a1e16bc7d5
The typical set of driver updates across the subsystem: - Driver minor changes and bug fixes for mlx5, efa, rxe, vmw_pvrdma, hns, usnic, qib, qedr, cxgb4, hns, bnxt_re - Various rtrs fixes and updates - Bug fix for mlx4 CM emulation for virtualization scenarios where MRA wasn't working right - Use tracepoints instead of pr_debug in the CM code - Scrub the locking in ucma and cma to close more syzkaller bugs - Use tasklet_setup in the subsystem - Revert the idea that 'destroy' operations are not allowed to fail at the driver level. This proved unworkable from a HW perspective. - Revise how the umem API works so drivers make fewer mistakes using it - XRC support for qedr - Convert uverbs objects RWQ and MW to new the allocation scheme - Large queue entry sizes for hns - Use hmm_range_fault() for mlx5 On Demand Paging - uverbs APIs to inspect the GID table instead of sysfs - Move some of the RDMA code for building large page SGLs into lib/scatterlist -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEfB7FMLh+8QxL+6i3OG33FX4gmxoFAl+J37MACgkQOG33FX4g mxrKfRAAnIecwdE8df0yvVU5k0Eg6qVjMy9MMHq4va9m7g6GpUcNNI0nIlOASxH2 l+9vnUQS3ebgsPeECaDYzEr0hh/u53+xw2g4WV5ts/hE8KkQ6erruXb9kasCe8yi 5QWJ9K36T3c03Cd3EeH6JVtytAxuH42ombfo9BkFLPVyfG/R2tsAzvm5pVi73lxk 46wtU1Bqi4tsLhyCbifn1huNFGbHp08OIBPAIKPUKCA+iBRPaWS+Dpi+93h3g3Bp oJwDhL9CBCGcHM+rKWLzek3Dy87FnQn7R1wmTpUFwkK+4AH3U/XazivhX035w1vL YJyhakVU0kosHlX9hJTNKDHJGkt0YEV2mS8dxAuqilFBtdnrVszb5/MirvlzC310 /b5xCPSEusv9UVZV0G4zbySVNA9knZ4YaRiR3VDVMLKl/pJgTOwEiHIIx+vs3ejk p8GRWa1SjXw5LfZEQcq39J689ljt6xjCTonyuBSv7vSQq5v8pjBxvHxiAe2FIa2a ZyZeSCYoSh0SwJQukO2VO7aprhHP3TcCJ/987+X03LQ8tV2VWPktHqm62YCaDcOl fgiQuQdPivRjDDkJgMfDWDGKfZeHoWLKl5XsJhWByt0lablVrsvc+8ylUl1UI7gI 16hWB/Qtlhfwg10VdApn+aOFpIS+s5P4XIp8ik57MZO+VeJzpmE= =LKpl -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma Pull rdma updates from Jason Gunthorpe: "A usual cycle for RDMA with a typical mix of driver and core subsystem updates: - Driver minor changes and bug fixes for mlx5, efa, rxe, vmw_pvrdma, hns, usnic, qib, qedr, cxgb4, hns, bnxt_re - Various rtrs fixes and updates - Bug fix for mlx4 CM emulation for virtualization scenarios where MRA wasn't working right - Use tracepoints instead of pr_debug in the CM code - Scrub the locking in ucma and cma to close more syzkaller bugs - Use tasklet_setup in the subsystem - Revert the idea that 'destroy' operations are not allowed to fail at the driver level. This proved unworkable from a HW perspective. - Revise how the umem API works so drivers make fewer mistakes using it - XRC support for qedr - Convert uverbs objects RWQ and MW to new the allocation scheme - Large queue entry sizes for hns - Use hmm_range_fault() for mlx5 On Demand Paging - uverbs APIs to inspect the GID table instead of sysfs - Move some of the RDMA code for building large page SGLs into lib/scatterlist" * tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: (191 commits) RDMA/ucma: Fix use after free in destroy id flow RDMA/rxe: Handle skb_clone() failure in rxe_recv.c RDMA/rxe: Move the definitions for rxe_av.network_type to uAPI RDMA: Explicitly pass in the dma_device to ib_register_device lib/scatterlist: Do not limit max_segment to PAGE_ALIGNED values IB/mlx4: Convert rej_tmout radix-tree to XArray RDMA/rxe: Fix bug rejecting all multicast packets RDMA/rxe: Fix skb lifetime in rxe_rcv_mcast_pkt() RDMA/rxe: Remove duplicate entries in struct rxe_mr IB/hfi,rdmavt,qib,opa_vnic: Update MAINTAINERS IB/rdmavt: Fix sizeof mismatch MAINTAINERS: CISCO VIC LOW LATENCY NIC DRIVER RDMA/bnxt_re: Fix sizeof mismatch for allocation of pbl_tbl. RDMA/bnxt_re: Use rdma_umem_for_each_dma_block() RDMA/umem: Move to allocate SG table from pages lib/scatterlist: Add support in dynamic allocation of SG table from pages tools/testing/scatterlist: Show errors in human readable form tools/testing/scatterlist: Rejuvenate bit-rotten test RDMA/ipoib: Set rtnl_link_ops for ipoib interfaces RDMA/uverbs: Expose the new GID query API to user space ...
