Mauro Carvalho Chehab 45f4a8ea52 [media] stv0299: convert set_fontend to use DVBv5 parameters
Instead of using dvb_frontend_parameters struct, that were
designed for a subset of the supported standards, use the DVBv5
cache information.

Also, fill the supported delivery systems at dvb_frontend_ops
struct.

Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2011-12-31 09:38:21 -02:00

762 lines
18 KiB
C

/*
Driver for ST STV0299 demodulator
Copyright (C) 2001-2002 Convergence Integrated Media GmbH
<ralph@convergence.de>,
<holger@convergence.de>,
<js@convergence.de>
Philips SU1278/SH
Copyright (C) 2002 by Peter Schildmann <peter.schildmann@web.de>
LG TDQF-S001F
Copyright (C) 2002 Felix Domke <tmbinc@elitedvb.net>
& Andreas Oberritter <obi@linuxtv.org>
Support for Samsung TBMU24112IMB used on Technisat SkyStar2 rev. 2.6B
Copyright (C) 2003 Vadim Catana <skystar@moldova.cc>:
Support for Philips SU1278 on Technotrend hardware
Copyright (C) 2004 Andrew de Quincey <adq_dvb@lidskialf.net>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <asm/div64.h>
#include "dvb_frontend.h"
#include "stv0299.h"
struct stv0299_state {
struct i2c_adapter* i2c;
const struct stv0299_config* config;
struct dvb_frontend frontend;
u8 initialised:1;
u32 tuner_frequency;
u32 symbol_rate;
fe_code_rate_t fec_inner;
int errmode;
u32 ucblocks;
u8 mcr_reg;
};
#define STATUS_BER 0
#define STATUS_UCBLOCKS 1
static int debug;
static int debug_legacy_dish_switch;
#define dprintk(args...) \
do { \
if (debug) printk(KERN_DEBUG "stv0299: " args); \
} while (0)
static int stv0299_writeregI (struct stv0299_state* state, u8 reg, u8 data)
{
int ret;
u8 buf [] = { reg, data };
struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 };
ret = i2c_transfer (state->i2c, &msg, 1);
if (ret != 1)
dprintk("%s: writereg error (reg == 0x%02x, val == 0x%02x, "
"ret == %i)\n", __func__, reg, data, ret);
return (ret != 1) ? -EREMOTEIO : 0;
}
static int stv0299_write(struct dvb_frontend* fe, const u8 buf[], int len)
{
struct stv0299_state* state = fe->demodulator_priv;
if (len != 2)
return -EINVAL;
return stv0299_writeregI(state, buf[0], buf[1]);
}
static u8 stv0299_readreg (struct stv0299_state* state, u8 reg)
{
int ret;
u8 b0 [] = { reg };
u8 b1 [] = { 0 };
struct i2c_msg msg [] = { { .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 1 },
{ .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 } };
ret = i2c_transfer (state->i2c, msg, 2);
if (ret != 2)
dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n",
__func__, reg, ret);
return b1[0];
}
static int stv0299_readregs (struct stv0299_state* state, u8 reg1, u8 *b, u8 len)
{
int ret;
struct i2c_msg msg [] = { { .addr = state->config->demod_address, .flags = 0, .buf = &reg1, .len = 1 },
{ .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b, .len = len } };
ret = i2c_transfer (state->i2c, msg, 2);
if (ret != 2)
dprintk("%s: readreg error (ret == %i)\n", __func__, ret);
return ret == 2 ? 0 : ret;
}
static int stv0299_set_FEC (struct stv0299_state* state, fe_code_rate_t fec)
{
dprintk ("%s\n", __func__);
switch (fec) {
case FEC_AUTO:
{
return stv0299_writeregI (state, 0x31, 0x1f);
}
case FEC_1_2:
{
return stv0299_writeregI (state, 0x31, 0x01);
}
case FEC_2_3:
{
return stv0299_writeregI (state, 0x31, 0x02);
}
case FEC_3_4:
{
return stv0299_writeregI (state, 0x31, 0x04);
}
case FEC_5_6:
{
return stv0299_writeregI (state, 0x31, 0x08);
}
case FEC_7_8:
{
return stv0299_writeregI (state, 0x31, 0x10);
