linux/arch/arm/mm/fault.c
Hugh Dickins 766b59e876 arm: allow pte_offset_map[_lock]() to fail
Patch series "arch: allow pte_offset_map[_lock]() to fail", v2.

What is it all about?  Some mmap_lock avoidance i.e.  latency reduction. 
Initially just for the case of collapsing shmem or file pages to THPs; but
likely to be relied upon later in other contexts e.g.  freeing of empty
page tables (but that's not work I'm doing).  mmap_write_lock avoidance
when collapsing to anon THPs?  Perhaps, but again that's not work I've
done: a quick attempt was not as easy as the shmem/file case.

I would much prefer not to have to make these small but wide-ranging
changes for such a niche case; but failed to find another way, and have
heard that shmem MADV_COLLAPSE's usefulness is being limited by that
mmap_write_lock it currently requires.

These changes (though of course not these exact patches, and not all of
these architectures!) have been in Google's data centre kernel for three
years now: we do rely upon them.

What are the per-arch changes about?  Generally, two things.

One: the current mmap locking may not be enough to guard against that
tricky transition between pmd entry pointing to page table, and empty pmd
entry, and pmd entry pointing to huge page: pte_offset_map() will have to
validate the pmd entry for itself, returning NULL if no page table is
there.  What to do about that varies: often the nearby error handling
indicates just to skip it; but in some cases a "goto again" looks
appropriate (and if that risks an infinite loop, then there must have been
an oops, or pfn 0 mistaken for page table, before).

Deeper study of each site might show that 90% of them here in arch code
could only fail if there's corruption e.g.  a transition to THP would be
surprising on an arch without HAVE_ARCH_TRANSPARENT_HUGEPAGE.  But given
the likely extension to freeing empty page tables, I have not limited this
set of changes to THP; and it has been easier, and sets a better example,
if each site is given appropriate handling.

Two: pte_offset_map() will need to do an rcu_read_lock(), with the
corresponding rcu_read_unlock() in pte_unmap().  But most architectures
never supported CONFIG_HIGHPTE, so some don't always call pte_unmap()
after pte_offset_map(), or have used userspace pte_offset_map() where
pte_offset_kernel() is more correct.  No problem in the current tree, but
a problem once an rcu_read_unlock() will be needed to keep balance.

A common special case of that comes in arch/*/mm/hugetlbpage.c, if the
architecture supports hugetlb pages down at the lowest PTE level. 
huge_pte_alloc() uses pte_alloc_map(), but generic hugetlb code does no
corresponding pte_unmap(); similarly for huge_pte_offset().

In rare transient cases, not yet made possible, pte_offset_map() and
pte_offset_map_lock() may not find a page table: handle appropriately.

Link: https://lkml.kernel.org/r/a4963be9-7aa6-350-66d0-2ba843e1af44@google.com
Link: https://lkml.kernel.org/r/813429a1-204a-1844-eeae-7fd72826c28@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Alexandre Ghiti <alexghiti@rivosinc.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Claudio Imbrenda <imbrenda@linux.ibm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: John David Anglin <dave.anglin@bell.net>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Will Deacon <will@kernel.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-19 16:19:05 -07:00