843 lines
21 KiB
C
843 lines
21 KiB
C
// SPDX-License-Identifier: GPL-2.0 OR MIT
|
|
/**************************************************************************
|
|
*
|
|
* Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sub license, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the
|
|
* next paragraph) shall be included in all copies or substantial portions
|
|
* of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
|
|
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
|
|
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
|
|
* USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
**************************************************************************/
|
|
|
|
#include "vmwgfx_drv.h"
|
|
#include <drm/ttm/ttm_bo_driver.h>
|
|
#include <drm/ttm/ttm_placement.h>
|
|
#include <drm/ttm/ttm_page_alloc.h>
|
|
|
|
static const struct ttm_place vram_placement_flags = {
|
|
.fpfn = 0,
|
|
.lpfn = 0,
|
|
.mem_type = TTM_PL_VRAM,
|
|
.flags = TTM_PL_FLAG_CACHED
|
|
};
|
|
|
|
static const struct ttm_place vram_ne_placement_flags = {
|
|
.fpfn = 0,
|
|
.lpfn = 0,
|
|
.mem_type = TTM_PL_VRAM,
|
|
.flags = TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
|
|
};
|
|
|
|
static const struct ttm_place sys_placement_flags = {
|
|
.fpfn = 0,
|
|
.lpfn = 0,
|
|
.mem_type = TTM_PL_SYSTEM,
|
|
.flags = TTM_PL_FLAG_CACHED
|
|
};
|
|
|
|
static const struct ttm_place sys_ne_placement_flags = {
|
|
.fpfn = 0,
|
|
.lpfn = 0,
|
|
.mem_type = TTM_PL_SYSTEM,
|
|
.flags = TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
|
|
};
|
|
|
|
static const struct ttm_place gmr_placement_flags = {
|
|
.fpfn = 0,
|
|
.lpfn = 0,
|
|
.mem_type = VMW_PL_GMR,
|
|
.flags = TTM_PL_FLAG_CACHED
|
|
};
|
|
|
|
static const struct ttm_place gmr_ne_placement_flags = {
|
|
.fpfn = 0,
|
|
.lpfn = 0,
|
|
.mem_type = VMW_PL_GMR,
|
|
.flags = TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
|
|
};
|
|
|
|
static const struct ttm_place mob_placement_flags = {
|
|
.fpfn = 0,
|
|
.lpfn = 0,
|
|
.mem_type = VMW_PL_MOB,
|
|
.flags = TTM_PL_FLAG_CACHED
|
|
};
|
|
|
|
static const struct ttm_place mob_ne_placement_flags = {
|
|
.fpfn = 0,
|
|
.lpfn = 0,
|
|
.mem_type = VMW_PL_MOB,
|
|
.flags = TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
|
|
};
|
|
|
|
struct ttm_placement vmw_vram_placement = {
|
|
.num_placement = 1,
|
|
.placement = &vram_placement_flags,
|
|
.num_busy_placement = 1,
|
|
.busy_placement = &vram_placement_flags
|
|
};
|
|
|
|
static const struct ttm_place vram_gmr_placement_flags[] = {
|
|
{
|
|
.fpfn = 0,
|
|
.lpfn = 0,
|
|
.mem_type = TTM_PL_VRAM,
|
|
.flags = TTM_PL_FLAG_CACHED
|
|
}, {
|
|
.fpfn = 0,
|
|
.lpfn = 0,
|
|
.mem_type = VMW_PL_GMR,
|
|
.flags = TTM_PL_FLAG_CACHED
|
|
}
|
|
};
|
|
|
|
static const struct ttm_place gmr_vram_placement_flags[] = {
|
|
{
|
|
.fpfn = 0,
|
|
.lpfn = 0,
|
|
.mem_type = VMW_PL_GMR,
|
|
.flags = TTM_PL_FLAG_CACHED
|
|
}, {
|
|
.fpfn = 0,
|
|
.lpfn = 0,
