linux/drivers/net/phy/dp83640.c
Gustavo A. R. Silva d331e75897 net: dp83640: Mark expected switch fall-throughs
In preparation to enabling -Wimplicit-fallthrough, mark switch cases
where we are expecting to fall through.

Notice that in this particular case, I replaced the code comment at the
top of the switch statement with a proper "fall through" annotation for
each case, which is what GCC is expecting to find.

Addresses-Coverity-ID: 1056542 ("Missing break in switch")
Addresses-Coverity-ID: 1339579 ("Missing break in switch")
Addresses-Coverity-ID: 1369526 ("Missing break in switch")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-08-11 11:28:34 -07:00

1559 lines
38 KiB
C

/*
* Driver for the National Semiconductor DP83640 PHYTER
*
* Copyright (C) 2010 OMICRON electronics GmbH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/crc32.h>
#include <linux/ethtool.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mii.h>
#include <linux/module.h>
#include <linux/net_tstamp.h>
#include <linux/netdevice.h>
#include <linux/if_vlan.h>
#include <linux/phy.h>
#include <linux/ptp_classify.h>
#include <linux/ptp_clock_kernel.h>
#include "dp83640_reg.h"
#define DP83640_PHY_ID 0x20005ce1
#define PAGESEL 0x13
#define MAX_RXTS 64
#define N_EXT_TS 6
#define N_PER_OUT 7
#define PSF_PTPVER 2
#define PSF_EVNT 0x4000
#define PSF_RX 0x2000
#define PSF_TX 0x1000
#define EXT_EVENT 1
#define CAL_EVENT 7
#define CAL_TRIGGER 1
#define DP83640_N_PINS 12
#define MII_DP83640_MICR 0x11
#define MII_DP83640_MISR 0x12
#define MII_DP83640_MICR_OE 0x1
#define MII_DP83640_MICR_IE 0x2
#define MII_DP83640_MISR_RHF_INT_EN 0x01
#define MII_DP83640_MISR_FHF_INT_EN 0x02
#define MII_DP83640_MISR_ANC_INT_EN 0x04
#define MII_DP83640_MISR_DUP_INT_EN 0x08
#define MII_DP83640_MISR_SPD_INT_EN 0x10
#define MII_DP83640_MISR_LINK_INT_EN 0x20
#define MII_DP83640_MISR_ED_INT_EN 0x40
#define MII_DP83640_MISR_LQ_INT_EN 0x80
/* phyter seems to miss the mark by 16 ns */
#define ADJTIME_FIX 16
#define SKB_TIMESTAMP_TIMEOUT 2 /* jiffies */
#if defined(__BIG_ENDIAN)
#define ENDIAN_FLAG 0
#elif defined(__LITTLE_ENDIAN)
#define ENDIAN_FLAG PSF_ENDIAN
#endif
struct dp83640_skb_info {
int ptp_type;
unsigned long tmo;
};
struct phy_rxts {
u16 ns_lo; /* ns[15:0] */
u16 ns_hi; /* overflow[1:0], ns[29:16] */
u16 sec_lo; /* sec[15:0] */
u16 sec_hi; /* sec[31:16] */
u16 seqid; /* sequenceId[15:0] */
u16 msgtype; /* messageType[3:0], hash[11:0] */
};
struct phy_txts {
u16 ns_lo; /* ns[15:0] */
u16 ns_hi; /* overflow[1:0], ns[29:16] */
u16 sec_lo; /* sec[15:0] */
u16 sec_hi; /* sec[31:16] */
};
struct rxts {
struct list_head list;
unsigned long tmo;
u64 ns;
u16 seqid;
u8 msgtype;
u16 hash;
};
struct dp83640_clock;
struct dp83640_private {
struct list_head list;
struct dp83640_clock *clock;
struct phy_device *phydev;
struct delayed_work ts_work;
int hwts_tx_en;
int hwts_rx_en;
int layer;
int version;
/* remember state of cfg0 during calibration */
int cfg0;
/* remember the last event time stamp */
struct phy_txts edata;
/* list of rx timestamps */
struct list_head rxts;
struct list_head rxpool;
struct rxts rx_pool_data[MAX_RXTS];
/* protects above three fields from concurrent access */
spinlock_t rx_lock;
/* queues of incoming and outgoing packets */
struct sk_buff_head rx_queue;
struct sk_buff_head tx_queue;
};
struct dp83640_clock {
/* keeps the instance in the 'phyter_clocks' list */
struct list_head list;
/* we create one clock instance per MII bus */
struct mii_bus *bus;
/* protects extended registers from concurrent access */
struct mutex extreg_lock;
/* remembers which page was last selected */
int page;
/* our advertised capabilities */
struct ptp_clock_info caps;
/* protects the three fields below from concurrent access */
struct mutex clock_lock;
/* the one phyter from which we shall read */
struct dp83640_private *chosen;
/* list of the other attached phyters, not chosen */
struct list_head phylist;
/* reference to our PTP hardware clock */
struct ptp_clock *ptp_clock;
};
/* globals */
enum {
CALIBRATE_GPIO,
PEROUT_GPIO,
EXTTS0_GPIO,
EXTTS1_GPIO,
EXTTS2_GPIO,
EXTTS3_GPIO,
EXTTS4_GPIO,
EXTTS5_GPIO,
GPIO_TABLE_SIZE
};
static int chosen_phy = -1;
static ushort gpio_tab[GPIO_TABLE_SIZE] = {
1, 2, 3, 4, 8, 9, 10, 11
};
module_param(chosen_phy, int, 0444);
module_param_array(gpio_tab, ushort, NULL, 0444);
MODULE_PARM_DESC(chosen_phy, \
"The address of the PHY to use for the ancillary clock features");
MODULE_PARM_DESC(gpio_tab, \
"Which GPIO line to use for which purpose: cal,perout,extts1,...,extts6");
static void dp83640_gpio_defaults(struct ptp_pin_desc *pd)
{
int i, index;
for (i = 0; i < DP83640_N_PINS; i++) {
snprintf(pd[i].name, sizeof(pd[i].name), "GPIO%d", 1 + i);
pd[i].index = i;
}
for (i = 0; i < GPIO_TABLE_SIZE; i++) {
if (gpio_tab[i] < 1 || gpio_tab[i] > DP83640_N_PINS) {
