STTS);
|
|
val = ioread32(gsi->virt + reg_offset(reg));
|
|
|
|
reg = gsi_reg(gsi, CNTXT_GSI_IRQ_CLR);
|
|
iowrite32(val, gsi->virt + reg_offset(reg));
|
|
|
|
dev_err(dev, "unexpected general interrupt 0x%08x\n", val);
|
|
}
|
|
|
|
/**
|
|
* gsi_isr() - Top level GSI interrupt service routine
|
|
* @irq: Interrupt number (ignored)
|
|
* @dev_id: GSI pointer supplied to request_irq()
|
|
*
|
|
* This is the main handler function registered for the GSI IRQ. Each type
|
|
* of interrupt has a separate handler function that is called from here.
|
|
*/
|
|
static irqreturn_t gsi_isr(int irq, void *dev_id)
|
|
{
|
|
struct gsi *gsi = dev_id;
|
|
const struct reg *reg;
|
|
u32 intr_mask;
|
|
u32 cnt = 0;
|
|
u32 offset;
|
|
|
|
reg = gsi_reg(gsi, CNTXT_TYPE_IRQ);
|
|
offset = reg_offset(reg);
|
|
|
|
/* enum gsi_irq_type_id defines GSI interrupt types */
|
|
while ((intr_mask = ioread32(gsi->virt + offset))) {
|
|
/* intr_mask contains bitmask of pending GSI interrupts */
|
|
do {
|
|
u32 gsi_intr = BIT(__ffs(intr_mask));
|
|
|
|
intr_mask ^= gsi_intr;
|
|
|
|
/* Note: the IRQ condition for each type is cleared
|
|
* when the type-specific register is updated.
|
|
*/
|
|
switch (gsi_intr) {
|
|
case GSI_CH_CTRL:
|
|
gsi_isr_chan_ctrl(gsi);
|
|
break;
|
|
case GSI_EV_CTRL:
|
|
gsi_isr_evt_ctrl(gsi);
|
|
break;
|
|
case GSI_GLOB_EE:
|
|
gsi_isr_glob_ee(gsi);
|
|
break;
|
|
case GSI_IEOB:
|
|
gsi_isr_ieob(gsi);
|
|
break;
|
|
case GSI_GENERAL:
|
|
gsi_isr_general(gsi);
|
|
break;
|
|
default:
|
|
dev_err(gsi->dev,
|
|
"unrecognized interrupt type 0x%08x\n",
|
|
gsi_intr);
|
|
break;
|
|
}
|
|
} while (intr_mask);
|
|
|
|
if (++cnt > GSI_ISR_MAX_ITER) {
|
|
dev_err(gsi->dev, "interrupt flood\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Init function for GSI IRQ lookup; there is no gsi_irq_exit() */
|
|
static int gsi_irq_init(struct gsi *gsi, struct platform_device *pdev)
|
|
{
|
|
int ret;
|
|
|
|
ret = platform_get_irq_byname(pdev, "gsi");
|
|
if (ret <= 0)
|
|
return ret ? : -EINVAL;
|
|
|
|
gsi->irq = ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Return the transaction associated with a transfer completion event */
|
|
static struct gsi_trans *
|
|
gsi_event_trans(struct gsi *gsi, struct gsi_event *event)
|
|
{
|
|
u32 channel_id = event->chid;
|
|
struct gsi_channel *channel;
|
|
struct gsi_trans *trans;
|
|
u32 tre_offset;
|
|
u32 tre_index;
|
|
|
|
channel = &gsi->channel[channel_id];
|
|
if (WARN(!channel->gsi, "event has bad channel %u\n", channel_id))
|
|
return NULL;
|
|
|
|
/* Event xfer_ptr records the TRE it's associated with */
|
|
tre_offset = lower_32_bits(le64_to_cpu(event->xfer_ptr));
|
|
tre_index = gsi_ring_index(&channel->tre_ring, tre_offset);
|
|
|
|
trans = gsi_channel_trans_mapped(channel, tre_index);
|
|
|
|
if (WARN(!trans, "channel %u event with no transaction\n", channel_id))
|
|
return NULL;
|
|
|
|
return trans;
|
|
}
|
|
|
|
/**
|
|
* gsi_evt_ring_update() - Update transaction state from hardware
|
|
* @gsi: GSI pointer
|
|
* @evt_ring_id: Event ring ID
|
|
* @index: Event index in ring reported by hardware
|
|
*
|
|
* Events for RX channels contain the actual number of bytes received into
|
|
* the buffer. Every event has a transaction associated with it, and here
|
|
* we update transactions to record their actual received lengths.
|
|
*
|
|
* When an event for a TX channel arrives we use information in the
|
|
* transaction to report the number of requests and bytes that have
|
|
* been transferred.
|
|
*
|
|
* This function is called whenever we learn that the GSI hardware has filled
|
|
* new events since the last time we checked. The ring's index field tells
|
|
* the first entry in need of processing. The index provided is the
|
|
* first *unfilled* event in the ring (following the last filled one).
|
|
*
|
|
* Events are sequential within the event ring, and transactions are
|
|
* sequential within the transaction array.
