36943aba91
When swapping pages out to disk it is necessary to save any tags that have been set, and restore when swapping back in. Make use of the new page flag (PG_ARCH_2, locally named PG_mte_tagged) to identify pages with tags. When swapping out these pages the tags are stored in memory and later restored when the pages are brought back in. Because shmem can swap pages back in without restoring the userspace PTE it is also necessary to add a hook for shmem. Signed-off-by: Steven Price <steven.price@arm.com> [catalin.marinas@arm.com: move function prototypes to mte.h] [catalin.marinas@arm.com: drop '_tags' from arch_swap_restore_tags()] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Will Deacon <will@kernel.org>
337 lines
7.6 KiB
C
337 lines
7.6 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2020 ARM Ltd.
|
|
*/
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/prctl.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/string.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/thread_info.h>
|
|
#include <linux/uio.h>
|
|
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/mte.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/sysreg.h>
|
|
|
|
static void mte_sync_page_tags(struct page *page, pte_t *ptep, bool check_swap)
|
|
{
|
|
pte_t old_pte = READ_ONCE(*ptep);
|
|
|
|
if (check_swap && is_swap_pte(old_pte)) {
|
|
swp_entry_t entry = pte_to_swp_entry(old_pte);
|
|
|
|
if (!non_swap_entry(entry) && mte_restore_tags(entry, page))
|
|
return;
|
|
}
|
|
|
|
mte_clear_page_tags(page_address(page));
|
|
}
|
|
|
|
void mte_sync_tags(pte_t *ptep, pte_t pte)
|
|
{
|
|
struct page *page = pte_page(pte);
|
|
long i, nr_pages = compound_nr(page);
|
|
bool check_swap = nr_pages == 1;
|
|
|
|
/* if PG_mte_tagged is set, tags have already been initialised */
|
|
for (i = 0; i < nr_pages; i++, page++) {
|
|
if (!test_and_set_bit(PG_mte_tagged, &page->flags))
|
|
mte_sync_page_tags(page, ptep, check_swap);
|
|
}
|
|
}
|
|
|
|
int memcmp_pages(struct page *page1, struct page *page2)
|
|
{
|
|
char *addr1, *addr2;
|
|
int ret;
|
|
|
|
addr1 = page_address(page1);
|
|
addr2 = page_address(page2);
|
|
ret = memcmp(addr1, addr2, PAGE_SIZE);
|
|
|
|
if (!system_supports_mte() || ret)
|
|
return ret;
|
|
|
|
/*
|
|
* If the page content is identical but at least one of the pages is
|
|
* tagged, return non-zero to avoid KSM merging. If only one of the
|
|
* pages is tagged, set_pte_at() may zero or change the tags of the
|
|
* other page via mte_sync_tags().
|
|
*/
|
|
if (test_bit(PG_mte_tagged, &page1->flags) ||
|
|
test_bit(PG_mte_tagged, &page2->flags))
|
|
return addr1 != addr2;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void update_sctlr_el1_tcf0(u64 tcf0)
|
|
{
|
|
/* ISB required for the kernel uaccess routines */
|
|
sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF0_MASK, tcf0);
|
|
isb();
|
|
}
|
|
|
|
static void set_sctlr_el1_tcf0(u64 tcf0)
|
|
{
|
|
/*
|
|
* mte_thread_switch() checks current->thread.sctlr_tcf0 as an
|
|
* optimisation. Disable preemption so that it does not see
|
|
* the variable update before the SCTLR_EL1.TCF0 one.
|
|
*/
|
|
preempt_disable();
|
|
current->thread.sctlr_tcf0 = tcf0;
|
|
update_sctlr_el1_tcf0(tcf0);
|
|
preempt_enable();
|
|
}
|
|
|
|
static void update_gcr_el1_excl(u64 incl)
|
|
{
|
|
u64 excl = ~incl & SYS_GCR_EL1_EXCL_MASK;
|
|
|
|
/*
|
|
* Note that 'incl' is an include mask (controlled by the user via
|
|
* prctl()) while GCR_EL1 accepts an exclude mask.
|
|
* No need for ISB since this only affects EL0 currently, implicit
|
|
* with ERET.