pr_err("gpio_tab[%d]=%hu out of range", i, gpio_tab[i]);
return;
}
}
index = gpio_tab[CALIBRATE_GPIO] - 1;
pd[index].func = PTP_PF_PHYSYNC;
pd[index].chan = 0;
index = gpio_tab[PEROUT_GPIO] - 1;
pd[index].func = PTP_PF_PEROUT;
pd[index].chan = 0;
for (i = EXTTS0_GPIO; i < GPIO_TABLE_SIZE; i++) {
index = gpio_tab[i] - 1;
pd[index].func = PTP_PF_EXTTS;
pd[index].chan = i - EXTTS0_GPIO;
}
}
/* a list of clocks and a mutex to protect it */
static LIST_HEAD(phyter_clocks);
static DEFINE_MUTEX(phyter_clocks_lock);
static void rx_timestamp_work(struct work_struct *work);
/* extended register access functions */
#define BROADCAST_ADDR 31
static inline int broadcast_write(struct phy_device *phydev, u32 regnum,
u16 val)
{
return mdiobus_write(phydev->mdio.bus, BROADCAST_ADDR, regnum, val);
}
/* Caller must hold extreg_lock. */
static int ext_read(struct phy_device *phydev, int page, u32 regnum)
{
struct dp83640_private *dp83640 = phydev->priv;
int val;
if (dp83640->clock->page != page) {
broadcast_write(phydev, PAGESEL, page);
dp83640->clock->page = page;
}
val = phy_read(phydev, regnum);
return val;
}
/* Caller must hold extreg_lock. */
static void ext_write(int broadcast, struct phy_device *phydev,
int page, u32 regnum, u16 val)
{
struct dp83640_private *dp83640 = phydev->priv;
if (dp83640->clock->page != page) {
broadcast_write(phydev, PAGESEL, page);
dp83640->clock->page = page;
}
if (broadcast)
broadcast_write(phydev, regnum, val);
else
phy_write(phydev, regnum, val);
}
/* Caller must hold extreg_lock. */
static int tdr_write(int bc, struct phy_device *dev,
const struct timespec64 *ts, u16 cmd)
{
ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec & 0xffff);/* ns[15:0] */
ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec >> 16); /* ns[31:16] */
ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec & 0xffff); /* sec[15:0] */
ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec >> 16); /* sec[31:16]*/
ext_write(bc, dev, PAGE4, PTP_CTL, cmd);
return 0;
}
/* convert phy timestamps into driver timestamps */
static void phy2rxts(struct phy_rxts *p, struct rxts *rxts)
{
u32 sec;
sec = p->sec_lo;
sec |= p->sec_hi << 16;
rxts->ns = p->ns_lo;
rxts->ns |= (p->ns_hi & 0x3fff) << 16;
rxts->ns += ((u64)sec) * 1000000000ULL;
rxts->seqid = p->seqid;
rxts->msgtype = (p->msgtype >> 12) & 0xf;
rxts->hash = p->msgtype & 0x0fff;
rxts->tmo = jiffies + SKB_TIMESTAMP_TIMEOUT;
}
static u64 phy2txts(struct phy_txts *p)
{
u64 ns;
u32 sec;
sec = p->sec_lo;
sec |= p->sec_hi << 16;
ns = p->ns_lo;
ns |= (p->ns_hi & 0x3fff) << 16;
ns += ((u64)sec) * 1000000000ULL;
return ns;
}
static int periodic_output(struct dp83640_clock *clock,
struct ptp_clock_request *clkreq, bool on,
int trigger)
{
struct dp83640_private *dp83640 = clock->chosen;
struct phy_device *phydev = dp83640->phydev;
u32 sec, nsec, pwidth;
u16 gpio, ptp_trig, val;
if (on) {
gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PEROUT,
trigger);
if (gpio < 1)
return -EINVAL;
} else {
gpio = 0;
}
ptp_trig = TRIG_WR |
(trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT |
(gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT |
TRIG_PER |
TRIG_PULSE;
val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
if (!on) {
val |= TRIG_DIS;
mutex_lock(&clock->extreg_lock);
ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
ext_write(0, phydev, PAGE4, PTP_CTL, val);
mutex_unlock(&clock->extreg_lock);
return 0;
}
sec = clkreq->perout.start.sec;
nsec = clkreq->perout.start.nsec;
pwidth = clkreq->perout.period.sec * 1000000000UL;
pwidth += clkreq->perout.period.nsec;
pwidth /= 2;
mutex_lock(&clock->extreg_lock);
ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
/*load trigger*/
val |= TRIG_LOAD;
ext_write(0, phydev, PAGE4, PTP_CTL, val);
ext_write(0, phydev, PAGE4, PTP_TDR, nsec & 0xffff); /* ns[15:0] */
ext_write(0, phydev, PAGE4, PTP_TDR, nsec >> 16); /* ns[31:16] */
ext_write(0, phydev, PAGE4, PTP_TDR, sec & 0xffff); /* sec[15:0] */
ext_write(0, phydev, PAGE4, PTP_TDR, sec >> 16); /* sec[31:16] */
ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff); /* ns[15:0] */
ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16); /* ns[31:16] */
/* Triggers 0 and 1 has programmable pulsewidth2 */
if (trigger < 2) {
ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff);
ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16);
}
/*enable trigger*/
val &= ~TRIG_LOAD;
val |= TRIG_EN;
ext_write(0, phydev, PAGE4, PTP_CTL, val);
mutex_unlock(&clock->extreg_lock);
return 0;
}
/* ptp clock methods */
static int ptp_dp83640_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
{
struct dp83640_clock *clock =
container_of(ptp, struct dp83640_clock, caps);
struct phy_device *phydev = clock->chosen->phydev;
u64 rate;
int neg_adj = 0;
u16 hi, lo;
if (scaled_ppm < 0) {
neg_adj = 1;
scaled_ppm = -scaled_ppm;
}
rate = scaled_ppm;
