d892454b68
On x86, there is a set of instructions used to save and restore register state collectively known as the XSAVE architecture. There are about a dozen different features managed with XSAVE. The protection keys register, PKRU, is one of those features. The hardware optimizes XSAVE by tracking when the state has not changed from its initial (init) state. In this case, it can avoid the cost of writing state to memory (it would usually just be a bunch of 0's). When the pkey register is 0x0 the hardware optionally choose to track the register as being in the init state (optimize away the writes). AMD CPUs do this more aggressively compared to Intel. On x86, PKRU is rarely in its (very permissive) init state. Instead, the value defaults to something very restrictive. It is not surprising that bugs have popped up in the rare cases when PKRU reaches its init state. Add a protection key selftest which gets the protection keys register into its init state in a way that should work on Intel and AMD. Then, do a bunch of pkey register reads to watch for inadvertent changes. This adds "-mxsave" to CFLAGS for all the x86 vm selftests in order to allow use of the XSAVE instruction __builtin functions. This will make the builtins available on all of the vm selftests, but is expected to be harmless. Link: https://lkml.kernel.org/r/20210611164202.1849B712@viggo.jf.intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Ram Pai <linuxram@us.ibm.com> Cc: Sandipan Das <sandipan@linux.ibm.com> Cc: Florian Weimer <fweimer@redhat.com> Cc: "Desnes A. Nunes do Rosario" <desnesn@linux.vnet.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thiago Jung Bauermann <bauerman@linux.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Suchanek <msuchanek@suse.de> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1662 lines
42 KiB
C
1662 lines
42 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Tests Memory Protection Keys (see Documentation/core-api/protection-keys.rst)
|
|
*
|
|
* There are examples in here of:
|
|
* * how to set protection keys on memory
|
|
* * how to set/clear bits in pkey registers (the rights register)
|
|
* * how to handle SEGV_PKUERR signals and extract pkey-relevant
|
|
* information from the siginfo
|
|
*
|
|
* Things to add:
|
|
* make sure KSM and KSM COW breaking works
|
|
* prefault pages in at malloc, or not
|
|
* protect MPX bounds tables with protection keys?
|
|
* make sure VMA splitting/merging is working correctly
|
|
* OOMs can destroy mm->mmap (see exit_mmap()), so make sure it is immune to pkeys
|
|
* look for pkey "leaks" where it is still set on a VMA but "freed" back to the kernel
|
|
* do a plain mprotect() to a mprotect_pkey() area and make sure the pkey sticks
|
|
*
|
|
* Compile like this:
|
|
* gcc -o protection_keys -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
|
|
* gcc -m32 -o protection_keys_32 -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
|
|
*/
|
|
#define _GNU_SOURCE
|
|
#define __SANE_USERSPACE_TYPES__
|
|
#include <errno.h>
|
|
#include <linux/futex.h>
|
|
#include <time.h>
|
|