647 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/arch/arm/mm/fault.c
*
* Copyright (C) 1995 Linus Torvalds
* Modifications for ARM processor (c) 1995-2004 Russell King
*/
#include <linux/extable.h>
#include <linux/signal.h>
#include <linux/mm.h>
#include <linux/hardirq.h>
#include <linux/init.h>
#include <linux/kprobes.h>
#include <linux/uaccess.h>
#include <linux/page-flags.h>
#include <linux/sched/signal.h>
#include <linux/sched/debug.h>
#include <linux/highmem.h>
#include <linux/perf_event.h>
#include <linux/kfence.h>
#include <asm/system_misc.h>
#include <asm/system_info.h>
#include <asm/tlbflush.h>
#include "fault.h"
#ifdef CONFIG_MMU
/*
* This is useful to dump out the page tables associated with
* 'addr' in mm 'mm'.
*/
void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr)
{
pgd_t *pgd;
if (!mm)
mm = &init_mm;
pgd = pgd_offset(mm, addr);
printk("%s[%08lx] *pgd=%08llx", lvl, addr, (long long)pgd_val(*pgd));
do {
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
p4d = p4d_offset(pgd, addr);
if (p4d_none(*p4d))
break;
if (p4d_bad(*p4d)) {
pr_cont("(bad)");
break;
}
pud = pud_offset(p4d, addr);
if (PTRS_PER_PUD != 1)
pr_cont(", *pud=%08llx", (long long)pud_val(*pud));
if (pud_none(*pud))
break;
if (pud_bad(*pud)) {
pr_cont("(bad)");
break;
}
pmd = pmd_offset(pud, addr);
if (PTRS_PER_PMD != 1)
pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd));
if (pmd_none(*pmd))
break;
if (pmd_bad(*pmd)) {
pr_cont("(bad)");
break;
}
/* We must not map this if we have highmem enabled */
if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
break;
pte = pte_offset_map(pmd, addr);
if (!pte)
break;
pr_cont(", *pte=%08llx", (long long)pte_val(*pte));
#ifndef CONFIG_ARM_LPAE
pr_cont(", *ppte=%08llx",
(long long)pte_val(pte[PTE_HWTABLE_PTRS]));
#endif
pte_unmap(pte);
} while(0);
pr_cont("\n");
}
#else /* CONFIG_MMU */
void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr)
{ }
#endif /* CONFIG_MMU */
static inline bool is_write_fault(unsigned int fsr)
{
return (fsr & FSR_WRITE) && !(fsr & FSR_CM);
}
static inline bool is_translation_fault(unsigned int fsr)
{
int fs = fsr_fs(fsr);
#ifdef CONFIG_ARM_LPAE
if ((fs & FS_MMU_NOLL_MASK) == FS_TRANS_NOLL)
return true;
#else
if (fs == FS_L1_TRANS || fs == FS_L2_TRANS)
return true;
#endif
return false;
}
static void die_kernel_fault(const char *msg, struct mm_struct *mm,
unsigned long addr, unsigned int fsr,
struct pt_regs *regs)
{
bust_spinlocks(1);
pr_alert("8<--- cut here ---\n");
pr_alert("Unable to handle kernel %s at virtual address %08lx when %s\n",
msg, addr, fsr & FSR_LNX_PF ? "execute" :
fsr & FSR_WRITE ? "write" : "read");
show_pte(KERN_ALERT, mm, addr);
die("Oops", regs, fsr);
bust_spinlocks(0);
make_task_dead(SIGKILL);
}
/*
* Oops. The kernel tried to access some page that wasn't present.
*/
static void
__do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
struct pt_regs *regs)
{
const char *msg;
/*
* Are we prepared to handle this kernel fault?
*/
if (fixup_exception(regs))
return;
/*
* No handler, we'll have to terminate things with extreme prejudice.
*/
if (addr < PAGE_SIZE) {
msg = "NULL pointer dereference";
} else {
if (is_translation_fault(fsr) &&
kfence_handle_page_fault(addr, is_write_fault(fsr), regs))
return;
msg = "paging request";
}
die_kernel_fault(msg, mm, addr, fsr, regs);
}
/*
* Something tried to access memory that isn't in our memory map..
* User mode accesses just cause a SIGSEGV
*/
static void
__do_user_fault(unsigned long addr, unsigned int fsr, unsigned int sig,
int code, struct pt_regs *regs)
{
struct task_struct *tsk = current;
if (addr > TASK_SIZE)
harden_branch_predictor();
#ifdef CONFIG_DEBUG_USER
if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
((user_debug & UDBG_BUS) && (sig == SIGBUS))) {
pr_err("8<--- cut here ---\n");
pr_err("%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
tsk->comm, sig, addr, fsr);
show_pte(KERN_ERR, tsk->mm, addr);
show_regs(regs);
}
#endif
#ifndef CONFIG_KUSER_HELPERS
if ((sig == SIGSEGV) && ((addr & PAGE_MASK) == 0xffff0000))
printk_ratelimited(KERN_DEBUG
"%s: CONFIG_KUSER_HELPERS disabled at 0x%08lx\n",
tsk->comm, addr);
#endif
tsk->thread.address = addr;
tsk->thread.error_code = fsr;
tsk->thread.trap_no = 14;
force_sig_fault(sig, code, (void __user *)addr);
}
void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
{
struct task_struct *tsk = current;
struct mm_struct *mm = tsk->active_mm;
/*
* If we are in kernel mode at this point, we
* have no context to handle this fault with.
*/
if (user_mode(regs))
__do_user_fault(addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
else
__do_kernel_fault(mm, addr, fsr, regs);
}
#ifdef CONFIG_MMU