|
|
.mem_type = TTM_PL_VRAM,
|
|
.flags = TTM_PL_FLAG_CACHED
|
|
}
|
|
};
|
|
|
|
struct ttm_placement vmw_vram_gmr_placement = {
|
|
.num_placement = 2,
|
|
.placement = vram_gmr_placement_flags,
|
|
.num_busy_placement = 1,
|
|
.busy_placement = &gmr_placement_flags
|
|
};
|
|
|
|
static const struct ttm_place vram_gmr_ne_placement_flags[] = {
|
|
{
|
|
.fpfn = 0,
|
|
.lpfn = 0,
|
|
.mem_type = TTM_PL_VRAM,
|
|
.flags = TTM_PL_FLAG_CACHED |
|
|
TTM_PL_FLAG_NO_EVICT
|
|
}, {
|
|
.fpfn = 0,
|
|
.lpfn = 0,
|
|
.mem_type = VMW_PL_GMR,
|
|
.flags = TTM_PL_FLAG_CACHED |
|
|
TTM_PL_FLAG_NO_EVICT
|
|
}
|
|
};
|
|
|
|
struct ttm_placement vmw_vram_gmr_ne_placement = {
|
|
.num_placement = 2,
|
|
.placement = vram_gmr_ne_placement_flags,
|
|
.num_busy_placement = 1,
|
|
.busy_placement = &gmr_ne_placement_flags
|
|
};
|
|
|
|
struct ttm_placement vmw_vram_sys_placement = {
|
|
.num_placement = 1,
|
|
.placement = &vram_placement_flags,
|
|
.num_busy_placement = 1,
|
|
.busy_placement = &sys_placement_flags
|
|
};
|
|
|
|
struct ttm_placement vmw_vram_ne_placement = {
|
|
.num_placement = 1,
|
|
.placement = &vram_ne_placement_flags,
|
|
.num_busy_placement = 1,
|
|
.busy_placement = &vram_ne_placement_flags
|
|
};
|
|
|
|
struct ttm_placement vmw_sys_placement = {
|
|
.num_placement = 1,
|
|
.placement = &sys_placement_flags,
|
|
.num_busy_placement = 1,
|
|
.busy_placement = &sys_placement_flags
|
|
};
|
|
|
|
struct ttm_placement vmw_sys_ne_placement = {
|
|
.num_placement = 1,
|
|
.placement = &sys_ne_placement_flags,
|
|
.num_busy_placement = 1,
|
|
.busy_placement = &sys_ne_placement_flags
|
|
};
|
|
|
|
static const struct ttm_place evictable_placement_flags[] = {
|
|
{
|
|
.fpfn = 0,
|
|
.lpfn = 0,
|
|
.mem_type = TTM_PL_SYSTEM,
|
|
.flags = TTM_PL_FLAG_CACHED
|
|
}, {
|
|
.fpfn = 0,
|
|
.lpfn = 0,
|
|
.mem_type = TTM_PL_VRAM,
|
|
.flags = TTM_PL_FLAG_CACHED
|
|
}, {
|
|
.fpfn = 0,
|
|
.lpfn = 0,
|
|
.mem_type = VMW_PL_GMR,
|
|
.flags = TTM_PL_FLAG_CACHED
|
|
}, {
|
|
.fpfn = 0,
|
|
.lpfn = 0,
|
|
.mem_type = VMW_PL_MOB,
|
|
.flags = TTM_PL_FLAG_CACHED
|
|
}
|
|
};
|
|
|
|
static const struct ttm_place nonfixed_placement_flags[] = {
|
|
{
|
|
.fpfn = 0,
|
|
.lpfn = 0,
|
|
.mem_type = TTM_PL_SYSTEM,
|
|
.flags = TTM_PL_FLAG_CACHED
|
|
}, {
|
|
.fpfn = 0,
|
|
.lpfn = 0,
|
|
.mem_type = VMW_PL_GMR,
|
|
.flags = TTM_PL_FLAG_CACHED
|
|
}, {
|
|
.fpfn = 0,
|
|
.lpfn = 0,
|
|
.mem_type = VMW_PL_MOB,
|
|
.flags = TTM_PL_FLAG_CACHED
|
|
}
|
|
};
|
|
|
|
struct ttm_placement vmw_evictable_placement = {
|
|
.num_placement = 4,
|
|
.placement = evictable_placement_flags,
|
|
.num_busy_placement = 1,
|
|
.busy_placement = &sys_placement_flags
|
|
};
|
|
|
|
struct ttm_placement vmw_srf_placement = {
|
|
.num_placement = 1,
|
|
.num_busy_placement = 2,
|
|
.placement = &gmr_placement_flags,
|
|
.busy_placement = gmr_vram_placement_flags
|
|
};
|
|
|
|
struct ttm_placement vmw_mob_placement = {
|
|
.num_placement = 1,