#include <sys/time.h>
|
|
#include <sys/syscall.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
#include <stdbool.h>
|
|
#include <signal.h>
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
#include <ucontext.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/types.h>
|
|
#include <sys/wait.h>
|
|
#include <sys/stat.h>
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
#include <sys/ptrace.h>
|
|
#include <setjmp.h>
|
|
|
|
#include "pkey-helpers.h"
|
|
|
|
int iteration_nr = 1;
|
|
int test_nr;
|
|
|
|
u64 shadow_pkey_reg;
|
|
int dprint_in_signal;
|
|
char dprint_in_signal_buffer[DPRINT_IN_SIGNAL_BUF_SIZE];
|
|
|
|
void cat_into_file(char *str, char *file)
|
|
{
|
|
int fd = open(file, O_RDWR);
|
|
int ret;
|
|
|
|
dprintf2("%s(): writing '%s' to '%s'\n", __func__, str, file);
|
|
/*
|
|
* these need to be raw because they are called under
|
|
* pkey_assert()
|
|
*/
|
|
if (fd < 0) {
|
|
fprintf(stderr, "error opening '%s'\n", str);
|
|
perror("error: ");
|
|
exit(__LINE__);
|
|
}
|
|
|
|
ret = write(fd, str, strlen(str));
|
|
if (ret != strlen(str)) {
|
|
perror("write to file failed");
|
|
fprintf(stderr, "filename: '%s' str: '%s'\n", file, str);
|
|
exit(__LINE__);
|
|
}
|
|
close(fd);
|
|
}
|
|
|
|
#if CONTROL_TRACING > 0
|
|
static int warned_tracing;
|
|
int tracing_root_ok(void)
|
|
{
|
|
if (geteuid() != 0) {
|
|
if (!warned_tracing)
|
|
fprintf(stderr, "WARNING: not run as root, "
|
|
"can not do tracing control\n");
|
|
warned_tracing = 1;
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
void tracing_on(void)
|
|
{
|
|
#if CONTROL_TRACING > 0
|
|
#define TRACEDIR "/sys/kernel/debug/tracing"
|
|
char pidstr[32];
|
|
|
|
if (!tracing_root_ok())
|
|
return;
|
|
|
|
sprintf(pidstr, "%d", getpid());
|
|
cat_into_file("0", TRACEDIR "/tracing_on");
|
|
cat_into_file("\n", TRACEDIR "/trace");
|
|
if (1) {
|
|
cat_into_file("function_graph", TRACEDIR "/current_tracer");
|
|
cat_into_file("1", TRACEDIR "/options/funcgraph-proc");
|
|
} else {
|
|
cat_into_file("nop", TRACEDIR "/current_tracer");
|
|
}
|
|
cat_into_file(pidstr, TRACEDIR "/set_ftrace_pid");
|
|
cat_into_file("1", TRACEDIR "/tracing_on");
|
|
dprintf1("enabled tracing\n");
|
|
#endif
|
|
}
|
|
|
|
void tracing_off(void)
|
|
{
|
|
#if CONTROL_TRACING > 0
|
|
if (!tracing_root_ok())
|
|
return;
|
|
cat_into_file("0", "/sys/kernel/debug/tracing/tracing_on");
|
|
#endif
|
|
}
|
|
|
|
void abort_hooks(void)
|
|
{
|
|
fprintf(stderr, "running %s()...\n", __func__);
|
|
tracing_off();
|
|
#ifdef SLEEP_ON_ABORT
|
|
sleep(SLEEP_ON_ABORT);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* This attempts to have roughly a page of instructions followed by a few
|
|
* instructions that do a write, and another page of instructions. That
|
|
* way, we are pretty sure that the write is in the second page of
|
|
* instructions and has at least a page of padding behind it.
|
|
*
|
|
* *That* lets us be sure to madvise() away the write instruction, which
|
|
* will then fault, which makes sure that the fault code handles
|
|
* execute-only memory properly.
|
|
*/