#define VM_FAULT_BADMAP ((__force vm_fault_t)0x010000)
#define VM_FAULT_BADACCESS ((__force vm_fault_t)0x020000)
static inline bool is_permission_fault(unsigned int fsr)
{
int fs = fsr_fs(fsr);
#ifdef CONFIG_ARM_LPAE
if ((fs & FS_MMU_NOLL_MASK) == FS_PERM_NOLL)
return true;
#else
if (fs == FS_L1_PERM || fs == FS_L2_PERM)
return true;
#endif
return false;
}
static vm_fault_t __kprobes
__do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int flags,
unsigned long vma_flags, struct pt_regs *regs)
{
struct vm_area_struct *vma = find_vma(mm, addr);
if (unlikely(!vma))
return VM_FAULT_BADMAP;
if (unlikely(vma->vm_start > addr)) {
if (!(vma->vm_flags & VM_GROWSDOWN))
return VM_FAULT_BADMAP;
if (addr < FIRST_USER_ADDRESS)
return VM_FAULT_BADMAP;
if (expand_stack(vma, addr))
return VM_FAULT_BADMAP;
}
/*
* ok, we have a good vm_area for this memory access, check the
* permissions on the VMA allow for the fault which occurred.
*/
if (!(vma->vm_flags & vma_flags))
return VM_FAULT_BADACCESS;
return handle_mm_fault(vma, addr & PAGE_MASK, flags, regs);
}
static int __kprobes
do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
{
struct mm_struct *mm = current->mm;
int sig, code;
vm_fault_t fault;
unsigned int flags = FAULT_FLAG_DEFAULT;
unsigned long vm_flags = VM_ACCESS_FLAGS;
if (kprobe_page_fault(regs, fsr))
return 0;
/* Enable interrupts if they were enabled in the parent context. */
if (interrupts_enabled(regs))
local_irq_enable();
/*
* If we're in an interrupt or have no user
* context, we must not take the fault..
*/
if (faulthandler_disabled() || !mm)
goto no_context;
if (user_mode(regs))
flags |= FAULT_FLAG_USER;
if (is_write_fault(fsr)) {
flags |= FAULT_FLAG_WRITE;
vm_flags = VM_WRITE;
}
if (fsr & FSR_LNX_PF) {
vm_flags = VM_EXEC;
if (is_permission_fault(fsr) && !user_mode(regs))
die_kernel_fault("execution of memory",
mm, addr, fsr, regs);
}
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
/*
* As per x86, we may deadlock here. However, since the kernel only
* validly references user space from well defined areas of the code,
* we can bug out early if this is from code which shouldn't.
*/
if (!mmap_read_trylock(mm)) {
if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
goto no_context;
retry:
mmap_read_lock(mm);
} else {
/*
* The above down_read_trylock() might have succeeded in
* which case, we'll have missed the might_sleep() from
* down_read()
*/
might_sleep();
#ifdef CONFIG_DEBUG_VM
if (!user_mode(regs) &&
!search_exception_tables(regs->ARM_pc))
goto no_context;
#endif
}
fault = __do_page_fault(mm, addr, flags, vm_flags, regs);
/* If we need to retry but a fatal signal is pending, handle the
* signal first. We do not need to release the mmap_lock because
* it would already be released in __lock_page_or_retry in
* mm/filemap.c. */
if (fault_signal_pending(fault, regs)) {
if (!user_mode(regs))
goto no_context;
return 0;
}
/* The fault is fully completed (including releasing mmap lock) */
if (fault & VM_FAULT_COMPLETED)
return 0;
if (!(fault & VM_FAULT_ERROR)) {
if (fault & VM_FAULT_RETRY) {
flags |= FAULT_FLAG_TRIED;
goto retry;
}
}
mmap_read_unlock(mm);
/*
* Handle the "normal" case first - VM_FAULT_MAJOR
*/
if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
return 0;
/*
* If we are in kernel mode at this point, we
* have no context to handle this fault with.
*/
if (!user_mode(regs))
goto no_context;
if (fault & VM_FAULT_OOM) {
/*
* We ran out of memory, call the OOM killer, and return to
* userspace (which will retry the fault, or kill us if we
* got oom-killed)
*/
pagefault_out_of_memory();
return 0;
}
if (fault & VM_FAULT_SIGBUS) {
/*
* We had some memory, but were unable to
* successfully fix up this page fault.
*/
sig = SIGBUS;
code = BUS_ADRERR;
} else {
/*
* Something tried to access memory that
* isn't in our memory map..
*/
sig = SIGSEGV;
code = fault == VM_FAULT_BADACCESS ?
SEGV_ACCERR : SEGV_MAPERR;
}
__do_user_fault(addr, fsr, sig, code, regs);
return 0;
no_context:
__do_kernel_fault(mm, addr, fsr, regs);
return 0;
}
#else /* CONFIG_MMU */
static int
do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
{
return 0;
}
#endif /* CONFIG_MMU */
/*
* First Level Translation Fault Handler
*
* We enter here because the first level page table doesn't contain
* a valid entry for the address.
*
* If the address is in kernel space (>= TASK_SIZE), then we are
* probably faulting in the vmalloc() area.
*
* If the init_task's first level page tables contains the relevant
* entry, we copy the it to this task. If not, we send the process
* a signal, fixup the exception, or oops the kernel.
*
* NOTE! We MUST NOT take any locks for this case. We may be in an
* interrupt or a critical region, and should only copy the information