|
|
.num_busy_placement = 1,
|
|
.placement = &mob_placement_flags,
|
|
.busy_placement = &mob_placement_flags
|
|
};
|
|
|
|
struct ttm_placement vmw_mob_ne_placement = {
|
|
.num_placement = 1,
|
|
.num_busy_placement = 1,
|
|
.placement = &mob_ne_placement_flags,
|
|
.busy_placement = &mob_ne_placement_flags
|
|
};
|
|
|
|
struct ttm_placement vmw_nonfixed_placement = {
|
|
.num_placement = 3,
|
|
.placement = nonfixed_placement_flags,
|
|
.num_busy_placement = 1,
|
|
.busy_placement = &sys_placement_flags
|
|
};
|
|
|
|
struct vmw_ttm_tt {
|
|
struct ttm_dma_tt dma_ttm;
|
|
struct vmw_private *dev_priv;
|
|
int gmr_id;
|
|
struct vmw_mob *mob;
|
|
int mem_type;
|
|
struct sg_table sgt;
|
|
struct vmw_sg_table vsgt;
|
|
uint64_t sg_alloc_size;
|
|
bool mapped;
|
|
bool bound;
|
|
};
|
|
|
|
const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
|
|
|
|
/**
|
|
* Helper functions to advance a struct vmw_piter iterator.
|
|
*
|
|
* @viter: Pointer to the iterator.
|
|
*
|
|
* These functions return false if past the end of the list,
|
|
* true otherwise. Functions are selected depending on the current
|
|
* DMA mapping mode.
|
|
*/
|
|
static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
|
|
{
|
|
return ++(viter->i) < viter->num_pages;
|
|
}
|
|
|
|
static bool __vmw_piter_sg_next(struct vmw_piter *viter)
|
|
{
|
|
bool ret = __vmw_piter_non_sg_next(viter);
|
|
|
|
return __sg_page_iter_dma_next(&viter->iter) && ret;
|
|
}
|
|
|
|
|
|
/**
|
|
* Helper functions to return a pointer to the current page.
|
|
*
|
|
* @viter: Pointer to the iterator
|
|
*
|
|
* These functions return a pointer to the page currently
|
|
* pointed to by @viter. Functions are selected depending on the
|
|
* current mapping mode.
|
|
*/
|
|
static struct page *__vmw_piter_non_sg_page(struct vmw_piter *viter)
|
|
{
|
|
return viter->pages[viter->i];
|
|
}
|
|
|
|
/**
|
|
* Helper functions to return the DMA address of the current page.
|
|
*
|
|
* @viter: Pointer to the iterator
|
|
*
|
|
* These functions return the DMA address of the page currently
|
|
* pointed to by @viter. Functions are selected depending on the
|
|
* current mapping mode.
|
|
*/
|
|
static dma_addr_t __vmw_piter_phys_addr(struct vmw_piter *viter)
|
|
{
|
|
return page_to_phys(viter->pages[viter->i]);
|
|
}
|
|
|
|
static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
|
|
{
|
|
return viter->addrs[viter->i];
|
|
}
|
|
|
|
static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
|
|
{
|
|
return sg_page_iter_dma_address(&viter->iter);
|
|
}
|
|
|
|
|
|
/**
|
|
* vmw_piter_start - Initialize a struct vmw_piter.
|
|
*
|
|
* @viter: Pointer to the iterator to initialize
|
|
* @vsgt: Pointer to a struct vmw_sg_table to initialize from
|
|
*
|
|
* Note that we're following the convention of __sg_page_iter_start, so that
|
|
* the iterator doesn't point to a valid page after initialization; it has
|
|
* to be advanced one step first.