rate <<= 13;
rate = div_u64(rate, 15625);
hi = (rate >> 16) & PTP_RATE_HI_MASK;
if (neg_adj)
hi |= PTP_RATE_DIR;
lo = rate & 0xffff;
mutex_lock(&clock->extreg_lock);
ext_write(1, phydev, PAGE4, PTP_RATEH, hi);
ext_write(1, phydev, PAGE4, PTP_RATEL, lo);
mutex_unlock(&clock->extreg_lock);
return 0;
}
static int ptp_dp83640_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
struct dp83640_clock *clock =
container_of(ptp, struct dp83640_clock, caps);
struct phy_device *phydev = clock->chosen->phydev;
struct timespec64 ts;
int err;
delta += ADJTIME_FIX;
ts = ns_to_timespec64(delta);
mutex_lock(&clock->extreg_lock);
err = tdr_write(1, phydev, &ts, PTP_STEP_CLK);
mutex_unlock(&clock->extreg_lock);
return err;
}
static int ptp_dp83640_gettime(struct ptp_clock_info *ptp,
struct timespec64 *ts)
{
struct dp83640_clock *clock =
container_of(ptp, struct dp83640_clock, caps);
struct phy_device *phydev = clock->chosen->phydev;
unsigned int val[4];
mutex_lock(&clock->extreg_lock);
ext_write(0, phydev, PAGE4, PTP_CTL, PTP_RD_CLK);
val[0] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[15:0] */
val[1] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[31:16] */
val[2] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[15:0] */
val[3] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[31:16] */
mutex_unlock(&clock->extreg_lock);
ts->tv_nsec = val[0] | (val[1] << 16);
ts->tv_sec = val[2] | (val[3] << 16);
return 0;
}
static int ptp_dp83640_settime(struct ptp_clock_info *ptp,
const struct timespec64 *ts)
{
struct dp83640_clock *clock =
container_of(ptp, struct dp83640_clock, caps);
struct phy_device *phydev = clock->chosen->phydev;
int err;
mutex_lock(&clock->extreg_lock);
err = tdr_write(1, phydev, ts, PTP_LOAD_CLK);
mutex_unlock(&clock->extreg_lock);
return err;
}
static int ptp_dp83640_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq, int on)
{
struct dp83640_clock *clock =
container_of(ptp, struct dp83640_clock, caps);
struct phy_device *phydev = clock->chosen->phydev;
unsigned int index;
u16 evnt, event_num, gpio_num;
switch (rq->type) {
case PTP_CLK_REQ_EXTTS:
index = rq->extts.index;
if (index >= N_EXT_TS)
return -EINVAL;
event_num = EXT_EVENT + index;
evnt = EVNT_WR | (event_num & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
if (on) {
gpio_num = 1 + ptp_find_pin(clock->ptp_clock,
PTP_PF_EXTTS, index);
if (gpio_num < 1)
return -EINVAL;
evnt |= (gpio_num & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
if (rq->extts.flags & PTP_FALLING_EDGE)
evnt |= EVNT_FALL;
else
evnt |= EVNT_RISE;
}
mutex_lock(&clock->extreg_lock);
ext_write(0, phydev, PAGE5, PTP_EVNT, evnt);
mutex_unlock(&clock->extreg_lock);
return 0;
case PTP_CLK_REQ_PEROUT:
if (rq->perout.index >= N_PER_OUT)
return -EINVAL;
return periodic_output(clock, rq, on, rq->perout.index);
default:
break;
}
return -EOPNOTSUPP;
}
static int ptp_dp83640_verify(struct ptp_clock_info *ptp, unsigned int pin,
enum ptp_pin_function func, unsigned int chan)
{
struct dp83640_clock *clock =
container_of(ptp, struct dp83640_clock, caps);
if (clock->caps.pin_config[pin].func == PTP_PF_PHYSYNC &&
!list_empty(&clock->phylist))
return 1;
if (func == PTP_PF_PHYSYNC)
return 1;
return 0;
}
static u8 status_frame_dst[6] = { 0x01, 0x1B, 0x19, 0x00, 0x00, 0x00 };
static u8 status_frame_src[6] = { 0x08, 0x00, 0x17, 0x0B, 0x6B, 0x0F };
static void enable_status_frames(struct phy_device *phydev, bool on)
{
struct dp83640_private *dp83640 = phydev->priv;
struct dp83640_clock *clock = dp83640->clock;
u16 cfg0 = 0, ver;
if (on)
cfg0 = PSF_EVNT_EN | PSF_RXTS_EN | PSF_TXTS_EN | ENDIAN_FLAG;
ver = (PSF_PTPVER & VERSIONPTP_MASK) << VERSIONPTP_SHIFT;
mutex_lock(&clock->extreg_lock);
ext_write(0, phydev, PAGE5, PSF_CFG0, cfg0);
ext_write(0, phydev, PAGE6, PSF_CFG1, ver);
mutex_unlock(&clock->extreg_lock);
if (!phydev->attached_dev) {
pr_warn("expected to find an attached netdevice\n");
return;
}
if (on) {
if (dev_mc_add(phydev->attached_dev, status_frame_dst))
pr_warn("failed to add mc address\n");
} else {
if (dev_mc_del(phydev->attached_dev, status_frame_dst))
pr_warn("failed to delete mc address\n");
}
}
static bool is_status_frame(struct sk_buff *skb, int type)
{
struct ethhdr *h = eth_hdr(skb);
if (PTP_CLASS_V2_L2 == type &&
!memcmp(h->h_source, status_frame_src, sizeof(status_frame_src)))
return true;
else
return false;
}
static int expired(struct rxts *rxts)
{
return time_after(jiffies, rxts->tmo);
}
/* Caller must hold rx_lock. */
static void prune_rx_ts(struct dp83640_private *dp83640)
{
struct list_head *this, *next;
struct rxts *rxts;
list_for_each_safe(this, next, &dp83640->rxts) {
rxts = list_entry(this, struct rxts, list);
if (expired(rxts)) {
list_del_init(&rxts->list);
list_add(&rxts->list, &dp83640->rxpool);
}
}
}
/* synchronize the phyters so they act as one clock */