|
|
*/
|
|
sysreg_clear_set_s(SYS_GCR_EL1, SYS_GCR_EL1_EXCL_MASK, excl);
|
|
}
|
|
|
|
static void set_gcr_el1_excl(u64 incl)
|
|
{
|
|
current->thread.gcr_user_incl = incl;
|
|
update_gcr_el1_excl(incl);
|
|
}
|
|
|
|
void flush_mte_state(void)
|
|
{
|
|
if (!system_supports_mte())
|
|
return;
|
|
|
|
/* clear any pending asynchronous tag fault */
|
|
dsb(ish);
|
|
write_sysreg_s(0, SYS_TFSRE0_EL1);
|
|
clear_thread_flag(TIF_MTE_ASYNC_FAULT);
|
|
/* disable tag checking */
|
|
set_sctlr_el1_tcf0(SCTLR_EL1_TCF0_NONE);
|
|
/* reset tag generation mask */
|
|
set_gcr_el1_excl(0);
|
|
}
|
|
|
|
void mte_thread_switch(struct task_struct *next)
|
|
{
|
|
if (!system_supports_mte())
|
|
return;
|
|
|
|
/* avoid expensive SCTLR_EL1 accesses if no change */
|
|
if (current->thread.sctlr_tcf0 != next->thread.sctlr_tcf0)
|
|
update_sctlr_el1_tcf0(next->thread.sctlr_tcf0);
|
|
update_gcr_el1_excl(next->thread.gcr_user_incl);
|
|
}
|
|
|
|
void mte_suspend_exit(void)
|
|
{
|
|
if (!system_supports_mte())
|
|
return;
|
|
|
|
update_gcr_el1_excl(current->thread.gcr_user_incl);
|
|
}
|
|
|
|
long set_mte_ctrl(struct task_struct *task, unsigned long arg)
|
|
{
|
|
u64 tcf0;
|
|
u64 gcr_incl = (arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT;
|
|
|
|
if (!system_supports_mte())
|
|
return 0;
|
|
|
|
switch (arg & PR_MTE_TCF_MASK) {
|
|
case PR_MTE_TCF_NONE:
|
|
tcf0 = SCTLR_EL1_TCF0_NONE;
|
|
break;
|
|
case PR_MTE_TCF_SYNC:
|
|
tcf0 = SCTLR_EL1_TCF0_SYNC;
|
|
break;
|
|
case PR_MTE_TCF_ASYNC:
|
|
tcf0 = SCTLR_EL1_TCF0_ASYNC;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (task != current) {
|
|
task->thread.sctlr_tcf0 = tcf0;
|
|
task->thread.gcr_user_incl = gcr_incl;
|
|
} else {
|
|
set_sctlr_el1_tcf0(tcf0);
|
|
set_gcr_el1_excl(gcr_incl);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
long get_mte_ctrl(struct task_struct *task)
|
|
{
|
|
unsigned long ret;
|
|
|
|
if (!system_supports_mte())
|
|
return 0;
|
|
|
|
ret = task->thread.gcr_user_incl << PR_MTE_TAG_SHIFT;
|
|
|
|
switch (task->thread.sctlr_tcf0) {
|
|
case SCTLR_EL1_TCF0_NONE:
|
|
return PR_MTE_TCF_NONE;
|
|
case SCTLR_EL1_TCF0_SYNC:
|
|
ret |= PR_MTE_TCF_SYNC;
|
|
break;
|
|
case SCTLR_EL1_TCF0_ASYNC:
|
|
ret |= PR_MTE_TCF_ASYNC;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Access MTE tags in another process' address space as given in mm. Update
|
|
* the number of tags copied. Return 0 if any tags copied, error otherwise.
|
|
* Inspired by __access_remote_vm().