|
|
*
|
|
* Note that @index always refers to an element *within* the event ring.
|
|
*/
|
|
static void gsi_evt_ring_update(struct gsi *gsi, u32 evt_ring_id, u32 index)
|
|
{
|
|
struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
|
|
struct gsi_ring *ring = &evt_ring->ring;
|
|
struct gsi_event *event_done;
|
|
struct gsi_event *event;
|
|
u32 event_avail;
|
|
u32 old_index;
|
|
|
|
/* Starting with the oldest un-processed event, determine which
|
|
* transaction (and which channel) is associated with the event.
|
|
* For RX channels, update each completed transaction with the
|
|
* number of bytes that were actually received. For TX channels
|
|
* associated with a network device, report to the network stack
|
|
* the number of transfers and bytes this completion represents.
|
|
*/
|
|
old_index = ring->index;
|
|
event = gsi_ring_virt(ring, old_index);
|
|
|
|
/* Compute the number of events to process before we wrap,
|
|
* and determine when we'll be done processing events.
|
|
*/
|
|
event_avail = ring->count - old_index % ring->count;
|
|
event_done = gsi_ring_virt(ring, index);
|
|
do {
|
|
struct gsi_trans *trans;
|
|
|
|
trans = gsi_event_trans(gsi, event);
|
|
if (!trans)
|
|
return;
|
|
|
|
if (trans->direction == DMA_FROM_DEVICE)
|
|
trans->len = __le16_to_cpu(event->len);
|
|
else
|
|
gsi_trans_tx_completed(trans);
|
|
|
|
gsi_trans_move_complete(trans);
|
|
|
|
/* Move on to the next event and transaction */
|
|
if (--event_avail)
|
|
event++;
|
|
else
|
|
event = gsi_ring_virt(ring, 0);
|
|
} while (event != event_done);
|
|
|
|
/* Tell the hardware we've handled these events */
|
|
gsi_evt_ring_doorbell(gsi, evt_ring_id, index);
|
|
}
|
|
|
|
/* Initialize a ring, including allocating DMA memory for its entries */
|
|
static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count)
|
|
{
|
|
u32 size = count * GSI_RING_ELEMENT_SIZE;
|
|
struct device *dev = gsi->dev;
|
|
dma_addr_t addr;
|
|
|
|
/* Hardware requires a 2^n ring size, with alignment equal to size.
|
|
* The DMA address returned by dma_alloc_coherent() is guaranteed to
|
|
* be a power-of-2 number of pages, which satisfies the requirement.
|
|
*/
|
|
ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL);
|
|
if (!ring->virt)
|
|
return -ENOMEM;
|
|
|
|
ring->addr = addr;
|
|
ring->count = count;
|
|
ring->index = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Free a previously-allocated ring */
|
|
static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring)
|
|
{
|
|
size_t size = ring->count * GSI_RING_ELEMENT_SIZE;
|
|
|
|
dma_free_coherent(gsi->dev, size, ring->virt, ring->addr);
|
|
}
|
|
|
|
/* Allocate an available event ring id */
|
|
static int gsi_evt_ring_id_alloc(struct gsi *gsi)
|
|
{
|
|
u32 evt_ring_id;
|
|
|
|
if (gsi->event_bitmap == ~0U) {
|
|
dev_err(gsi->dev, "event rings exhausted\n");
|
|
return -ENOSPC;
|
|
}
|
|
|
|
evt_ring_id = ffz(gsi->event_bitmap);
|
|
gsi->event_bitmap |= BIT(evt_ring_id);
|
|
|
|
return (int)evt_ring_id;
|
|
}
|
|
|
|
/* Free a previously-allocated event ring id */
|
|
static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id)
|
|
{
|
|
gsi->event_bitmap &= ~BIT(evt_ring_id);
|
|
}
|
|
|
|
/* Ring a channel doorbell, reporting the first un-filled entry */
|
|
void gsi_channel_doorbell(struct gsi_channel *channel)
|
|
{
|
|
struct gsi_ring *tre_ring = &channel->tre_ring;
|
|
u32 channel_id = gsi_channel_id(channel);
|
|
struct gsi *gsi = channel->gsi;
|
|
const struct reg *reg;
|
|
u32 val;
|
|
|
|
reg = gsi_reg(gsi, CH_C_DOORBELL_0);
|
|
/* Note: index *must* be used modulo the ring count here */
|
|
val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count);
|
|
iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
|
|
}
|
|
|
|
/* Consult hardware, move newly completed transactions to completed state */
|
|
void gsi_channel_update(struct gsi_channel *channel)
|
|
{
|
|
u32 evt_ring_id = channel->evt_ring_id;
|
|
struct gsi *gsi = channel->gsi;
|
|
struct gsi_evt_ring *evt_ring;
|
|
struct gsi_trans *trans;
|
|
struct gsi_ring *ring;
|
|
const struct reg *reg;
|
|
u32 offset;
|
|
u32 index;
|
|
|
|
evt_ring = &gsi->evt_ring[evt_ring_id];
|
|
ring = &evt_ring->ring;
|
|
|
|
/* See if there's anything new to process; if not, we're done. Note
|
|
* that index always refers to an entry *within* the event ring.