}
default:
{
return -EINVAL;
}
}
}
static fe_code_rate_t stv0299_get_fec (struct stv0299_state* state)
{
static fe_code_rate_t fec_tab [] = { FEC_2_3, FEC_3_4, FEC_5_6,
FEC_7_8, FEC_1_2 };
u8 index;
dprintk ("%s\n", __func__);
index = stv0299_readreg (state, 0x1b);
index &= 0x7;
if (index > 4)
return FEC_AUTO;
return fec_tab [index];
}
static int stv0299_wait_diseqc_fifo (struct stv0299_state* state, int timeout)
{
unsigned long start = jiffies;
dprintk ("%s\n", __func__);
while (stv0299_readreg(state, 0x0a) & 1) {
if (jiffies - start > timeout) {
dprintk ("%s: timeout!!\n", __func__);
return -ETIMEDOUT;
}
msleep(10);
};
return 0;
}
static int stv0299_wait_diseqc_idle (struct stv0299_state* state, int timeout)
{
unsigned long start = jiffies;
dprintk ("%s\n", __func__);
while ((stv0299_readreg(state, 0x0a) & 3) != 2 ) {
if (jiffies - start > timeout) {
dprintk ("%s: timeout!!\n", __func__);
return -ETIMEDOUT;
}
msleep(10);
};
return 0;
}
static int stv0299_set_symbolrate (struct dvb_frontend* fe, u32 srate)
{
struct stv0299_state* state = fe->demodulator_priv;
u64 big = srate;
u32 ratio;
// check rate is within limits
if ((srate < 1000000) || (srate > 45000000)) return -EINVAL;
// calculate value to program
big = big << 20;
big += (state->config->mclk-1); // round correctly
do_div(big, state->config->mclk);
ratio = big << 4;
return state->config->set_symbol_rate(fe, srate, ratio);
}
static int stv0299_get_symbolrate (struct stv0299_state* state)
{
u32 Mclk = state->config->mclk / 4096L;
u32 srate;
s32 offset;
u8 sfr[3];
s8 rtf;
dprintk ("%s\n", __func__);
stv0299_readregs (state, 0x1f, sfr, 3);
stv0299_readregs (state, 0x1a, (u8 *)&rtf, 1);
srate = (sfr[0] << 8) | sfr[1];
srate *= Mclk;
srate /= 16;
srate += (sfr[2] >> 4) * Mclk / 256;
offset = (s32) rtf * (srate / 4096L);
offset /= 128;
dprintk ("%s : srate = %i\n", __func__, srate);
dprintk ("%s : ofset = %i\n", __func__, offset);
srate += offset;
srate += 1000;
srate /= 2000;
srate *= 2000;
return srate;
}
static int stv0299_send_diseqc_msg (struct dvb_frontend* fe,
struct dvb_diseqc_master_cmd *m)
{
struct stv0299_state* state = fe->demodulator_priv;
u8 val;
int i;
dprintk ("%s\n", __func__);
if (stv0299_wait_diseqc_idle (state, 100) < 0)
return -ETIMEDOUT;
val = stv0299_readreg (state, 0x08);
if (stv0299_writeregI (state, 0x08, (val & ~0x7) | 0x6)) /* DiSEqC mode */
return -EREMOTEIO;
for (i=0; i<m->msg_len; i++) {
if (stv0299_wait_diseqc_fifo (state, 100) < 0)
return -ETIMEDOUT;
if (stv0299_writeregI (state, 0x09, m->msg[i]))
return -EREMOTEIO;
}
if (stv0299_wait_diseqc_idle (state, 100) < 0)
return -ETIMEDOUT;
return 0;
}
static int stv0299_send_diseqc_burst (struct dvb_frontend* fe, fe_sec_mini_cmd_t burst)
{
struct stv0299_state* state = fe->demodulator_priv;
u8 val;
dprintk ("%s\n", __func__);
if (stv0299_wait_diseqc_idle (state, 100) < 0)
return -ETIMEDOUT;
val = stv0299_readreg (state, 0x08);
if (stv0299_writeregI (state, 0x08, (val & ~0x7) | 0x2)) /* burst mode */
return -EREMOTEIO;
if (stv0299_writeregI (state, 0x09, burst == SEC_MINI_A ? 0x00 : 0xff))
return -EREMOTEIO;
if (stv0299_wait_diseqc_idle (state, 100) < 0)
return -ETIMEDOUT;
if (stv0299_writeregI (state, 0x08, val))
return -EREMOTEIO;
return 0;
}
static int stv0299_set_tone (struct dvb_frontend* fe, fe_sec_tone_mode_t tone)
{
struct stv0299_state* state = fe->demodulator_priv;
u8 val;
if (stv0299_wait_diseqc_idle (state, 100) < 0)
return -ETIMEDOUT;
val = stv0299_readreg (state, 0x08);