|
|
*/
|
|
void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
|
|
unsigned long p_offset)
|
|
{
|
|
viter->i = p_offset - 1;
|
|
viter->num_pages = vsgt->num_pages;
|
|
viter->page = &__vmw_piter_non_sg_page;
|
|
viter->pages = vsgt->pages;
|
|
switch (vsgt->mode) {
|
|
case vmw_dma_phys:
|
|
viter->next = &__vmw_piter_non_sg_next;
|
|
viter->dma_address = &__vmw_piter_phys_addr;
|
|
break;
|
|
case vmw_dma_alloc_coherent:
|
|
viter->next = &__vmw_piter_non_sg_next;
|
|
viter->dma_address = &__vmw_piter_dma_addr;
|
|
viter->addrs = vsgt->addrs;
|
|
break;
|
|
case vmw_dma_map_populate:
|
|
case vmw_dma_map_bind:
|
|
viter->next = &__vmw_piter_sg_next;
|
|
viter->dma_address = &__vmw_piter_sg_addr;
|
|
__sg_page_iter_start(&viter->iter.base, vsgt->sgt->sgl,
|
|
vsgt->sgt->orig_nents, p_offset);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* vmw_ttm_unmap_from_dma - unmap device addresses previsouly mapped for
|
|
* TTM pages
|
|
*
|
|
* @vmw_tt: Pointer to a struct vmw_ttm_backend
|
|
*
|
|
* Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
|
|
*/
|
|
static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
|
|
{
|
|
struct device *dev = vmw_tt->dev_priv->dev->dev;
|
|
|
|
dma_unmap_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
|
|
vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
|
|
}
|
|
|
|
/**
|
|
* vmw_ttm_map_for_dma - map TTM pages to get device addresses
|
|
*
|
|
* @vmw_tt: Pointer to a struct vmw_ttm_backend
|
|
*
|
|
* This function is used to get device addresses from the kernel DMA layer.
|
|
* However, it's violating the DMA API in that when this operation has been
|
|
* performed, it's illegal for the CPU to write to the pages without first
|
|
* unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
|
|
* therefore only legal to call this function if we know that the function
|
|
* dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
|
|
* a CPU write buffer flush.
|
|
*/
|
|
static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
|
|
{
|
|
struct device *dev = vmw_tt->dev_priv->dev->dev;
|
|
|
|
return dma_map_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
|
|
}
|
|
|
|
/**
|
|
* vmw_ttm_map_dma - Make sure TTM pages are visible to the device
|
|
*
|
|
* @vmw_tt: Pointer to a struct vmw_ttm_tt
|
|
*
|
|
* Select the correct function for and make sure the TTM pages are
|
|
* visible to the device. Allocate storage for the device mappings.
|
|
* If a mapping has already been performed, indicated by the storage
|
|
* pointer being non NULL, the function returns success.
|
|
*/
|
|
static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
|
|
{
|
|
struct vmw_private *dev_priv = vmw_tt->dev_priv;
|
|
struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
|
|
struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
|
|
struct ttm_operation_ctx ctx = {
|
|
.interruptible = true,
|
|
.no_wait_gpu = false
|
|
};
|
|
struct vmw_piter iter;
|
|
dma_addr_t old;
|
|
int ret = 0;
|
|
static size_t sgl_size;
|
|
static size_t sgt_size;
|
|
struct scatterlist *sg;
|
|
|