|
|
#ifdef __powerpc64__
|
|
/* This way, both 4K and 64K alignment are maintained */
|
|
__attribute__((__aligned__(65536)))
|
|
#else
|
|
__attribute__((__aligned__(PAGE_SIZE)))
|
|
#endif
|
|
void lots_o_noops_around_write(int *write_to_me)
|
|
{
|
|
dprintf3("running %s()\n", __func__);
|
|
__page_o_noops();
|
|
/* Assume this happens in the second page of instructions: */
|
|
*write_to_me = __LINE__;
|
|
/* pad out by another page: */
|
|
__page_o_noops();
|
|
dprintf3("%s() done\n", __func__);
|
|
}
|
|
|
|
void dump_mem(void *dumpme, int len_bytes)
|
|
{
|
|
char *c = (void *)dumpme;
|
|
int i;
|
|
|
|
for (i = 0; i < len_bytes; i += sizeof(u64)) {
|
|
u64 *ptr = (u64 *)(c + i);
|
|
dprintf1("dump[%03d][@%p]: %016llx\n", i, ptr, *ptr);
|
|
}
|
|
}
|
|
|
|
static u32 hw_pkey_get(int pkey, unsigned long flags)
|
|
{
|
|
u64 pkey_reg = __read_pkey_reg();
|
|
|
|
dprintf1("%s(pkey=%d, flags=%lx) = %x / %d\n",
|
|
__func__, pkey, flags, 0, 0);
|
|
dprintf2("%s() raw pkey_reg: %016llx\n", __func__, pkey_reg);
|
|
|
|
return (u32) get_pkey_bits(pkey_reg, pkey);
|
|
}
|
|
|
|
static int hw_pkey_set(int pkey, unsigned long rights, unsigned long flags)
|
|
{
|
|
u32 mask = (PKEY_DISABLE_ACCESS|PKEY_DISABLE_WRITE);
|
|
u64 old_pkey_reg = __read_pkey_reg();
|
|
u64 new_pkey_reg;
|
|
|
|
/* make sure that 'rights' only contains the bits we expect: */
|
|
assert(!(rights & ~mask));
|
|
|
|
/* modify bits accordingly in old pkey_reg and assign it */
|
|
new_pkey_reg = set_pkey_bits(old_pkey_reg, pkey, rights);
|
|
|
|
__write_pkey_reg(new_pkey_reg);
|
|
|
|
dprintf3("%s(pkey=%d, rights=%lx, flags=%lx) = %x"
|
|
" pkey_reg now: %016llx old_pkey_reg: %016llx\n",
|
|
__func__, pkey, rights, flags, 0, __read_pkey_reg(),
|
|
old_pkey_reg);
|
|
return 0;
|
|
}
|
|
|
|
void pkey_disable_set(int pkey, int flags)
|
|
{
|
|
unsigned long syscall_flags = 0;
|
|
int ret;
|
|
int pkey_rights;
|
|
u64 orig_pkey_reg = read_pkey_reg();
|
|
|
|
dprintf1("START->%s(%d, 0x%x)\n", __func__,
|
|
pkey, flags);
|
|
pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
|
|
|
|
pkey_rights = hw_pkey_get(pkey, syscall_flags);
|
|
|
|
dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
|
|
pkey, pkey, pkey_rights);
|
|
|
|
pkey_assert(pkey_rights >= 0);
|
|
|
|
pkey_rights |= flags;
|
|
|
|
ret = hw_pkey_set(pkey, pkey_rights, syscall_flags);
|
|
assert(!ret);
|
|
/* pkey_reg and flags have the same format */
|
|
shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, pkey, pkey_rights);
|
|
dprintf1("%s(%d) shadow: 0x%016llx\n",
|
|
__func__, pkey, shadow_pkey_reg);
|
|
|
|
pkey_assert(ret >= 0);
|
|
|
|
pkey_rights = hw_pkey_get(pkey, syscall_flags);
|
|
dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
|
|
pkey, pkey, pkey_rights);
|
|
|
|
dprintf1("%s(%d) pkey_reg: 0x%016llx\n",
|
|
__func__, pkey, read_pkey_reg());
|
|
if (flags)
|
|
pkey_assert(read_pkey_reg() >= orig_pkey_reg);
|
|
dprintf1("END<---%s(%d, 0x%x)\n", __func__,
|
|
pkey, flags);
|
|
}
|
|
|
|
void pkey_disable_clear(int pkey, int flags)
|
|
{
|
|
unsigned long syscall_flags = 0;
|
|
int ret;