* from the master page table, nothing more.
*/
#ifdef CONFIG_MMU
static int __kprobes
do_translation_fault(unsigned long addr, unsigned int fsr,
struct pt_regs *regs)
{
unsigned int index;
pgd_t *pgd, *pgd_k;
p4d_t *p4d, *p4d_k;
pud_t *pud, *pud_k;
pmd_t *pmd, *pmd_k;
if (addr < TASK_SIZE)
return do_page_fault(addr, fsr, regs);
if (user_mode(regs))
goto bad_area;
index = pgd_index(addr);
pgd = cpu_get_pgd() + index;
pgd_k = init_mm.pgd + index;
p4d = p4d_offset(pgd, addr);
p4d_k = p4d_offset(pgd_k, addr);
if (p4d_none(*p4d_k))
goto bad_area;
if (!p4d_present(*p4d))
set_p4d(p4d, *p4d_k);
pud = pud_offset(p4d, addr);
pud_k = pud_offset(p4d_k, addr);
if (pud_none(*pud_k))
goto bad_area;
if (!pud_present(*pud))
set_pud(pud, *pud_k);
pmd = pmd_offset(pud, addr);
pmd_k = pmd_offset(pud_k, addr);
#ifdef CONFIG_ARM_LPAE
/*
* Only one hardware entry per PMD with LPAE.
*/
index = 0;
#else
/*
* On ARM one Linux PGD entry contains two hardware entries (see page
* tables layout in pgtable.h). We normally guarantee that we always
* fill both L1 entries. But create_mapping() doesn't follow the rule.
* It can create inidividual L1 entries, so here we have to call
* pmd_none() check for the entry really corresponded to address, not
* for the first of pair.
*/
index = (addr >> SECTION_SHIFT) & 1;
#endif
if (pmd_none(pmd_k[index]))
goto bad_area;
copy_pmd(pmd, pmd_k);
return 0;
bad_area:
do_bad_area(addr, fsr, regs);
return 0;
}
#else /* CONFIG_MMU */
static int
do_translation_fault(unsigned long addr, unsigned int fsr,
struct pt_regs *regs)
{
return 0;
}
#endif /* CONFIG_MMU */
/*
* Some section permission faults need to be handled gracefully.
* They can happen due to a __{get,put}_user during an oops.
*/
#ifndef CONFIG_ARM_LPAE
static int
do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
{
do_bad_area(addr, fsr, regs);
return 0;
}
#endif /* CONFIG_ARM_LPAE */
/*
* This abort handler always returns "fault".
*/
static int
do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
{
return 1;
}
struct fsr_info {
int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
int sig;
int code;
const char *name;
};
/* FSR definition */
#ifdef CONFIG_ARM_LPAE
#include "fsr-3level.c"
#else
#include "fsr-2level.c"
#endif
void __init
hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
int sig, int code, const char *name)
{
if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
BUG();
fsr_info[nr].fn = fn;
fsr_info[nr].sig = sig;
fsr_info[nr].code = code;
fsr_info[nr].name = name;
}
/*
* Dispatch a data abort to the relevant handler.
*/
asmlinkage void
do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
{
const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
return;
pr_alert("8<--- cut here ---\n");
pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n",
inf->name, fsr, addr);
show_pte(KERN_ALERT, current->mm, addr);
arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
fsr, 0);
}
void __init
hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
int sig, int code, const char *name)
{
if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
BUG();
ifsr_info[nr].fn = fn;
ifsr_info[nr].sig = sig;
ifsr_info[nr].code = code;
ifsr_info[nr].name = name;
}
asmlinkage void
do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
{
const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
return;
pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
inf->name, ifsr, addr);
arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
ifsr, 0);
}
/*
* Abort handler to be used only during first unmasking of asynchronous aborts
* on the boot CPU. This makes sure that the machine will not die if the
* firmware/bootloader left an imprecise abort pending for us to trip over.
*/
static int __init early_abort_handler(unsigned long addr, unsigned int fsr,
struct pt_regs *regs)
{
pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during "
"first unmask, this is most likely caused by a "
"firmware/bootloader bug.\n", fsr);
return 0;
}
void __init early_abt_enable(void)
{
fsr_info[FSR_FS_AEA].fn = early_abort_handler;
local_abt_enable();
fsr_info[FSR_FS_AEA].fn = do_bad;
}
#ifndef CONFIG_ARM_LPAE
static int __init exceptions_init(void)
{
if (cpu_architecture() >= CPU_ARCH_ARMv6) {
hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
"I-cache maintenance fault");
}
if (cpu_architecture() >= CPU_ARCH_ARMv7) {
/*
* TODO: Access flag faults introduced in ARMv6K.
* Runtime check for 'K' extension is needed
*/
hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
"section access flag fault");
hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
"section access flag fault");
}
return 0;
}
arch_initcall(exceptions_init);
#endif