|
if (vmw_tt->mapped)
|
|
return 0;
|
|
|
|
vsgt->mode = dev_priv->map_mode;
|
|
vsgt->pages = vmw_tt->dma_ttm.ttm.pages;
|
|
vsgt->num_pages = vmw_tt->dma_ttm.ttm.num_pages;
|
|
vsgt->addrs = vmw_tt->dma_ttm.dma_address;
|
|
vsgt->sgt = &vmw_tt->sgt;
|
|
|
|
switch (dev_priv->map_mode) {
|
|
case vmw_dma_map_bind:
|
|
case vmw_dma_map_populate:
|
|
if (unlikely(!sgl_size)) {
|
|
sgl_size = ttm_round_pot(sizeof(struct scatterlist));
|
|
sgt_size = ttm_round_pot(sizeof(struct sg_table));
|
|
}
|
|
vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages;
|
|
ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, &ctx);
|
|
if (unlikely(ret != 0))
|
|
return ret;
|
|
|
|
sg = __sg_alloc_table_from_pages(&vmw_tt->sgt, vsgt->pages,
|
|
vsgt->num_pages, 0,
|
|
(unsigned long) vsgt->num_pages << PAGE_SHIFT,
|
|
dma_get_max_seg_size(dev_priv->dev->dev),
|
|
NULL, 0, GFP_KERNEL);
|
|
if (IS_ERR(sg)) {
|
|
ret = PTR_ERR(sg);
|
|
goto out_sg_alloc_fail;
|
|
}
|
|
|
|
if (vsgt->num_pages > vmw_tt->sgt.orig_nents) {
|
|
uint64_t over_alloc =
|
|
sgl_size * (vsgt->num_pages -
|
|
vmw_tt->sgt.orig_nents);
|
|
|
|
ttm_mem_global_free(glob, over_alloc);
|
|
vmw_tt->sg_alloc_size -= over_alloc;
|
|
}
|
|
|
|
ret = vmw_ttm_map_for_dma(vmw_tt);
|
|
if (unlikely(ret != 0))
|
|
goto out_map_fail;
|
|
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
old = ~((dma_addr_t) 0);
|
|
vmw_tt->vsgt.num_regions = 0;
|
|
for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) {
|
|
dma_addr_t cur = vmw_piter_dma_addr(&iter);
|
|
|
|
if (cur != old + PAGE_SIZE)
|
|
vmw_tt->vsgt.num_regions++;
|
|
old = cur;
|
|
}
|
|
|
|
vmw_tt->mapped = true;
|
|
return 0;
|
|
|
|
out_map_fail:
|
|
sg_free_table(vmw_tt->vsgt.sgt);
|
|
vmw_tt->vsgt.sgt = NULL;
|
|
out_sg_alloc_fail:
|
|
ttm_mem_global_free(glob, vmw_tt->sg_alloc_size);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* vmw_ttm_unmap_dma - Tear down any TTM page device mappings
|
|
*
|
|
* @vmw_tt: Pointer to a struct vmw_ttm_tt
|
|
*
|
|
* Tear down any previously set up device DMA mappings and free
|
|
* any storage space allocated for them. If there are no mappings set up,
|
|
* this function is a NOP.
|
|
*/
|
|
static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
|
|
{
|
|
struct vmw_private *dev_priv = vmw_tt->dev_priv;
|
|
|
|
if (!vmw_tt->vsgt.sgt)
|
|
return;
|
|
|
|
switch (dev_priv->map_mode) {
|
|
case vmw_dma_map_bind:
|
|
case vmw_dma_map_populate:
|
|
vmw_ttm_unmap_from_dma(vmw_tt);
|
|
sg_free_table(vmw_tt->vsgt.sgt);
|
|
vmw_tt->vsgt.sgt = NULL;
|
|
ttm_mem_global_free(vmw_mem_glob(dev_priv),
|
|
vmw_tt->sg_alloc_size);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
vmw_tt->mapped = false;
|
|
}
|
|
|
|
/**
|
|
* vmw_bo_sg_table - Return a struct vmw_sg_table object for a
|
|
* TTM buffer object
|
|
*
|
|
* @bo: Pointer to a struct ttm_buffer_object
|
|
*
|
|
* Returns a pointer to a struct vmw_sg_table object. The object should
|
|
* not be freed after use.
|
|
* Note that for the device addresses to be valid, the buffer object must
|
|
* either be reserved or pinned.