|
|
*/
|
|
reg = gsi_reg(gsi, EV_CH_E_CNTXT_4);
|
|
offset = reg_n_offset(reg, evt_ring_id);
|
|
index = gsi_ring_index(ring, ioread32(gsi->virt + offset));
|
|
if (index == ring->index % ring->count)
|
|
return;
|
|
|
|
/* Get the transaction for the latest completed event. */
|
|
trans = gsi_event_trans(gsi, gsi_ring_virt(ring, index - 1));
|
|
if (!trans)
|
|
return;
|
|
|
|
/* For RX channels, update each completed transaction with the number
|
|
* of bytes that were actually received. For TX channels, report
|
|
* the number of transactions and bytes this completion represents
|
|
* up the network stack.
|
|
*/
|
|
gsi_evt_ring_update(gsi, evt_ring_id, index);
|
|
}
|
|
|
|
/**
|
|
* gsi_channel_poll_one() - Return a single completed transaction on a channel
|
|
* @channel: Channel to be polled
|
|
*
|
|
* Return: Transaction pointer, or null if none are available
|
|
*
|
|
* This function returns the first of a channel's completed transactions.
|
|
* If no transactions are in completed state, the hardware is consulted to
|
|
* determine whether any new transactions have completed. If so, they're
|
|
* moved to completed state and the first such transaction is returned.
|
|
* If there are no more completed transactions, a null pointer is returned.
|
|
*/
|
|
static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel)
|
|
{
|
|
struct gsi_trans *trans;
|
|
|
|
/* Get the first completed transaction */
|
|
trans = gsi_channel_trans_complete(channel);
|
|
if (trans)
|
|
gsi_trans_move_polled(trans);
|
|
|
|
return trans;
|
|
}
|
|
|
|
/**
|
|
* gsi_channel_poll() - NAPI poll function for a channel
|
|
* @napi: NAPI structure for the channel
|
|
* @budget: Budget supplied by NAPI core
|
|
*
|
|
* Return: Number of items polled (<= budget)
|
|
*
|
|
* Single transactions completed by hardware are polled until either
|
|
* the budget is exhausted, or there are no more. Each transaction
|
|
* polled is passed to gsi_trans_complete(), to perform remaining
|
|
* completion processing and retire/free the transaction.
|
|
*/
|
|
static int gsi_channel_poll(struct napi_struct *napi, int budget)
|
|
{
|
|
struct gsi_channel *channel;
|
|
int count;
|
|
|
|
channel = container_of(napi, struct gsi_channel, napi);
|
|
for (count = 0; count < budget; count++) {
|
|
struct gsi_trans *trans;
|
|
|
|
trans = gsi_channel_poll_one(channel);
|
|
if (!trans)
|
|
break;
|
|
gsi_trans_complete(trans);
|
|
}
|
|
|
|
if (count < budget && napi_complete(napi))
|
|
gsi_irq_ieob_enable_one(channel->gsi, channel->evt_ring_id);
|
|
|
|
return count;
|
|
}
|
|
|
|
/* The event bitmap represents which event ids are available for allocation.
|
|
* Set bits are not available, clear bits can be used. This function
|
|
* initializes the map so all events supported by the hardware are available,
|
|
* then precludes any reserved events from being allocated.
|
|
*/
|
|
static u32 gsi_event_bitmap_init(u32 evt_ring_max)
|
|
{
|
|
u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max);
|
|
|
|
event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START);
|
|
|
|
return event_bitmap;
|
|
}
|
|
|
|
/* Setup function for a single channel */
|
|
static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id)
|
|
{
|
|
struct gsi_channel *channel = &gsi->channel[channel_id];
|
|
u32 evt_ring_id = channel->evt_ring_id;
|
|
int ret;
|
|
|
|
if (!gsi_channel_initialized(channel))
|
|
return 0;
|
|
|
|
ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id);
|
|
if (ret)
|
|
return ret;
|
|
|
|
gsi_evt_ring_program(gsi, evt_ring_id);
|
|
|
|
ret = gsi_channel_alloc_command(gsi, channel_id);
|
|
if (ret)
|
|
goto err_evt_ring_de_alloc;
|
|
|
|
gsi_channel_program(channel, true);
|
|
|
|
if (channel->toward_ipa)
|
|
netif_napi_add_tx(&gsi->dummy_dev, &channel->napi,
|
|
gsi_channel_poll);
|
|
else
|
|
netif_napi_add(&gsi->dummy_dev, &channel->napi,
|
|
gsi_channel_poll);
|
|
|
|
return 0;
|
|
|
|
err_evt_ring_de_alloc:
|
|
/* We've done nothing with the event ring yet so don't reset */
|
|
gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Inverse of gsi_channel_setup_one() */
|
|
static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id)
|
|
{
|
|
struct gsi_channel *channel = &gsi->channel[channel_id];
|
|
u32 evt_ring_id = channel->evt_ring_id;
|
|
|
|
if (!gsi_channel_initialized(channel))
|
|
return;
|
|
|
|
netif_napi_del(&channel->napi);
|
|
|
|
gsi_channel_de_alloc_command(gsi, channel_id);
|
|
gsi_evt_ring_reset_command(gsi, evt_ring_id);
|
|
gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
|
|
}
|
|
|
|
/* We use generic commands only to operate on modem channels. We don't have
|
|
* the ability to determine channel state for a modem channel, so we simply
|
|
* issue the command and wait for it to complete.