|
|
int pkey_rights = hw_pkey_get(pkey, syscall_flags);
|
|
u64 orig_pkey_reg = read_pkey_reg();
|
|
|
|
pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
|
|
|
|
dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
|
|
pkey, pkey, pkey_rights);
|
|
pkey_assert(pkey_rights >= 0);
|
|
|
|
pkey_rights &= ~flags;
|
|
|
|
ret = hw_pkey_set(pkey, pkey_rights, 0);
|
|
shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, pkey, pkey_rights);
|
|
pkey_assert(ret >= 0);
|
|
|
|
pkey_rights = hw_pkey_get(pkey, syscall_flags);
|
|
dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
|
|
pkey, pkey, pkey_rights);
|
|
|
|
dprintf1("%s(%d) pkey_reg: 0x%016llx\n", __func__,
|
|
pkey, read_pkey_reg());
|
|
if (flags)
|
|
assert(read_pkey_reg() <= orig_pkey_reg);
|
|
}
|
|
|
|
void pkey_write_allow(int pkey)
|
|
{
|
|
pkey_disable_clear(pkey, PKEY_DISABLE_WRITE);
|
|
}
|
|
void pkey_write_deny(int pkey)
|
|
{
|
|
pkey_disable_set(pkey, PKEY_DISABLE_WRITE);
|
|
}
|
|
void pkey_access_allow(int pkey)
|
|
{
|
|
pkey_disable_clear(pkey, PKEY_DISABLE_ACCESS);
|
|
}
|
|
void pkey_access_deny(int pkey)
|
|
{
|
|
pkey_disable_set(pkey, PKEY_DISABLE_ACCESS);
|
|
}
|
|
|
|
/* Failed address bound checks: */
|
|
#ifndef SEGV_BNDERR
|
|
# define SEGV_BNDERR 3
|
|
#endif
|
|
|
|
#ifndef SEGV_PKUERR
|
|
# define SEGV_PKUERR 4
|
|
#endif
|
|
|
|
static char *si_code_str(int si_code)
|
|
{
|
|
if (si_code == SEGV_MAPERR)
|
|
return "SEGV_MAPERR";
|
|
if (si_code == SEGV_ACCERR)
|
|
return "SEGV_ACCERR";
|
|
if (si_code == SEGV_BNDERR)
|
|
return "SEGV_BNDERR";
|
|
if (si_code == SEGV_PKUERR)
|
|
return "SEGV_PKUERR";
|
|
return "UNKNOWN";
|
|
}
|
|
|
|
int pkey_faults;
|
|
int last_si_pkey = -1;
|
|
void signal_handler(int signum, siginfo_t *si, void *vucontext)
|
|
{
|
|
ucontext_t *uctxt = vucontext;
|
|
int trapno;
|
|
unsigned long ip;
|
|
char *fpregs;
|
|
#if defined(__i386__) || defined(__x86_64__) /* arch */
|
|
u32 *pkey_reg_ptr;
|
|
int pkey_reg_offset;
|
|
#endif /* arch */
|
|
u64 siginfo_pkey;
|
|
u32 *si_pkey_ptr;
|
|
|
|
dprint_in_signal = 1;
|
|
dprintf1(">>>>===============SIGSEGV============================\n");
|
|
dprintf1("%s()::%d, pkey_reg: 0x%016llx shadow: %016llx\n",
|
|
__func__, __LINE__,
|
|
__read_pkey_reg(), shadow_pkey_reg);
|
|
|
|
trapno = uctxt->uc_mcontext.gregs[REG_TRAPNO];
|
|
ip = uctxt->uc_mcontext.gregs[REG_IP_IDX];
|
|
fpregs = (char *) uctxt->uc_mcontext.fpregs;
|
|
|
|
dprintf2("%s() trapno: %d ip: 0x%016lx info->si_code: %s/%d\n",
|
|
__func__, trapno, ip, si_code_str(si->si_code),
|
|
si->si_code);
|
|
|
|
#if defined(__i386__) || defined(__x86_64__) /* arch */
|
|
#ifdef __i386__
|
|
/*
|
|
* 32-bit has some extra padding so that userspace can tell whether
|
|
* the XSTATE header is present in addition to the "legacy" FPU
|
|
* state. We just assume that it is here.
|
|
*/
|
|
fpregs += 0x70;
|
|
#endif /* i386 */
|
|
pkey_reg_offset = pkey_reg_xstate_offset();
|
|
pkey_reg_ptr = (void *)(&fpregs[pkey_reg_offset]);
|
|
|
|
/*
|
|
* If we got a PKEY fault, we *HAVE* to have at least one bit set in
|
|
* here.