static void enable_broadcast(struct phy_device *phydev, int init_page, int on)
{
int val;
phy_write(phydev, PAGESEL, 0);
val = phy_read(phydev, PHYCR2);
if (on)
val |= BC_WRITE;
else
val &= ~BC_WRITE;
phy_write(phydev, PHYCR2, val);
phy_write(phydev, PAGESEL, init_page);
}
static void recalibrate(struct dp83640_clock *clock)
{
s64 now, diff;
struct phy_txts event_ts;
struct timespec64 ts;
struct list_head *this;
struct dp83640_private *tmp;
struct phy_device *master = clock->chosen->phydev;
u16 cal_gpio, cfg0, evnt, ptp_trig, trigger, val;
trigger = CAL_TRIGGER;
cal_gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PHYSYNC, 0);
if (cal_gpio < 1) {
pr_err("PHY calibration pin not available - PHY is not calibrated.");
return;
}
mutex_lock(&clock->extreg_lock);
/*
* enable broadcast, disable status frames, enable ptp clock
*/
list_for_each(this, &clock->phylist) {
tmp = list_entry(this, struct dp83640_private, list);
enable_broadcast(tmp->phydev, clock->page, 1);
tmp->cfg0 = ext_read(tmp->phydev, PAGE5, PSF_CFG0);
ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, 0);
ext_write(0, tmp->phydev, PAGE4, PTP_CTL, PTP_ENABLE);
}
enable_broadcast(master, clock->page, 1);
cfg0 = ext_read(master, PAGE5, PSF_CFG0);
ext_write(0, master, PAGE5, PSF_CFG0, 0);
ext_write(0, master, PAGE4, PTP_CTL, PTP_ENABLE);
/*
* enable an event timestamp
*/
evnt = EVNT_WR | EVNT_RISE | EVNT_SINGLE;
evnt |= (CAL_EVENT & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
evnt |= (cal_gpio & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
list_for_each(this, &clock->phylist) {
tmp = list_entry(this, struct dp83640_private, list);
ext_write(0, tmp->phydev, PAGE5, PTP_EVNT, evnt);
}
ext_write(0, master, PAGE5, PTP_EVNT, evnt);
/*
* configure a trigger
*/
ptp_trig = TRIG_WR | TRIG_IF_LATE | TRIG_PULSE;
ptp_trig |= (trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT;
ptp_trig |= (cal_gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT;
ext_write(0, master, PAGE5, PTP_TRIG, ptp_trig);
/* load trigger */
val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
val |= TRIG_LOAD;
ext_write(0, master, PAGE4, PTP_CTL, val);
/* enable trigger */
val &= ~TRIG_LOAD;
val |= TRIG_EN;
ext_write(0, master, PAGE4, PTP_CTL, val);
/* disable trigger */
val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
val |= TRIG_DIS;
ext_write(0, master, PAGE4, PTP_CTL, val);
/*
* read out and correct offsets
*/
val = ext_read(master, PAGE4, PTP_STS);
pr_info("master PTP_STS 0x%04hx\n", val);
val = ext_read(master, PAGE4, PTP_ESTS);
pr_info("master PTP_ESTS 0x%04hx\n", val);
event_ts.ns_lo = ext_read(master, PAGE4, PTP_EDATA);
event_ts.ns_hi = ext_read(master, PAGE4, PTP_EDATA);
event_ts.sec_lo = ext_read(master, PAGE4, PTP_EDATA);
event_ts.sec_hi = ext_read(master, PAGE4, PTP_EDATA);
now = phy2txts(&event_ts);
list_for_each(this, &clock->phylist) {
tmp = list_entry(this, struct dp83640_private, list);
val = ext_read(tmp->phydev, PAGE4, PTP_STS);
pr_info("slave PTP_STS 0x%04hx\n", val);
val = ext_read(tmp->phydev, PAGE4, PTP_ESTS);
pr_info("slave PTP_ESTS 0x%04hx\n", val);
event_ts.ns_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
event_ts.ns_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
event_ts.sec_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
event_ts.sec_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
diff = now - (s64) phy2txts(&event_ts);
pr_info("slave offset %lld nanoseconds\n", diff);
diff += ADJTIME_FIX;
ts = ns_to_timespec64(diff);
tdr_write(0, tmp->phydev, &ts, PTP_STEP_CLK);
}
/*
* restore status frames
*/
list_for_each(this, &clock->phylist) {
tmp = list_entry(this, struct dp83640_private, list);
ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, tmp->cfg0);
}
ext_write(0, master, PAGE5, PSF_CFG0, cfg0);
mutex_unlock(&clock->extreg_lock);
}
/* time stamping methods */
static inline u16 exts_chan_to_edata(int ch)
{
return 1 << ((ch + EXT_EVENT) * 2);
}
static int decode_evnt(struct dp83640_private *dp83640,
void *data, int len, u16 ests)
{
struct phy_txts *phy_txts;
struct ptp_clock_event event;
int i, parsed;
int words = (ests >> EVNT_TS_LEN_SHIFT) & EVNT_TS_LEN_MASK;
u16 ext_status = 0;
/* calculate length of the event timestamp status message */
if (ests & MULT_EVNT)
parsed = (words + 2) * sizeof(u16);
else
parsed = (words + 1) * sizeof(u16);
/* check if enough data is available */
if (len < parsed)
return len;
if (ests & MULT_EVNT) {
ext_status = *(u16 *) data;
data += sizeof(ext_status);
}
phy_txts = data;
switch (words) {
case 3:
dp83640->edata.sec_hi = phy_txts->sec_hi;
/* fall through */
case 2:
dp83640->edata.sec_lo = phy_txts->sec_lo;
/* fall through */
case 1:
dp83640->edata.ns_hi = phy_txts->ns_hi;
/* fall through */
case 0:
dp83640->edata.ns_lo = phy_txts->ns_lo;
}
if (!ext_status) {
i = ((ests >> EVNT_NUM_SHIFT) & EVNT_NUM_MASK) - EXT_EVENT;