|
|
*/
|
|
static int gsi_generic_command(struct gsi *gsi, u32 channel_id,
|
|
enum gsi_generic_cmd_opcode opcode,
|
|
u8 params)
|
|
{
|
|
const struct reg *reg;
|
|
bool timeout;
|
|
u32 offset;
|
|
u32 val;
|
|
|
|
/* The error global interrupt type is always enabled (until we tear
|
|
* down), so we will keep it enabled.
|
|
*
|
|
* A generic EE command completes with a GSI global interrupt of
|
|
* type GP_INT1. We only perform one generic command at a time
|
|
* (to allocate, halt, or enable/disable flow control on a modem
|
|
* channel), and only from this function. So we enable the GP_INT1
|
|
* IRQ type here, and disable it again after the command completes.
|
|
*/
|
|
reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN);
|
|
val = ERROR_INT | GP_INT1;
|
|
iowrite32(val, gsi->virt + reg_offset(reg));
|
|
|
|
/* First zero the result code field */
|
|
reg = gsi_reg(gsi, CNTXT_SCRATCH_0);
|
|
offset = reg_offset(reg);
|
|
val = ioread32(gsi->virt + offset);
|
|
|
|
val &= ~reg_fmask(reg, GENERIC_EE_RESULT);
|
|
iowrite32(val, gsi->virt + offset);
|
|
|
|
/* Now issue the command */
|
|
reg = gsi_reg(gsi, GENERIC_CMD);
|
|
val = reg_encode(reg, GENERIC_OPCODE, opcode);
|
|
val |= reg_encode(reg, GENERIC_CHID, channel_id);
|
|
val |= reg_encode(reg, GENERIC_EE, GSI_EE_MODEM);
|
|
if (gsi->version >= IPA_VERSION_4_11)
|
|
val |= reg_encode(reg, GENERIC_PARAMS, params);
|
|
|
|
timeout = !gsi_command(gsi, reg_offset(reg), val);
|
|
|
|
/* Disable the GP_INT1 IRQ type again */
|
|
reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN);
|
|
iowrite32(ERROR_INT, gsi->virt + reg_offset(reg));
|
|
|
|
if (!timeout)
|
|
return gsi->result;
|
|
|
|
dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n",
|
|
opcode, channel_id);
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id)
|
|
{
|
|
return gsi_generic_command(gsi, channel_id,
|
|
GSI_GENERIC_ALLOCATE_CHANNEL, 0);
|
|
}
|
|
|
|
static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id)
|
|
{
|
|
u32 retries = GSI_CHANNEL_MODEM_HALT_RETRIES;
|
|
int ret;
|
|
|
|
do
|
|
ret = gsi_generic_command(gsi, channel_id,
|
|
GSI_GENERIC_HALT_CHANNEL, 0);
|
|
while (ret == -EAGAIN && retries--);
|
|
|
|
if (ret)
|
|
dev_err(gsi->dev, "error %d halting modem channel %u\n",
|
|
ret, channel_id);
|
|
}
|
|
|
|
/* Enable or disable flow control for a modem GSI TX channel (IPA v4.2+) */
|
|
void
|
|
gsi_modem_channel_flow_control(struct gsi *gsi, u32 channel_id, bool enable)
|
|
{
|
|
u32 retries = 0;
|
|
u32 command;
|
|
int ret;
|
|
|
|
command = enable ? GSI_GENERIC_ENABLE_FLOW_CONTROL
|
|
: GSI_GENERIC_DISABLE_FLOW_CONTROL;
|
|
/* Disabling flow control on IPA v4.11+ can return -EAGAIN if enable
|
|
* is underway. In this case we need to retry the command.