switch (tone) {
case SEC_TONE_ON:
return stv0299_writeregI (state, 0x08, val | 0x3);
case SEC_TONE_OFF:
return stv0299_writeregI (state, 0x08, (val & ~0x3) | 0x02);
default:
return -EINVAL;
}
}
static int stv0299_set_voltage (struct dvb_frontend* fe, fe_sec_voltage_t voltage)
{
struct stv0299_state* state = fe->demodulator_priv;
u8 reg0x08;
u8 reg0x0c;
dprintk("%s: %s\n", __func__,
voltage == SEC_VOLTAGE_13 ? "SEC_VOLTAGE_13" :
voltage == SEC_VOLTAGE_18 ? "SEC_VOLTAGE_18" : "??");
reg0x08 = stv0299_readreg (state, 0x08);
reg0x0c = stv0299_readreg (state, 0x0c);
/**
* H/V switching over OP0, OP1 and OP2 are LNB power enable bits
*/
reg0x0c &= 0x0f;
reg0x08 = (reg0x08 & 0x3f) | (state->config->lock_output << 6);
switch (voltage) {
case SEC_VOLTAGE_13:
if (state->config->volt13_op0_op1 == STV0299_VOLT13_OP0)
reg0x0c |= 0x10; /* OP1 off, OP0 on */
else
reg0x0c |= 0x40; /* OP1 on, OP0 off */
break;
case SEC_VOLTAGE_18:
reg0x0c |= 0x50; /* OP1 on, OP0 on */
break;
case SEC_VOLTAGE_OFF:
/* LNB power off! */
reg0x08 = 0x00;
reg0x0c = 0x00;
break;
default:
return -EINVAL;
};
if (state->config->op0_off)
reg0x0c &= ~0x10;
stv0299_writeregI(state, 0x08, reg0x08);
return stv0299_writeregI(state, 0x0c, reg0x0c);
}
static int stv0299_send_legacy_dish_cmd (struct dvb_frontend* fe, unsigned long cmd)
{
struct stv0299_state* state = fe->demodulator_priv;
u8 reg0x08;
u8 reg0x0c;
u8 lv_mask = 0x40;
u8 last = 1;
int i;
struct timeval nexttime;
struct timeval tv[10];
reg0x08 = stv0299_readreg (state, 0x08);
reg0x0c = stv0299_readreg (state, 0x0c);
reg0x0c &= 0x0f;
stv0299_writeregI (state, 0x08, (reg0x08 & 0x3f) | (state->config->lock_output << 6));
if (state->config->volt13_op0_op1 == STV0299_VOLT13_OP0)
lv_mask = 0x10;
cmd = cmd << 1;
if (debug_legacy_dish_switch)
printk ("%s switch command: 0x%04lx\n",__func__, cmd);
do_gettimeofday (&nexttime);
if (debug_legacy_dish_switch)
memcpy (&tv[0], &nexttime, sizeof (struct timeval));
stv0299_writeregI (state, 0x0c, reg0x0c | 0x50); /* set LNB to 18V */
dvb_frontend_sleep_until(&nexttime, 32000);
for (i=0; i<9; i++) {
if (debug_legacy_dish_switch)
do_gettimeofday (&tv[i+1]);
if((cmd & 0x01) != last) {
/* set voltage to (last ? 13V : 18V) */
stv0299_writeregI (state, 0x0c, reg0x0c | (last ? lv_mask : 0x50));
last = (last) ? 0 : 1;
}
cmd = cmd >> 1;
if (i != 8)
dvb_frontend_sleep_until(&nexttime, 8000);
}
if (debug_legacy_dish_switch) {
printk ("%s(%d): switch delay (should be 32k followed by all 8k\n",
__func__, fe->dvb->num);
for (i = 1; i < 10; i++)
printk ("%d: %d\n", i, timeval_usec_diff(tv[i-1] , tv[i]));
}
return 0;
}
static int stv0299_init (struct dvb_frontend* fe)
{
struct stv0299_state* state = fe->demodulator_priv;
int i;
u8 reg;
u8 val;
dprintk("stv0299: init chip\n");
stv0299_writeregI(state, 0x02, 0x30 | state->mcr_reg);
msleep(50);
for (i = 0; ; i += 2) {
reg = state->config->inittab[i];
val = state->config->inittab[i+1];
if (reg == 0xff && val == 0xff)
break;
if (reg == 0x0c && state->config->op0_off)
val &= ~0x10;
if (reg == 0x2)
state->mcr_reg = val & 0xf;
stv0299_writeregI(state, reg, val);
}
return 0;
}
static int stv0299_read_status(struct dvb_frontend* fe, fe_status_t* status)
{
struct stv0299_state* state = fe->demodulator_priv;
u8 signal = 0xff - stv0299_readreg (state, 0x18);
u8 sync = stv0299_readreg (state, 0x1b);
dprintk ("%s : FE_READ_STATUS : VSTATUS: 0x%02x\n", __func__, sync);
*status = 0;
if (signal > 10)
*status |= FE_HAS_SIGNAL;
