6e74b12515
Since commit: 4d96f9109109b ("x86/sev: Replace occurrences of sev_active() with cc_platform_has()") ... the SWIOTLB bounce buffer size adjustment and restricted virtio memory setting also inadvertently apply to TDX: the code is using cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT) as a gatekeeping condition, which is also true for TDX, and this is also what we want. To reflect this, move the corresponding code to generic mem_encrypt.c. No functional changes intended. Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Link: https://lore.kernel.org/r/20231010145220.3960055-2-alexander.shishkin@linux.intel.com
123 lines
3.2 KiB
C
123 lines
3.2 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Memory Encryption Support Common Code
|
|
*
|
|
* Copyright (C) 2016 Advanced Micro Devices, Inc.
|
|
*
|
|
* Author: Tom Lendacky <thomas.lendacky@amd.com>
|
|
*/
|
|
|
|
#include <linux/dma-direct.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/swiotlb.h>
|
|
#include <linux/cc_platform.h>
|
|
#include <linux/mem_encrypt.h>
|
|
#include <linux/virtio_anchor.h>
|
|
|
|
/* Override for DMA direct allocation check - ARCH_HAS_FORCE_DMA_UNENCRYPTED */
|
|
bool force_dma_unencrypted(struct device *dev)
|
|
{
|
|
/*
|
|
* For SEV, all DMA must be to unencrypted addresses.
|
|
*/
|
|
if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
|
|
return true;
|
|
|
|
/*
|
|
* For SME, all DMA must be to unencrypted addresses if the
|
|
* device does not support DMA to addresses that include the
|
|
* encryption mask.
|
|
*/
|
|
if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
|
|
u64 dma_enc_mask = DMA_BIT_MASK(__ffs64(sme_me_mask));
|
|
u64 dma_dev_mask = min_not_zero(dev->coherent_dma_mask,
|
|
dev->bus_dma_limit);
|
|
|
|
if (dma_dev_mask <= dma_enc_mask)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void print_mem_encrypt_feature_info(void)
|
|
{
|
|
pr_info("Memory Encryption Features active:");
|
|
|
|
if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
|
|
pr_cont(" Intel TDX\n");
|
|
return;
|
|
}
|
|
|
|
pr_cont(" AMD");
|
|
|
|
/* Secure Memory Encryption */
|
|
if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
|
|
/*
|
|
* SME is mutually exclusive with any of the SEV
|
|
* features below.
|
|
*/
|
|
pr_cont(" SME\n");
|
|
return;
|
|
}
|
|
|
|
/* Secure Encrypted Virtualization */
|
|
if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
|
|
pr_cont(" SEV");
|
|
|
|
/* Encrypted Register State */
|
|
if (cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
|
|
pr_cont(" SEV-ES");
|
|
|
|
/* Secure Nested Paging */
|
|
if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
|
|
pr_cont(" SEV-SNP");
|
|
|
|
pr_cont("\n");
|
|
}
|
|
|
|
/* Architecture __weak replacement functions */
|
|
void __init mem_encrypt_init(void)
|
|
{
|
|
if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
|
|
return;
|
|
|
|
/* Call into SWIOTLB to update the SWIOTLB DMA buffers */
|
|
swiotlb_update_mem_attributes();
|
|
|
|
print_mem_encrypt_feature_info();
|
|
}
|
|
|
|
void __init mem_encrypt_setup_arch(void)
|
|
{
|
|
phys_addr_t total_mem = memblock_phys_mem_size();
|
|
unsigned long size;
|
|
|
|
if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
|
|
return;
|
|
|
|
/*
|
|
* For SEV and TDX, all DMA has to occur via shared/unencrypted pages.
|
|
* Kernel uses SWIOTLB to make this happen without changing device
|
|
* drivers. However, depending on the workload being run, the
|
|
* default 64MB of SWIOTLB may not be enough and SWIOTLB may
|
|
* run out of buffers for DMA, resulting in I/O errors and/or
|
|
* performance degradation especially with high I/O workloads.
|
|
*
|
|
* Adjust the default size of SWIOTLB using a percentage of guest
|
|
* memory for SWIOTLB buffers. Also, as the SWIOTLB bounce buffer
|
|
* memory is allocated from low memory, ensure that the adjusted size
|
|
* is within the limits of low available memory.
|
|
*
|
|
* The percentage of guest memory used here for SWIOTLB buffers
|
|
* is more of an approximation of the static adjustment which
|
|
* 64MB for <1G, and ~128M to 256M for 1G-to-4G, i.e., the 6%
|
|
*/
|
|
size = total_mem * 6 / 100;
|
|
size = clamp_val(size, IO_TLB_DEFAULT_SIZE, SZ_1G);
|
|
swiotlb_adjust_size(size);
|
|
|
|
/* Set restricted memory access for virtio. */
|
|
virtio_set_mem_acc_cb(virtio_require_restricted_mem_acc);
|
|
}
|