|
|
*/
|
|
if (!enable && gsi->version >= IPA_VERSION_4_11)
|
|
retries = GSI_CHANNEL_MODEM_FLOW_RETRIES;
|
|
|
|
do
|
|
ret = gsi_generic_command(gsi, channel_id, command, 0);
|
|
while (ret == -EAGAIN && retries--);
|
|
|
|
if (ret)
|
|
dev_err(gsi->dev,
|
|
"error %d %sabling mode channel %u flow control\n",
|
|
ret, enable ? "en" : "dis", channel_id);
|
|
}
|
|
|
|
/* Setup function for channels */
|
|
static int gsi_channel_setup(struct gsi *gsi)
|
|
{
|
|
u32 channel_id = 0;
|
|
u32 mask;
|
|
int ret;
|
|
|
|
gsi_irq_enable(gsi);
|
|
|
|
mutex_lock(&gsi->mutex);
|
|
|
|
do {
|
|
ret = gsi_channel_setup_one(gsi, channel_id);
|
|
if (ret)
|
|
goto err_unwind;
|
|
} while (++channel_id < gsi->channel_count);
|
|
|
|
/* Make sure no channels were defined that hardware does not support */
|
|
while (channel_id < GSI_CHANNEL_COUNT_MAX) {
|
|
struct gsi_channel *channel = &gsi->channel[channel_id++];
|
|
|
|
if (!gsi_channel_initialized(channel))
|
|
continue;
|
|
|
|
ret = -EINVAL;
|
|
dev_err(gsi->dev, "channel %u not supported by hardware\n",
|
|
channel_id - 1);
|
|
channel_id = gsi->channel_count;
|
|
goto err_unwind;
|
|
}
|
|
|
|
/* Allocate modem channels if necessary */
|
|
mask = gsi->modem_channel_bitmap;
|
|
while (mask) {
|
|
u32 modem_channel_id = __ffs(mask);
|
|
|
|
ret = gsi_modem_channel_alloc(gsi, modem_channel_id);
|
|
if (ret)
|
|
goto err_unwind_modem;
|
|
|
|
/* Clear bit from mask only after success (for unwind) */
|
|
mask ^= BIT(modem_channel_id);
|
|
}
|
|
|
|
mutex_unlock(&gsi->mutex);
|
|
|
|
return 0;
|
|
|
|
err_unwind_modem:
|
|
/* Compute which modem channels need to be deallocated */
|
|
mask ^= gsi->modem_channel_bitmap;
|
|
while (mask) {
|
|
channel_id = __fls(mask);
|
|
|
|
mask ^= BIT(channel_id);
|
|
|
|
gsi_modem_channel_halt(gsi, channel_id);
|
|
}
|
|
|
|
err_unwind:
|
|
while (channel_id--)
|
|
gsi_channel_teardown_one(gsi, channel_id);
|
|
|
|
mutex_unlock(&gsi->mutex);
|
|
|
|
gsi_irq_disable(gsi);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Inverse of gsi_channel_setup() */
|
|
static void gsi_channel_teardown(struct gsi *gsi)
|
|
{
|
|
u32 mask = gsi->modem_channel_bitmap;
|
|
u32 channel_id;
|
|
|
|
mutex_lock(&gsi->mutex);
|
|
|
|
while (mask) {
|
|
channel_id = __fls(mask);
|
|
|
|
mask ^= BIT(channel_id);
|
|
|
|
gsi_modem_channel_halt(gsi, channel_id);
|
|
}
|
|
|
|
channel_id = gsi->channel_count - 1;
|
|
do
|
|
gsi_channel_teardown_one(gsi, channel_id);
|
|
while (channel_id--);
|
|
|
|
mutex_unlock(&gsi->mutex);
|
|
|
|
gsi_irq_disable(gsi);
|
|
}
|
|
|
|
/* Turn off all GSI interrupts initially */
|
|
static int gsi_irq_setup(struct gsi *gsi)
|
|
{
|
|
const struct reg *reg;
|
|
int ret;
|
|
|
|
/* Writing 1 indicates IRQ interrupts; 0 would be MSI */
|
|
reg = gsi_reg(gsi, CNTXT_INTSET);
|
|
iowrite32(reg_bit(reg, INTYPE), gsi->virt + reg_offset(reg));
|
|
|
|
/* Disable all interrupt types */
|
|
gsi_irq_type_update(gsi, 0);
|
|
|
|
/* Clear all type-specific interrupt masks */
|
|
reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_MSK);
|
|
iowrite32(0, gsi->virt + reg_offset(reg));
|
|
|
|
reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_MSK);
|
|
iowrite32(0, gsi->virt + reg_offset(reg));
|
|
|
|
reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN);
|
|
iowrite32(0, gsi->virt + reg_offset(reg));
|
|
|
|
reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_MSK);
|
|
iowrite32(0, gsi->virt + reg_offset(reg));
|
|
|
|
/* The inter-EE interrupts are not supported for IPA v3.0-v3.1 */
|
|
if (gsi->version > IPA_VERSION_3_1) {
|
|
reg = gsi_reg(gsi, INTER_EE_SRC_CH_IRQ_MSK);
|
|
iowrite32(0, gsi->virt + reg_offset(reg));
|
|
|
|
reg = gsi_reg(gsi, INTER_EE_SRC_EV_CH_IRQ_MSK);
|
|
iowrite32(0, gsi->virt + reg_offset(reg));
|
|
}
|
|
|
|
reg = gsi_reg(gsi, CNTXT_GSI_IRQ_EN);
|
|
iowrite32(0, gsi->virt + reg_offset(reg));
|
|
|
|
ret = request_irq(gsi->irq, gsi_isr, 0, "gsi", gsi);
|
|
if (ret)
|
|
dev_err(gsi->dev, "error %d requesting \"gsi\" IRQ\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void gsi_irq_teardown(struct gsi *gsi)
|
|
{
|
|