ext_status = exts_chan_to_edata(i);
}
event.type = PTP_CLOCK_EXTTS;
event.timestamp = phy2txts(&dp83640->edata);
/* Compensate for input path and synchronization delays */
event.timestamp -= 35;
for (i = 0; i < N_EXT_TS; i++) {
if (ext_status & exts_chan_to_edata(i)) {
event.index = i;
ptp_clock_event(dp83640->clock->ptp_clock, &event);
}
}
return parsed;
}
#define DP83640_PACKET_HASH_OFFSET 20
#define DP83640_PACKET_HASH_LEN 10
static int match(struct sk_buff *skb, unsigned int type, struct rxts *rxts)
{
u16 *seqid, hash;
unsigned int offset = 0;
u8 *msgtype, *data = skb_mac_header(skb);
/* check sequenceID, messageType, 12 bit hash of offset 20-29 */
if (type & PTP_CLASS_VLAN)
offset += VLAN_HLEN;
switch (type & PTP_CLASS_PMASK) {
case PTP_CLASS_IPV4:
offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
break;
case PTP_CLASS_IPV6:
offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
break;
case PTP_CLASS_L2:
offset += ETH_HLEN;
break;
default:
return 0;
}
if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
return 0;
if (unlikely(type & PTP_CLASS_V1))
msgtype = data + offset + OFF_PTP_CONTROL;
else
msgtype = data + offset;
if (rxts->msgtype != (*msgtype & 0xf))
return 0;
seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
if (rxts->seqid != ntohs(*seqid))
return 0;
hash = ether_crc(DP83640_PACKET_HASH_LEN,
data + offset + DP83640_PACKET_HASH_OFFSET) >> 20;
if (rxts->hash != hash)
return 0;
return 1;
}
static void decode_rxts(struct dp83640_private *dp83640,
struct phy_rxts *phy_rxts)
{
struct rxts *rxts;
struct skb_shared_hwtstamps *shhwtstamps = NULL;
struct sk_buff *skb;
unsigned long flags;
u8 overflow;
overflow = (phy_rxts->ns_hi >> 14) & 0x3;
if (overflow)
pr_debug("rx timestamp queue overflow, count %d\n", overflow);
spin_lock_irqsave(&dp83640->rx_lock, flags);
prune_rx_ts(dp83640);
if (list_empty(&dp83640->rxpool)) {
pr_debug("rx timestamp pool is empty\n");
goto out;
}
rxts = list_first_entry(&dp83640->rxpool, struct rxts, list);
list_del_init(&rxts->list);
phy2rxts(phy_rxts, rxts);
spin_lock(&dp83640->rx_queue.lock);
skb_queue_walk(&dp83640->rx_queue, skb) {
struct dp83640_skb_info *skb_info;
skb_info = (struct dp83640_skb_info *)skb->cb;
if (match(skb, skb_info->ptp_type, rxts)) {
__skb_unlink(skb, &dp83640->rx_queue);
shhwtstamps = skb_hwtstamps(skb);
memset(shhwtstamps, 0, sizeof(*shhwtstamps));
shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns);
list_add(&rxts->list, &dp83640->rxpool);
break;
}
}
spin_unlock(&dp83640->rx_queue.lock);
if (!shhwtstamps)
list_add_tail(&rxts->list, &dp83640->rxts);
out:
spin_unlock_irqrestore(&dp83640->rx_lock, flags);
if (shhwtstamps)
netif_rx_ni(skb);
}
static void decode_txts(struct dp83640_private *dp83640,
struct phy_txts *phy_txts)
{
struct skb_shared_hwtstamps shhwtstamps;
struct sk_buff *skb;
u64 ns;
u8 overflow;
/* We must already have the skb that triggered this. */
skb = skb_dequeue(&dp83640->tx_queue);
if (!skb) {
pr_debug("have timestamp but tx_queue empty\n");
return;
}
overflow = (phy_txts->ns_hi >> 14) & 0x3;
if (overflow) {
pr_debug("tx timestamp queue overflow, count %d\n", overflow);
while (skb) {
kfree_skb(skb);
skb = skb_dequeue(&dp83640->tx_queue);
}
return;
}
ns = phy2txts(phy_txts);
memset(&shhwtstamps, 0, sizeof(shhwtstamps));
shhwtstamps.hwtstamp = ns_to_ktime(ns);
skb_complete_tx_timestamp(skb, &shhwtstamps);
}
static void decode_status_frame(struct dp83640_private *dp83640,
struct sk_buff *skb)
{
struct phy_rxts *phy_rxts;
struct phy_txts *phy_txts;
u8 *ptr;
int len, size;
u16 ests, type;
ptr = skb->data + 2;
for (len = skb_headlen(skb) - 2; len > sizeof(type); len -= size) {
type = *(u16 *)ptr;
ests = type & 0x0fff;
type = type & 0xf000;
len -= sizeof(type);
ptr += sizeof(type);
if (PSF_RX == type && len >= sizeof(*phy_rxts)) {
phy_rxts = (struct phy_rxts *) ptr;
decode_rxts(dp83640, phy_rxts);
size = sizeof(*phy_rxts);
} else if (PSF_TX == type && len >= sizeof(*phy_txts)) {
phy_txts = (struct phy_txts *) ptr;
decode_txts(dp83640, phy_txts);
size = sizeof(*phy_txts);
} else if (PSF_EVNT == type) {
size = decode_evnt(dp83640, ptr, len, ests);
} else {
size = 0;
break;
}
ptr += size;
}
}
static int is_sync(struct sk_buff *skb, int type)
{
u8 *data = skb->data, *msgtype;
unsigned int offset = 0;
if (type & PTP_CLASS_VLAN)
offset += VLAN_HLEN;
switch (type & PTP_CLASS_PMASK) {
case PTP_CLASS_IPV4:
offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
break;
case PTP_CLASS_IPV6:
offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
break;
case PTP_CLASS_L2:
offset += ETH_HLEN;
break;
default:
return 0;
}
if (type & PTP_CLASS_V1)
offset += OFF_PTP_CONTROL;
if (skb->len < offset + 1)
return 0;
msgtype = data + offset;
return (*msgtype & 0xf) == 0;
}
static void dp83640_free_clocks(void)
{
struct dp83640_clock *clock;
struct list_head *this, *next;