|
|
*/
|
|
const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
|
|
{
|
|
struct vmw_ttm_tt *vmw_tt =
|
|
container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
|
|
|
|
return &vmw_tt->vsgt;
|
|
}
|
|
|
|
|
|
static int vmw_ttm_bind(struct ttm_bo_device *bdev,
|
|
struct ttm_tt *ttm, struct ttm_resource *bo_mem)
|
|
{
|
|
struct vmw_ttm_tt *vmw_be =
|
|
container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
|
|
int ret = 0;
|
|
|
|
if (!bo_mem)
|
|
return -EINVAL;
|
|
|
|
if (vmw_be->bound)
|
|
return 0;
|
|
|
|
ret = vmw_ttm_map_dma(vmw_be);
|
|
if (unlikely(ret != 0))
|
|
return ret;
|
|
|
|
vmw_be->gmr_id = bo_mem->start;
|
|
vmw_be->mem_type = bo_mem->mem_type;
|
|
|
|
switch (bo_mem->mem_type) {
|
|
case VMW_PL_GMR:
|
|
ret = vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
|
|
ttm->num_pages, vmw_be->gmr_id);
|
|
break;
|
|
case VMW_PL_MOB:
|
|
if (unlikely(vmw_be->mob == NULL)) {
|
|
vmw_be->mob =
|
|
vmw_mob_create(ttm->num_pages);
|
|
if (unlikely(vmw_be->mob == NULL))
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
|
|
&vmw_be->vsgt, ttm->num_pages,
|
|
vmw_be->gmr_id);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
vmw_be->bound = true;
|
|
return ret;
|
|
}
|
|
|
|
static void vmw_ttm_unbind(struct ttm_bo_device *bdev,
|
|
struct ttm_tt *ttm)
|
|
{
|
|
struct vmw_ttm_tt *vmw_be =
|
|
container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
|
|
|
|
if (!vmw_be->bound)
|
|
return;
|
|
|
|
switch (vmw_be->mem_type) {
|
|
case VMW_PL_GMR:
|
|
vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
|
|
break;
|
|
case VMW_PL_MOB:
|
|
vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
|
|
vmw_ttm_unmap_dma(vmw_be);
|
|
vmw_be->bound = false;
|
|
}
|
|
|
|
|
|
static void vmw_ttm_destroy(struct ttm_bo_device *bdev, struct ttm_tt *ttm)
|
|
{
|
|
struct vmw_ttm_tt *vmw_be =
|
|
container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
|
|
|
|
vmw_ttm_unbind(bdev, ttm);
|
|
ttm_tt_destroy_common(bdev, ttm);
|
|
vmw_ttm_unmap_dma(vmw_be);
|
|
if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
|
|
ttm_dma_tt_fini(&vmw_be->dma_ttm);
|
|
else
|
|
ttm_tt_fini(ttm);
|
|
|
|
if (vmw_be->mob)
|
|
vmw_mob_destroy(vmw_be->mob);
|
|
|
|
kfree(vmw_be);
|
|
}
|
|
|
|
|
|
static int vmw_ttm_populate(struct ttm_bo_device *bdev,
|
|
struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
|
|
{
|
|
struct vmw_ttm_tt *vmw_tt =
|
|
container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
|
|
struct vmw_private *dev_priv = vmw_tt->dev_priv;
|
|
struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
|
|
int ret;
|
|
|
|
if (ttm_tt_is_populated(ttm))
|
|
return 0;
|
|
|
|
if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
|
|
size_t size =
|
|
ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
|
|
ret = ttm_mem_global_alloc(glob, size, ctx);
|
|
if (unlikely(ret != 0))
|
|
return ret;
|
|
|
|
ret = ttm_dma_populate(&vmw_tt->dma_ttm, dev_priv->dev->dev,
|
|
ctx);
|
|
if (unlikely(ret != 0))
|
|
ttm_mem_global_free(glob, size);
|
|
} else
|
|
ret = ttm_pool_populate(ttm, ctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void vmw_ttm_unpopulate(struct ttm_bo_device *bdev,
|
|
struct ttm_tt *ttm)
|
|
{
|
|
struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
|
|
dma_ttm.ttm);
|
|
struct vmw_private *dev_priv = vmw_tt->dev_priv;
|
|
struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
|
|
|
|
|
|
if (vmw_tt->mob) {
|
|
vmw_mob_destroy(vmw_tt->mob);
|
|
vmw_tt->mob = NULL;
|
|
}
|
|
|
|
vmw_ttm_unmap_dma(vmw_tt);
|
|
if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
|
|
size_t size =
|
|
ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
|
|
|
|
ttm_dma_unpopulate(&vmw_tt->dma_ttm, dev_priv->dev->dev);
|
|
ttm_mem_global_free(glob, size);
|
|
} else
|
|
ttm_pool_unpopulate(ttm);
|
|
}
|
|
|
|
static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo,
|
|
uint32_t page_flags)
|
|
{
|
|
struct vmw_ttm_tt *vmw_be;
|
|
int ret;
|
|
|
|
vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
|
|
if (!vmw_be)
|
|
return NULL;
|
|
|
|
vmw_be->dev_priv = container_of(bo->bdev, struct vmw_private, bdev);
|
|
vmw_be->mob = NULL;
|
|
|
|
if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
|
|
ret = ttm_dma_tt_init(&vmw_be->dma_ttm, bo, page_flags);
|
|
else
|
|
ret = ttm_tt_init(&vmw_be->dma_ttm.ttm, bo, page_flags);
|
|
if (unlikely(ret != 0))
|
|
goto out_no_init;
|
|
|
|
return &vmw_be->dma_ttm.ttm;
|
|
out_no_init:
|
|
kfree(vmw_be);
|
|
return NULL;
|
|
}
|
|
|
|
static void vmw_evict_flags(struct ttm_buffer_object *bo,
|
|
struct ttm_placement *placement)
|
|
{
|
|
*placement = vmw_sys_placement;
|
|
}
|
|
|
|
static int vmw_verify_access(struct ttm_buffer_object *bo, struct file *filp)
|
|
{
|
|
struct ttm_object_file *tfile =
|
|
vmw_fpriv((struct drm_file *)filp->private_data)->tfile;
|
|
|
|
return vmw_user_bo_verify_access(bo, tfile);
|
|
}
|
|
|
|
static int vmw_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_resource *mem)
|
|
{
|
|
struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);
|
|
|
|
switch (mem->mem_type) {
|
|
case TTM_PL_SYSTEM:
|
|
case VMW_PL_GMR:
|
|
case VMW_PL_MOB:
|
|
return 0;
|
|
case TTM_PL_VRAM:
|
|
mem->bus.offset = (mem->start << PAGE_SHIFT) +
|
|
dev_priv->vram_start;
|
|
mem->bus.is_iomem = true;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* vmw_move_notify - TTM move_notify_callback
|
|
*
|
|
* @bo: The TTM buffer object about to move.