free_irq(gsi->irq, gsi);
|
|
}
|
|
|
|
/* Get # supported channel and event rings; there is no gsi_ring_teardown() */
|
|
static int gsi_ring_setup(struct gsi *gsi)
|
|
{
|
|
struct device *dev = gsi->dev;
|
|
const struct reg *reg;
|
|
u32 count;
|
|
u32 val;
|
|
|
|
if (gsi->version < IPA_VERSION_3_5_1) {
|
|
/* No HW_PARAM_2 register prior to IPA v3.5.1, assume the max */
|
|
gsi->channel_count = GSI_CHANNEL_COUNT_MAX;
|
|
gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX;
|
|
|
|
return 0;
|
|
}
|
|
|
|
reg = gsi_reg(gsi, HW_PARAM_2);
|
|
val = ioread32(gsi->virt + reg_offset(reg));
|
|
|
|
count = reg_decode(reg, NUM_CH_PER_EE, val);
|
|
if (!count) {
|
|
dev_err(dev, "GSI reports zero channels supported\n");
|
|
return -EINVAL;
|
|
}
|
|
if (count > GSI_CHANNEL_COUNT_MAX) {
|
|
dev_warn(dev, "limiting to %u channels; hardware supports %u\n",
|
|
GSI_CHANNEL_COUNT_MAX, count);
|
|
count = GSI_CHANNEL_COUNT_MAX;
|
|
}
|
|
gsi->channel_count = count;
|
|
|
|
if (gsi->version < IPA_VERSION_5_0) {
|
|
count = reg_decode(reg, NUM_EV_PER_EE, val);
|
|
} else {
|
|
reg = gsi_reg(gsi, HW_PARAM_4);
|
|
count = reg_decode(reg, EV_PER_EE, val);
|
|
}
|
|
if (!count) {
|
|
dev_err(dev, "GSI reports zero event rings supported\n");
|
|
return -EINVAL;
|
|
}
|
|
if (count > GSI_EVT_RING_COUNT_MAX) {
|
|
dev_warn(dev,
|
|
"limiting to %u event rings; hardware supports %u\n",
|
|
GSI_EVT_RING_COUNT_MAX, count);
|
|
count = GSI_EVT_RING_COUNT_MAX;
|
|
}
|
|
gsi->evt_ring_count = count;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Setup function for GSI. GSI firmware must be loaded and initialized */
|
|
int gsi_setup(struct gsi *gsi)
|
|
{
|
|
const struct reg *reg;
|
|
u32 val;
|
|
int ret;
|
|
|
|
/* Here is where we first touch the GSI hardware */
|
|
reg = gsi_reg(gsi, GSI_STATUS);
|
|
val = ioread32(gsi->virt + reg_offset(reg));
|
|
if (!(val & reg_bit(reg, ENABLED))) {
|
|
dev_err(gsi->dev, "GSI has not been enabled\n");
|
|
return -EIO;
|
|
}
|
|
|
|
ret = gsi_irq_setup(gsi);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = gsi_ring_setup(gsi); /* No matching teardown required */
|
|
if (ret)
|
|
goto err_irq_teardown;
|
|
|
|
/* Initialize the error log */
|
|
reg = gsi_reg(gsi, ERROR_LOG);
|
|
iowrite32(0, gsi->virt + reg_offset(reg));
|
|
|
|
ret = gsi_channel_setup(gsi);
|
|
if (ret)
|
|
goto err_irq_teardown;
|
|
|
|
return 0;
|
|
|
|
err_irq_teardown:
|
|
gsi_irq_teardown(gsi);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Inverse of gsi_setup() */
|
|
void gsi_teardown(struct gsi *gsi)
|
|
{
|
|
gsi_channel_teardown(gsi);
|
|
gsi_irq_teardown(gsi);
|
|
}
|
|
|
|
/* Initialize a channel's event ring */
|
|
static int gsi_channel_evt_ring_init(struct gsi_channel *channel)
|
|
{
|
|
struct gsi *gsi = channel->gsi;
|
|
struct gsi_evt_ring *evt_ring;
|
|
int ret;
|
|
|
|
ret = gsi_evt_ring_id_alloc(gsi);
|
|
if (ret < 0)
|
|
return ret;
|
|
channel->evt_ring_id = ret;
|
|
|
|
evt_ring = &gsi->evt_ring[channel->evt_ring_id];
|
|
evt_ring->channel = channel;
|
|
|
|
ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count);
|
|
if (!ret)
|
|
return 0; /* Success! */
|
|
|
|
dev_err(gsi->dev, "error %d allocating channel %u event ring\n",
|
|
ret, gsi_channel_id(channel));
|
|
|
|
gsi_evt_ring_id_free(gsi, channel->evt_ring_id);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Inverse of gsi_channel_evt_ring_init() */
|
|
static void gsi_channel_evt_ring_exit(struct gsi_channel *channel)
|
|
{
|
|
u32 evt_ring_id = channel->evt_ring_id;
|
|
struct gsi *gsi = channel->gsi;
|
|
struct gsi_evt_ring *evt_ring;
|
|
|
|
evt_ring = &gsi->evt_ring[evt_ring_id];
|
|
gsi_ring_free(gsi, &evt_ring->ring);
|
|
gsi_evt_ring_id_free(gsi, evt_ring_id);
|
|
}
|
|
|
|
static bool gsi_channel_data_valid(struct gsi *gsi, bool command,
|
|
const struct ipa_gsi_endpoint_data *data)
|
|
{
|
|
const struct gsi_channel_data *channel_data;
|
|
u32 channel_id = data->channel_id;
|
|
struct device *dev = gsi->dev;
|
|
|
|
/* Make sure channel ids are in the range driver supports */
|
|
if (channel_id >= GSI_CHANNEL_COUNT_MAX) {
|
|