mutex_lock(&phyter_clocks_lock);
list_for_each_safe(this, next, &phyter_clocks) {
clock = list_entry(this, struct dp83640_clock, list);
if (!list_empty(&clock->phylist)) {
pr_warn("phy list non-empty while unloading\n");
BUG();
}
list_del(&clock->list);
mutex_destroy(&clock->extreg_lock);
mutex_destroy(&clock->clock_lock);
put_device(&clock->bus->dev);
kfree(clock->caps.pin_config);
kfree(clock);
}
mutex_unlock(&phyter_clocks_lock);
}
static void dp83640_clock_init(struct dp83640_clock *clock, struct mii_bus *bus)
{
INIT_LIST_HEAD(&clock->list);
clock->bus = bus;
mutex_init(&clock->extreg_lock);
mutex_init(&clock->clock_lock);
INIT_LIST_HEAD(&clock->phylist);
clock->caps.owner = THIS_MODULE;
sprintf(clock->caps.name, "dp83640 timer");
clock->caps.max_adj = 1953124;
clock->caps.n_alarm = 0;
clock->caps.n_ext_ts = N_EXT_TS;
clock->caps.n_per_out = N_PER_OUT;
clock->caps.n_pins = DP83640_N_PINS;
clock->caps.pps = 0;
clock->caps.adjfine = ptp_dp83640_adjfine;
clock->caps.adjtime = ptp_dp83640_adjtime;
clock->caps.gettime64 = ptp_dp83640_gettime;
clock->caps.settime64 = ptp_dp83640_settime;
clock->caps.enable = ptp_dp83640_enable;
clock->caps.verify = ptp_dp83640_verify;
/*
* Convert the module param defaults into a dynamic pin configuration.
*/
dp83640_gpio_defaults(clock->caps.pin_config);
/*
* Get a reference to this bus instance.
*/
get_device(&bus->dev);
}
static int choose_this_phy(struct dp83640_clock *clock,
struct phy_device *phydev)
{
if (chosen_phy == -1 && !clock->chosen)
return 1;
if (chosen_phy == phydev->mdio.addr)
return 1;
return 0;
}
static struct dp83640_clock *dp83640_clock_get(struct dp83640_clock *clock)
{
if (clock)
mutex_lock(&clock->clock_lock);
return clock;
}
/*
* Look up and lock a clock by bus instance.
* If there is no clock for this bus, then create it first.
*/
static struct dp83640_clock *dp83640_clock_get_bus(struct mii_bus *bus)
{
struct dp83640_clock *clock = NULL, *tmp;
struct list_head *this;
mutex_lock(&phyter_clocks_lock);
list_for_each(this, &phyter_clocks) {
tmp = list_entry(this, struct dp83640_clock, list);
if (tmp->bus == bus) {
clock = tmp;
break;
}
}
if (clock)
goto out;
clock = kzalloc(sizeof(struct dp83640_clock), GFP_KERNEL);
if (!clock)
goto out;
clock->caps.pin_config = kcalloc(DP83640_N_PINS,
sizeof(struct ptp_pin_desc),
GFP_KERNEL);
if (!clock->caps.pin_config) {
kfree(clock);
clock = NULL;
goto out;
}
dp83640_clock_init(clock, bus);
list_add_tail(&phyter_clocks, &clock->list);
out:
mutex_unlock(&phyter_clocks_lock);
return dp83640_clock_get(clock);
}
static void dp83640_clock_put(struct dp83640_clock *clock)
{
mutex_unlock(&clock->clock_lock);
}
static int dp83640_probe(struct phy_device *phydev)
{
struct dp83640_clock *clock;
struct dp83640_private *dp83640;
int err = -ENOMEM, i;
if (phydev->mdio.addr == BROADCAST_ADDR)
return 0;
clock = dp83640_clock_get_bus(phydev->mdio.bus);
if (!clock)
goto no_clock;
dp83640 = kzalloc(sizeof(struct dp83640_private), GFP_KERNEL);
if (!dp83640)
goto no_memory;
dp83640->phydev = phydev;
INIT_DELAYED_WORK(&dp83640->ts_work, rx_timestamp_work);
INIT_LIST_HEAD(&dp83640->rxts);
INIT_LIST_HEAD(&dp83640->rxpool);
for (i = 0; i < MAX_RXTS; i++)
list_add(&dp83640->rx_pool_data[i].list, &dp83640->rxpool);
phydev->priv = dp83640;
spin_lock_init(&dp83640->rx_lock);
skb_queue_head_init(&dp83640->rx_queue);
skb_queue_head_init(&dp83640->tx_queue);
dp83640->clock = clock;
if (choose_this_phy(clock, phydev)) {
clock->chosen = dp83640;
clock->ptp_clock = ptp_clock_register(&clock->caps,
&phydev->mdio.dev);
if (IS_ERR(clock->ptp_clock)) {
err = PTR_ERR(clock->ptp_clock);
goto no_register;
}
} else
list_add_tail(&dp83640->list, &clock->phylist);
dp83640_clock_put(clock);
return 0;
no_register:
clock->chosen = NULL;
kfree(dp83640);
no_memory:
dp83640_clock_put(clock);
no_clock:
return err;
}
static void dp83640_remove(struct phy_device *phydev)
{
struct dp83640_clock *clock;
struct list_head *this, *next;
struct dp83640_private *tmp, *dp83640 = phydev->priv;
if (phydev->mdio.addr == BROADCAST_ADDR)
return;
enable_status_frames(phydev, false);
cancel_delayed_work_sync(&dp83640->ts_work);
skb_queue_purge(&dp83640->rx_queue);
skb_queue_purge(&dp83640->tx_queue);
clock = dp83640_clock_get(dp83640->clock);
if (dp83640 == clock->chosen) {
ptp_clock_unregister(clock->ptp_clock);
clock->chosen = NULL;
} else {
list_for_each_safe(this, next, &clock->phylist) {
tmp = list_entry(this, struct dp83640_private, list);
if (tmp == dp83640) {
list_del_init(&tmp->list);
break;
}
}
}
dp83640_clock_put(clock);
kfree(dp83640);
}
static int dp83640_soft_reset(struct phy_device *phydev)
{
int ret;
ret = genphy_soft_reset(phydev);
if (ret < 0)
return ret;
/* From DP83640 datasheet: "Software driver code must wait 3 us
* following a software reset before allowing further serial MII
* operations with the DP83640."