if (sync & 0x80)
*status |= FE_HAS_CARRIER;
if (sync & 0x10)
*status |= FE_HAS_VITERBI;
if (sync & 0x08)
*status |= FE_HAS_SYNC;
if ((sync & 0x98) == 0x98)
*status |= FE_HAS_LOCK;
return 0;
}
static int stv0299_read_ber(struct dvb_frontend* fe, u32* ber)
{
struct stv0299_state* state = fe->demodulator_priv;
if (state->errmode != STATUS_BER)
return -ENOSYS;
*ber = stv0299_readreg(state, 0x1e) | (stv0299_readreg(state, 0x1d) << 8);
return 0;
}
static int stv0299_read_signal_strength(struct dvb_frontend* fe, u16* strength)
{
struct stv0299_state* state = fe->demodulator_priv;
s32 signal = 0xffff - ((stv0299_readreg (state, 0x18) << 8)
| stv0299_readreg (state, 0x19));
dprintk ("%s : FE_READ_SIGNAL_STRENGTH : AGC2I: 0x%02x%02x, signal=0x%04x\n", __func__,
stv0299_readreg (state, 0x18),
stv0299_readreg (state, 0x19), (int) signal);
signal = signal * 5 / 4;
*strength = (signal > 0xffff) ? 0xffff : (signal < 0) ? 0 : signal;
return 0;
}
static int stv0299_read_snr(struct dvb_frontend* fe, u16* snr)
{
struct stv0299_state* state = fe->demodulator_priv;
s32 xsnr = 0xffff - ((stv0299_readreg (state, 0x24) << 8)
| stv0299_readreg (state, 0x25));
xsnr = 3 * (xsnr - 0xa100);
*snr = (xsnr > 0xffff) ? 0xffff : (xsnr < 0) ? 0 : xsnr;
return 0;
}
static int stv0299_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
{
struct stv0299_state* state = fe->demodulator_priv;
if (state->errmode != STATUS_UCBLOCKS)
return -ENOSYS;
state->ucblocks += stv0299_readreg(state, 0x1e);
state->ucblocks += (stv0299_readreg(state, 0x1d) << 8);
*ucblocks = state->ucblocks;
return 0;
}
static int stv0299_set_frontend(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
struct stv0299_state* state = fe->demodulator_priv;
int invval = 0;
dprintk ("%s : FE_SET_FRONTEND\n", __func__);
if (state->config->set_ts_params)
state->config->set_ts_params(fe, 0);
// set the inversion
if (p->inversion == INVERSION_OFF) invval = 0;
else if (p->inversion == INVERSION_ON) invval = 1;
else {
printk("stv0299 does not support auto-inversion\n");
return -EINVAL;
}
if (state->config->invert) invval = (~invval) & 1;
stv0299_writeregI(state, 0x0c, (stv0299_readreg(state, 0x0c) & 0xfe) | invval);
if (fe->ops.tuner_ops.set_params) {
fe->ops.tuner_ops.set_params(fe);
if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
}
stv0299_set_FEC(state, p->fec_inner);
stv0299_set_symbolrate(fe, p->symbol_rate);
stv0299_writeregI(state, 0x22, 0x00);
stv0299_writeregI(state, 0x23, 0x00);
state->tuner_frequency = p->frequency;
state->fec_inner = p->fec_inner;
state->symbol_rate = p->symbol_rate;
return 0;
}
static int stv0299_get_frontend(struct dvb_frontend *fe, struct dtv_frontend_properties * p)
{
struct stv0299_state* state = fe->demodulator_priv;
s32 derot_freq;
int invval;
derot_freq = (s32)(s16) ((stv0299_readreg (state, 0x22) << 8)
| stv0299_readreg (state, 0x23));
derot_freq *= (state->config->mclk >> 16);
derot_freq += 500;
derot_freq /= 1000;
p->frequency += derot_freq;
invval = stv0299_readreg (state, 0x0c) & 1;
if (state->config->invert) invval = (~invval) & 1;
p->inversion = invval ? INVERSION_ON : INVERSION_OFF;
p->fec_inner = stv0299_get_fec(state);
p->symbol_rate = stv0299_get_symbolrate(state);
return 0;
}
static int stv0299_sleep(struct dvb_frontend* fe)
{
struct stv0299_state* state = fe->demodulator_priv;
stv0299_writeregI(state, 0x02, 0xb0 | state->mcr_reg);
state->initialised = 0;
return 0;
}
static int stv0299_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