|
|
* @mem: The struct ttm_resource indicating to what memory
|
|
* region the move is taking place.
|
|
*
|
|
* Calls move_notify for all subsystems needing it.
|
|
* (currently only resources).
|
|
*/
|
|
static void vmw_move_notify(struct ttm_buffer_object *bo,
|
|
bool evict,
|
|
struct ttm_resource *mem)
|
|
{
|
|
vmw_bo_move_notify(bo, mem);
|
|
vmw_query_move_notify(bo, mem);
|
|
}
|
|
|
|
|
|
/**
|
|
* vmw_swap_notify - TTM move_notify_callback
|
|
*
|
|
* @bo: The TTM buffer object about to be swapped out.
|
|
*/
|
|
static void vmw_swap_notify(struct ttm_buffer_object *bo)
|
|
{
|
|
vmw_bo_swap_notify(bo);
|
|
(void) ttm_bo_wait(bo, false, false);
|
|
}
|
|
|
|
|
|
struct ttm_bo_driver vmw_bo_driver = {
|
|
.ttm_tt_create = &vmw_ttm_tt_create,
|
|
.ttm_tt_populate = &vmw_ttm_populate,
|
|
.ttm_tt_unpopulate = &vmw_ttm_unpopulate,
|
|
.ttm_tt_bind = &vmw_ttm_bind,
|
|
.ttm_tt_unbind = &vmw_ttm_unbind,
|
|
.ttm_tt_destroy = &vmw_ttm_destroy,
|
|
.eviction_valuable = ttm_bo_eviction_valuable,
|
|
.evict_flags = vmw_evict_flags,
|
|
.move = NULL,
|
|
.verify_access = vmw_verify_access,
|
|
.move_notify = vmw_move_notify,
|
|
.swap_notify = vmw_swap_notify,
|
|
.io_mem_reserve = &vmw_ttm_io_mem_reserve,
|
|
};
|
|
|
|
int vmw_bo_create_and_populate(struct vmw_private *dev_priv,
|
|
unsigned long bo_size,
|
|
struct ttm_buffer_object **bo_p)
|
|
{
|
|
struct ttm_operation_ctx ctx = {
|
|
.interruptible = false,
|
|
.no_wait_gpu = false
|
|
};
|
|
struct ttm_buffer_object *bo;
|
|
int ret;
|
|
|
|
ret = ttm_bo_create(&dev_priv->bdev, bo_size,
|
|
ttm_bo_type_device,
|
|
&vmw_sys_ne_placement,
|
|
0, false, &bo);
|
|
|
|
if (unlikely(ret != 0))
|
|
return ret;
|
|
|
|
ret = ttm_bo_reserve(bo, false, true, NULL);
|
|
BUG_ON(ret != 0);
|
|
ret = vmw_ttm_populate(bo->bdev, bo->ttm, &ctx);
|
|
if (likely(ret == 0)) {
|
|
struct vmw_ttm_tt *vmw_tt =
|
|
container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
|
|
ret = vmw_ttm_map_dma(vmw_tt);
|
|
}
|
|
|
|
ttm_bo_unreserve(bo);
|
|
|
|
if (likely(ret == 0))
|
|
*bo_p = bo;
|
|
return ret;
|
|
}
|