*/
udelay(10); /* Taking udelay inaccuracy into account */
return 0;
}
static int dp83640_config_init(struct phy_device *phydev)
{
struct dp83640_private *dp83640 = phydev->priv;
struct dp83640_clock *clock = dp83640->clock;
if (clock->chosen && !list_empty(&clock->phylist))
recalibrate(clock);
else {
mutex_lock(&clock->extreg_lock);
enable_broadcast(phydev, clock->page, 1);
mutex_unlock(&clock->extreg_lock);
}
enable_status_frames(phydev, true);
mutex_lock(&clock->extreg_lock);
ext_write(0, phydev, PAGE4, PTP_CTL, PTP_ENABLE);
mutex_unlock(&clock->extreg_lock);
return 0;
}
static int dp83640_ack_interrupt(struct phy_device *phydev)
{
int err = phy_read(phydev, MII_DP83640_MISR);
if (err < 0)
return err;
return 0;
}
static int dp83640_config_intr(struct phy_device *phydev)
{
int micr;
int misr;
int err;
if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
misr = phy_read(phydev, MII_DP83640_MISR);
if (misr < 0)
return misr;
misr |=
(MII_DP83640_MISR_ANC_INT_EN |
MII_DP83640_MISR_DUP_INT_EN |
MII_DP83640_MISR_SPD_INT_EN |
MII_DP83640_MISR_LINK_INT_EN);
err = phy_write(phydev, MII_DP83640_MISR, misr);
if (err < 0)
return err;
micr = phy_read(phydev, MII_DP83640_MICR);
if (micr < 0)
return micr;
micr |=
(MII_DP83640_MICR_OE |
MII_DP83640_MICR_IE);
return phy_write(phydev, MII_DP83640_MICR, micr);
} else {
micr = phy_read(phydev, MII_DP83640_MICR);
if (micr < 0)
return micr;
micr &=
~(MII_DP83640_MICR_OE |
MII_DP83640_MICR_IE);
err = phy_write(phydev, MII_DP83640_MICR, micr);
if (err < 0)
return err;
misr = phy_read(phydev, MII_DP83640_MISR);
if (misr < 0)
return misr;
misr &=
~(MII_DP83640_MISR_ANC_INT_EN |
MII_DP83640_MISR_DUP_INT_EN |
MII_DP83640_MISR_SPD_INT_EN |
MII_DP83640_MISR_LINK_INT_EN);
return phy_write(phydev, MII_DP83640_MISR, misr);
}
}
static int dp83640_hwtstamp(struct phy_device *phydev, struct ifreq *ifr)
{
struct dp83640_private *dp83640 = phydev->priv;
struct hwtstamp_config cfg;
u16 txcfg0, rxcfg0;
if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
return -EFAULT;
if (cfg.flags) /* reserved for future extensions */
return -EINVAL;
if (cfg.tx_type < 0 || cfg.tx_type > HWTSTAMP_TX_ONESTEP_SYNC)
return -ERANGE;
dp83640->hwts_tx_en = cfg.tx_type;
switch (cfg.rx_filter) {
case HWTSTAMP_FILTER_NONE:
dp83640->hwts_rx_en = 0;
dp83640->layer = 0;
dp83640->version = 0;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
dp83640->hwts_rx_en = 1;
dp83640->layer = PTP_CLASS_L4;
dp83640->version = PTP_CLASS_V1;
break;
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
dp83640->hwts_rx_en = 1;
dp83640->layer = PTP_CLASS_L4;
dp83640->version = PTP_CLASS_V2;
break;
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
dp83640->hwts_rx_en = 1;
dp83640->layer = PTP_CLASS_L2;
dp83640->version = PTP_CLASS_V2;
break;
case HWTSTAMP_FILTER_PTP_V2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
dp83640->hwts_rx_en = 1;
dp83640->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
dp83640->version = PTP_CLASS_V2;
break;
default:
return -ERANGE;
}
txcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
rxcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
if (dp83640->layer & PTP_CLASS_L2) {
txcfg0 |= TX_L2_EN;
rxcfg0 |= RX_L2_EN;
}
if (dp83640->layer & PTP_CLASS_L4) {
txcfg0 |= TX_IPV6_EN | TX_IPV4_EN;
rxcfg0 |= RX_IPV6_EN | RX_IPV4_EN;
}
if (dp83640->hwts_tx_en)
txcfg0 |= TX_TS_EN;
if (dp83640->hwts_tx_en == HWTSTAMP_TX_ONESTEP_SYNC)
txcfg0 |= SYNC_1STEP | CHK_1STEP;
if (dp83640->hwts_rx_en)
rxcfg0 |= RX_TS_EN;
mutex_lock(&dp83640->clock->extreg_lock);
ext_write(0, phydev, PAGE5, PTP_TXCFG0, txcfg0);
ext_write(0, phydev, PAGE5, PTP_RXCFG0, rxcfg0);
mutex_unlock(&dp83640->clock->extreg_lock);
return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}
static void rx_timestamp_work(struct work_struct *work)