dev_err(dev, "bad channel id %u; must be less than %u\n",
|
|
channel_id, GSI_CHANNEL_COUNT_MAX);
|
|
return false;
|
|
}
|
|
|
|
if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) {
|
|
dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id);
|
|
return false;
|
|
}
|
|
|
|
if (command && !data->toward_ipa) {
|
|
dev_err(dev, "command channel %u is not TX\n", channel_id);
|
|
return false;
|
|
}
|
|
|
|
channel_data = &data->channel;
|
|
|
|
if (!channel_data->tlv_count ||
|
|
channel_data->tlv_count > GSI_TLV_MAX) {
|
|
dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n",
|
|
channel_id, channel_data->tlv_count, GSI_TLV_MAX);
|
|
return false;
|
|
}
|
|
|
|
if (command && IPA_COMMAND_TRANS_TRE_MAX > channel_data->tlv_count) {
|
|
dev_err(dev, "command TRE max too big for channel %u (%u > %u)\n",
|
|
channel_id, IPA_COMMAND_TRANS_TRE_MAX,
|
|
channel_data->tlv_count);
|
|
return false;
|
|
}
|
|
|
|
/* We have to allow at least one maximally-sized transaction to
|
|
* be outstanding (which would use tlv_count TREs). Given how
|
|
* gsi_channel_tre_max() is computed, tre_count has to be almost
|
|
* twice the TLV FIFO size to satisfy this requirement.
|
|
*/
|
|
if (channel_data->tre_count < 2 * channel_data->tlv_count - 1) {
|
|
dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n",
|
|
channel_id, channel_data->tlv_count,
|
|
channel_data->tre_count);
|
|
return false;
|
|
}
|
|
|
|
if (!is_power_of_2(channel_data->tre_count)) {
|
|
dev_err(dev, "channel %u bad tre_count %u; not power of 2\n",
|
|
channel_id, channel_data->tre_count);
|
|
return false;
|
|
}
|
|
|
|
if (!is_power_of_2(channel_data->event_count)) {
|
|
dev_err(dev, "channel %u bad event_count %u; not power of 2\n",
|
|
channel_id, channel_data->event_count);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Init function for a single channel */
|
|
static int gsi_channel_init_one(struct gsi *gsi,
|
|
const struct ipa_gsi_endpoint_data *data,
|
|
bool command)
|
|
{
|
|
struct gsi_channel *channel;
|
|
u32 tre_count;
|
|
int ret;
|
|
|
|
if (!gsi_channel_data_valid(gsi, command, data))
|
|
return -EINVAL;
|
|
|
|
/* Worst case we need an event for every outstanding TRE */
|
|
if (data->channel.tre_count > data->channel.event_count) {
|
|
tre_count = data->channel.event_count;
|
|
dev_warn(gsi->dev, "channel %u limited to %u TREs\n",
|
|
data->channel_id, tre_count);
|
|
} else {
|
|
tre_count = data->channel.tre_count;
|
|
}
|
|
|
|
channel = &gsi->channel[data->channel_id];
|
|
memset(channel, 0, sizeof(*channel));
|
|
|
|
channel->gsi = gsi;
|
|
channel->toward_ipa = data->toward_ipa;
|
|
channel->command = command;
|
|
channel->trans_tre_max = data->channel.tlv_count;
|
|
channel->tre_count = tre_count;
|
|
channel->event_count = data->channel.event_count;
|
|
|
|
ret = gsi_channel_evt_ring_init(channel);
|
|
if (ret)
|
|
goto err_clear_gsi;
|
|
|
|
ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count);
|
|
if (ret) {
|
|
dev_err(gsi->dev, "error %d allocating channel %u ring\n",
|
|
ret, data->channel_id);
|
|
goto err_channel_evt_ring_exit;
|
|
}
|
|
|
|
ret = gsi_channel_trans_init(gsi, data->channel_id);
|
|
if (ret)
|
|
goto err_ring_free;
|
|
|
|
if (command) {
|
|
u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id);
|
|
|
|
ret = ipa_cmd_pool_init(channel, tre_max);
|
|
}
|
|
if (!ret)
|
|
return 0; /* Success! */
|
|
|
|
gsi_channel_trans_exit(channel);
|
|
err_ring_free:
|
|
gsi_ring_free(gsi, &channel->tre_ring);
|
|
err_channel_evt_ring_exit:
|
|
gsi_channel_evt_ring_exit(channel);
|
|
err_clear_gsi:
|
|
channel->gsi = NULL; /* Mark it not (fully) initialized */
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Inverse of gsi_channel_init_one() */
|
|
static void gsi_channel_exit_one(struct gsi_channel *channel)
|
|
{
|
|
if (!gsi_channel_initialized(channel))
|
|
return;
|
|
|
|
if (channel->command)
|
|
ipa_cmd_pool_exit(channel);
|
|
gsi_channel_trans_exit(channel);
|
|
gsi_ring_free(channel->gsi, &channel->tre_ring);
|
|
gsi_channel_evt_ring_exit(channel);
|
|
}
|
|
|
|
/* Init function for channels */
|
|
static int gsi_channel_init(struct gsi *gsi, u32 count,