|
|
*/
|
|
static int __access_remote_tags(struct mm_struct *mm, unsigned long addr,
|
|
struct iovec *kiov, unsigned int gup_flags)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
void __user *buf = kiov->iov_base;
|
|
size_t len = kiov->iov_len;
|
|
int ret;
|
|
int write = gup_flags & FOLL_WRITE;
|
|
|
|
if (!access_ok(buf, len))
|
|
return -EFAULT;
|
|
|
|
if (mmap_read_lock_killable(mm))
|
|
return -EIO;
|
|
|
|
while (len) {
|
|
unsigned long tags, offset;
|
|
void *maddr;
|
|
struct page *page = NULL;
|
|
|
|
ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page,
|
|
&vma, NULL);
|
|
if (ret <= 0)
|
|
break;
|
|
|
|
/*
|
|
* Only copy tags if the page has been mapped as PROT_MTE
|
|
* (PG_mte_tagged set). Otherwise the tags are not valid and
|
|
* not accessible to user. Moreover, an mprotect(PROT_MTE)
|
|
* would cause the existing tags to be cleared if the page
|
|
* was never mapped with PROT_MTE.
|
|
*/
|
|
if (!test_bit(PG_mte_tagged, &page->flags)) {
|
|
ret = -EOPNOTSUPP;
|
|
put_page(page);
|
|
break;
|
|
}
|
|
|
|
/* limit access to the end of the page */
|
|
offset = offset_in_page(addr);
|
|
tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE);
|
|
|
|
maddr = page_address(page);
|
|
if (write) {
|
|
tags = mte_copy_tags_from_user(maddr + offset, buf, tags);
|
|
set_page_dirty_lock(page);
|
|
} else {
|
|
tags = mte_copy_tags_to_user(buf, maddr + offset, tags);
|
|
}
|
|
put_page(page);
|
|
|
|
/* error accessing the tracer's buffer */
|
|
if (!tags)
|
|
break;
|
|
|
|
len -= tags;
|
|
buf += tags;
|
|
addr += tags * MTE_GRANULE_SIZE;
|
|
}
|
|
mmap_read_unlock(mm);
|
|
|
|
/* return an error if no tags copied */
|
|
kiov->iov_len = buf - kiov->iov_base;
|
|
if (!kiov->iov_len) {
|
|
/* check for error accessing the tracee's address space */
|
|
if (ret <= 0)
|
|
return -EIO;
|
|
else
|
|
return -EFAULT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Copy MTE tags in another process' address space at 'addr' to/from tracer's
|
|
* iovec buffer. Return 0 on success. Inspired by ptrace_access_vm().
|
|
*/
|
|
static int access_remote_tags(struct task_struct *tsk, unsigned long addr,
|
|
struct iovec *kiov, unsigned int gup_flags)
|
|
{
|
|
struct mm_struct *mm;
|
|
int ret;
|
|
|
|
mm = get_task_mm(tsk);
|
|
if (!mm)
|
|
return -EPERM;
|
|
|
|
if (!tsk->ptrace || (current != tsk->parent) ||
|
|
((get_dumpable(mm) != SUID_DUMP_USER) &&
|
|
!ptracer_capable(tsk, mm->user_ns))) {
|
|
mmput(mm);
|
|
return -EPERM;
|
|
}
|
|
|
|
ret = __access_remote_tags(mm, addr, kiov, gup_flags);
|
|
mmput(mm);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int mte_ptrace_copy_tags(struct task_struct *child, long request,
|
|
unsigned long addr, unsigned long data)
|
|
{
|
|
int ret;
|
|
struct iovec kiov;
|
|
struct iovec __user *uiov = (void __user *)data;
|
|
unsigned int gup_flags = FOLL_FORCE;
|
|
|
|
if (!system_supports_mte())
|
|
return -EIO;
|
|
|
|
if (get_user(kiov.iov_base, &uiov->iov_base) ||
|
|
get_user(kiov.iov_len, &uiov->iov_len))
|
|
return -EFAULT;
|
|
|
|
if (request == PTRACE_POKEMTETAGS)
|
|
gup_flags |= FOLL_WRITE;
|
|
|
|
/* align addr to the MTE tag granule */
|
|
addr &= MTE_GRANULE_MASK;
|
|
|
|
ret = access_remote_tags(child, addr, &kiov, gup_flags);
|
|
if (!ret)
|
|
ret = put_user(kiov.iov_len, &uiov->iov_len);
|
|
|
|
return ret;
|
|
}
|