{
struct stv0299_state* state = fe->demodulator_priv;
if (enable) {
stv0299_writeregI(state, 0x05, 0xb5);
} else {
stv0299_writeregI(state, 0x05, 0x35);
}
udelay(1);
return 0;
}
static int stv0299_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings)
{
struct stv0299_state* state = fe->demodulator_priv;
fesettings->min_delay_ms = state->config->min_delay_ms;
if (fesettings->parameters.u.qpsk.symbol_rate < 10000000) {
fesettings->step_size = fesettings->parameters.u.qpsk.symbol_rate / 32000;
fesettings->max_drift = 5000;
} else {
fesettings->step_size = fesettings->parameters.u.qpsk.symbol_rate / 16000;
fesettings->max_drift = fesettings->parameters.u.qpsk.symbol_rate / 2000;
}
return 0;
}
static void stv0299_release(struct dvb_frontend* fe)
{
struct stv0299_state* state = fe->demodulator_priv;
kfree(state);
}
static struct dvb_frontend_ops stv0299_ops;
struct dvb_frontend* stv0299_attach(const struct stv0299_config* config,
struct i2c_adapter* i2c)
{
struct stv0299_state* state = NULL;
int id;
/* allocate memory for the internal state */
state = kzalloc(sizeof(struct stv0299_state), GFP_KERNEL);
if (state == NULL) goto error;
/* setup the state */
state->config = config;
state->i2c = i2c;
state->initialised = 0;
state->tuner_frequency = 0;
state->symbol_rate = 0;
state->fec_inner = 0;
state->errmode = STATUS_BER;
/* check if the demod is there */
stv0299_writeregI(state, 0x02, 0x30); /* standby off */
msleep(200);
id = stv0299_readreg(state, 0x00);
/* register 0x00 contains 0xa1 for STV0299 and STV0299B */
/* register 0x00 might contain 0x80 when returning from standby */
if (id != 0xa1 && id != 0x80) goto error;
/* create dvb_frontend */
memcpy(&state->frontend.ops, &stv0299_ops, sizeof(struct dvb_frontend_ops));
state->frontend.demodulator_priv = state;
return &state->frontend;
error:
kfree(state);
return NULL;
}
static struct dvb_frontend_ops stv0299_ops = {
.delsys = { SYS_DVBS },
.info = {
.name = "ST STV0299 DVB-S",
.type = FE_QPSK,
.frequency_min = 950000,
.frequency_max = 2150000,
.frequency_stepsize = 125, /* kHz for QPSK frontends */
.frequency_tolerance = 0,
.symbol_rate_min = 1000000,
.symbol_rate_max = 45000000,
.symbol_rate_tolerance = 500, /* ppm */
.caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
FE_CAN_QPSK |
FE_CAN_FEC_AUTO
},
.release = stv0299_release,
.init = stv0299_init,
.sleep = stv0299_sleep,
.write = stv0299_write,
.i2c_gate_ctrl = stv0299_i2c_gate_ctrl,
.set_frontend = stv0299_set_frontend,
.get_frontend = stv0299_get_frontend,
.get_tune_settings = stv0299_get_tune_settings,
.read_status = stv0299_read_status,
.read_ber = stv0299_read_ber,
.read_signal_strength = stv0299_read_signal_strength,
.read_snr = stv0299_read_snr,
.read_ucblocks = stv0299_read_ucblocks,
.diseqc_send_master_cmd = stv0299_send_diseqc_msg,
.diseqc_send_burst = stv0299_send_diseqc_burst,
.set_tone = stv0299_set_tone,
.set_voltage = stv0299_set_voltage,
.dishnetwork_send_legacy_command = stv0299_send_legacy_dish_cmd,
};
module_param(debug_legacy_dish_switch, int, 0444);
MODULE_PARM_DESC(debug_legacy_dish_switch, "Enable timing analysis for Dish Network legacy switches");
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
MODULE_DESCRIPTION("ST STV0299 DVB Demodulator driver");
MODULE_AUTHOR("Ralph Metzler, Holger Waechtler, Peter Schildmann, Felix Domke, "
"Andreas Oberritter, Andrew de Quincey, Kenneth Aafly");
MODULE_LICENSE("GPL");
EXPORT_SYMBOL(stv0299_attach);