{
struct dp83640_private *dp83640 =
container_of(work, struct dp83640_private, ts_work.work);
struct sk_buff *skb;
/* Deliver expired packets. */
while ((skb = skb_dequeue(&dp83640->rx_queue))) {
struct dp83640_skb_info *skb_info;
skb_info = (struct dp83640_skb_info *)skb->cb;
if (!time_after(jiffies, skb_info->tmo)) {
skb_queue_head(&dp83640->rx_queue, skb);
break;
}
netif_rx_ni(skb);
}
if (!skb_queue_empty(&dp83640->rx_queue))
schedule_delayed_work(&dp83640->ts_work, SKB_TIMESTAMP_TIMEOUT);
}
static bool dp83640_rxtstamp(struct phy_device *phydev,
struct sk_buff *skb, int type)
{
struct dp83640_private *dp83640 = phydev->priv;
struct dp83640_skb_info *skb_info = (struct dp83640_skb_info *)skb->cb;
struct list_head *this, *next;
struct rxts *rxts;
struct skb_shared_hwtstamps *shhwtstamps = NULL;
unsigned long flags;
if (is_status_frame(skb, type)) {
decode_status_frame(dp83640, skb);
kfree_skb(skb);
return true;
}
if (!dp83640->hwts_rx_en)
return false;
if ((type & dp83640->version) == 0 || (type & dp83640->layer) == 0)
return false;
spin_lock_irqsave(&dp83640->rx_lock, flags);
prune_rx_ts(dp83640);
list_for_each_safe(this, next, &dp83640->rxts) {
rxts = list_entry(this, struct rxts, list);
if (match(skb, type, rxts)) {
shhwtstamps = skb_hwtstamps(skb);
memset(shhwtstamps, 0, sizeof(*shhwtstamps));
shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns);
list_del_init(&rxts->list);
list_add(&rxts->list, &dp83640->rxpool);
break;
}
}
spin_unlock_irqrestore(&dp83640->rx_lock, flags);
if (!shhwtstamps) {
skb_info->ptp_type = type;
skb_info->tmo = jiffies + SKB_TIMESTAMP_TIMEOUT;
skb_queue_tail(&dp83640->rx_queue, skb);
schedule_delayed_work(&dp83640->ts_work, SKB_TIMESTAMP_TIMEOUT);
} else {
netif_rx_ni(skb);
}
return true;
}
static void dp83640_txtstamp(struct phy_device *phydev,
struct sk_buff *skb, int type)
{
struct dp83640_private *dp83640 = phydev->priv;
switch (dp83640->hwts_tx_en) {
case HWTSTAMP_TX_ONESTEP_SYNC:
if (is_sync(skb, type)) {
kfree_skb(skb);
return;
}
/* fall through */
case HWTSTAMP_TX_ON:
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
skb_queue_tail(&dp83640->tx_queue, skb);
break;
case HWTSTAMP_TX_OFF:
default:
kfree_skb(skb);
break;
}
}
static int dp83640_ts_info(struct phy_device *dev, struct ethtool_ts_info *info)
{
struct dp83640_private *dp83640 = dev->priv;
info->so_timestamping =
SOF_TIMESTAMPING_TX_HARDWARE |
SOF_TIMESTAMPING_RX_HARDWARE |
SOF_TIMESTAMPING_RAW_HARDWARE;
info->phc_index = ptp_clock_index(dp83640->clock->ptp_clock);
info->tx_types =
(1 << HWTSTAMP_TX_OFF) |
(1 << HWTSTAMP_TX_ON) |
(1 << HWTSTAMP_TX_ONESTEP_SYNC);
info->rx_filters =
(1 << HWTSTAMP_FILTER_NONE) |
(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
return 0;
}
static struct phy_driver dp83640_driver = {
.phy_id = DP83640_PHY_ID,
.phy_id_mask = 0xfffffff0,
.name = "NatSemi DP83640",
.features = PHY_BASIC_FEATURES,
.flags = PHY_HAS_INTERRUPT,
.probe = dp83640_probe,
.remove = dp83640_remove,
.soft_reset = dp83640_soft_reset,
.config_init = dp83640_config_init,
.ack_interrupt = dp83640_ack_interrupt,
.config_intr = dp83640_config_intr,
.ts_info = dp83640_ts_info,
.hwtstamp = dp83640_hwtstamp,
.rxtstamp = dp83640_rxtstamp,
.txtstamp = dp83640_txtstamp,
};
static int __init dp83640_init(void)
{
return phy_driver_register(&dp83640_driver, THIS_MODULE);
}
static void __exit dp83640_exit(void)
{
dp83640_free_clocks();
phy_driver_unregister(&dp83640_driver);
}
MODULE_DESCRIPTION("National Semiconductor DP83640 PHY driver");
MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
MODULE_LICENSE("GPL");
module_init(dp83640_init);
module_exit(dp83640_exit);
static struct mdio_device_id __maybe_unused dp83640_tbl[] = {
{ DP83640_PHY_ID, 0xfffffff0 },
{ }
};
MODULE_DEVICE_TABLE(mdio, dp83640_tbl);