|
|
const struct ipa_gsi_endpoint_data *data)
|
|
{
|
|
bool modem_alloc;
|
|
int ret = 0;
|
|
u32 i;
|
|
|
|
/* IPA v4.2 requires the AP to allocate channels for the modem */
|
|
modem_alloc = gsi->version == IPA_VERSION_4_2;
|
|
|
|
gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX);
|
|
gsi->ieob_enabled_bitmap = 0;
|
|
|
|
/* The endpoint data array is indexed by endpoint name */
|
|
for (i = 0; i < count; i++) {
|
|
bool command = i == IPA_ENDPOINT_AP_COMMAND_TX;
|
|
|
|
if (ipa_gsi_endpoint_data_empty(&data[i]))
|
|
continue; /* Skip over empty slots */
|
|
|
|
/* Mark modem channels to be allocated (hardware workaround) */
|
|
if (data[i].ee_id == GSI_EE_MODEM) {
|
|
if (modem_alloc)
|
|
gsi->modem_channel_bitmap |=
|
|
BIT(data[i].channel_id);
|
|
continue;
|
|
}
|
|
|
|
ret = gsi_channel_init_one(gsi, &data[i], command);
|
|
if (ret)
|
|
goto err_unwind;
|
|
}
|
|
|
|
return ret;
|
|
|
|
err_unwind:
|
|
while (i--) {
|
|
if (ipa_gsi_endpoint_data_empty(&data[i]))
|
|
continue;
|
|
if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) {
|
|
gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id);
|
|
continue;
|
|
}
|
|
gsi_channel_exit_one(&gsi->channel[data->channel_id]);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Inverse of gsi_channel_init() */
|
|
static void gsi_channel_exit(struct gsi *gsi)
|
|
{
|
|
u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1;
|
|
|
|
do
|
|
gsi_channel_exit_one(&gsi->channel[channel_id]);
|
|
while (channel_id--);
|
|
gsi->modem_channel_bitmap = 0;
|
|
}
|
|
|
|
/* Init function for GSI. GSI hardware does not need to be "ready" */
|
|
int gsi_init(struct gsi *gsi, struct platform_device *pdev,
|
|
enum ipa_version version, u32 count,
|
|
const struct ipa_gsi_endpoint_data *data)
|
|
{
|
|
int ret;
|
|
|
|
gsi_validate_build();
|
|
|
|
gsi->dev = &pdev->dev;
|
|
gsi->version = version;
|
|
|
|
/* GSI uses NAPI on all channels. Create a dummy network device
|
|
* for the channel NAPI contexts to be associated with.
|
|
*/
|
|
init_dummy_netdev(&gsi->dummy_dev);
|
|
init_completion(&gsi->completion);
|
|
|
|
ret = gsi_reg_init(gsi, pdev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = gsi_irq_init(gsi, pdev); /* No matching exit required */
|
|
if (ret)
|
|
goto err_reg_exit;
|
|
|
|
ret = gsi_channel_init(gsi, count, data);
|
|
if (ret)
|
|
goto err_reg_exit;
|
|
|
|
mutex_init(&gsi->mutex);
|
|
|
|
return 0;
|
|
|
|
err_reg_exit:
|
|
gsi_reg_exit(gsi);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Inverse of gsi_init() */
|
|
void gsi_exit(struct gsi *gsi)
|
|
{
|
|
mutex_destroy(&gsi->mutex);
|
|
gsi_channel_exit(gsi);
|
|
gsi_reg_exit(gsi);
|
|
}
|
|
|
|
/* The maximum number of outstanding TREs on a channel. This limits
|
|
* a channel's maximum number of transactions outstanding (worst case
|
|
* is one TRE per transaction).
|
|
*
|
|
* The absolute limit is the number of TREs in the channel's TRE ring,
|
|
* and in theory we should be able use all of them. But in practice,
|
|
* doing that led to the hardware reporting exhaustion of event ring
|
|
* slots for writing completion information. So the hardware limit
|
|
* would be (tre_count - 1).
|
|
*
|
|
* We reduce it a bit further though. Transaction resource pools are
|
|
* sized to be a little larger than this maximum, to allow resource
|
|
* allocations to always be contiguous. The number of entries in a
|
|
* TRE ring buffer is a power of 2, and the extra resources in a pool
|
|
* tends to nearly double the memory allocated for it. Reducing the
|
|
* maximum number of outstanding TREs allows the number of entries in
|
|
* a pool to avoid crossing that power-of-2 boundary, and this can
|
|
* substantially reduce pool memory requirements. The number we
|
|
* reduce it by matches the number added in gsi_trans_pool_init().
|
|
*/
|
|
u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id)
|
|
{
|
|
struct gsi_channel *channel = &gsi->channel[channel_id];
|
|
|
|
/* Hardware limit is channel->tre_count - 1 */
|
|
return channel->tre_count - (channel->trans_tre_max - 1);
|
|
}
|