|
|
*/
|
|
dprintf1("pkey_reg_xstate_offset: %d\n", pkey_reg_xstate_offset());
|
|
if (DEBUG_LEVEL > 4)
|
|
dump_mem(pkey_reg_ptr - 128, 256);
|
|
pkey_assert(*pkey_reg_ptr);
|
|
#endif /* arch */
|
|
|
|
dprintf1("siginfo: %p\n", si);
|
|
dprintf1(" fpregs: %p\n", fpregs);
|
|
|
|
if ((si->si_code == SEGV_MAPERR) ||
|
|
(si->si_code == SEGV_ACCERR) ||
|
|
(si->si_code == SEGV_BNDERR)) {
|
|
printf("non-PK si_code, exiting...\n");
|
|
exit(4);
|
|
}
|
|
|
|
si_pkey_ptr = siginfo_get_pkey_ptr(si);
|
|
dprintf1("si_pkey_ptr: %p\n", si_pkey_ptr);
|
|
dump_mem((u8 *)si_pkey_ptr - 8, 24);
|
|
siginfo_pkey = *si_pkey_ptr;
|
|
pkey_assert(siginfo_pkey < NR_PKEYS);
|
|
last_si_pkey = siginfo_pkey;
|
|
|
|
/*
|
|
* need __read_pkey_reg() version so we do not do shadow_pkey_reg
|
|
* checking
|
|
*/
|
|
dprintf1("signal pkey_reg from pkey_reg: %016llx\n",
|
|
__read_pkey_reg());
|
|
dprintf1("pkey from siginfo: %016llx\n", siginfo_pkey);
|
|
#if defined(__i386__) || defined(__x86_64__) /* arch */
|
|
dprintf1("signal pkey_reg from xsave: %08x\n", *pkey_reg_ptr);
|
|
*(u64 *)pkey_reg_ptr = 0x00000000;
|
|
dprintf1("WARNING: set PKEY_REG=0 to allow faulting instruction to continue\n");
|
|
#elif defined(__powerpc64__) /* arch */
|
|
/* restore access and let the faulting instruction continue */
|
|
pkey_access_allow(siginfo_pkey);
|
|
#endif /* arch */
|
|
pkey_faults++;
|
|
dprintf1("<<<<==================================================\n");
|
|
dprint_in_signal = 0;
|
|
}
|
|
|
|
int wait_all_children(void)
|
|
{
|
|
int status;
|
|
return waitpid(-1, &status, 0);
|
|
}
|
|
|
|
void sig_chld(int x)
|
|
{
|
|
dprint_in_signal = 1;
|
|
dprintf2("[%d] SIGCHLD: %d\n", getpid(), x);
|
|
dprint_in_signal = 0;
|
|
}
|
|
|
|
void setup_sigsegv_handler(void)
|
|
{
|
|
int r, rs;
|
|
struct sigaction newact;
|
|
struct sigaction oldact;
|
|
|
|
/* #PF is mapped to sigsegv */
|
|
int signum = SIGSEGV;
|
|
|
|
newact.sa_handler = 0;
|
|
newact.sa_sigaction = signal_handler;
|
|
|
|
/*sigset_t - signals to block while in the handler */
|
|
/* get the old signal mask. */
|
|
rs = sigprocmask(SIG_SETMASK, 0, &newact.sa_mask);
|
|
pkey_assert(rs == 0);
|
|
|
|
/* call sa_sigaction, not sa_handler*/
|
|
newact.sa_flags = SA_SIGINFO;
|
|
|
|
newact.sa_restorer = 0; /* void(*)(), obsolete */
|
|
r = sigaction(signum, &newact, &oldact);
|
|
r = sigaction(SIGALRM, &newact, &oldact);
|
|
pkey_assert(r == 0);
|
|
}
|
|
|
|
void setup_handlers(void)
|
|
{
|
|
signal(SIGCHLD, &sig_chld);
|
|
setup_sigsegv_handler();
|
|
}
|
|
|
|
pid_t fork_lazy_child(void)
|
|
{
|
|
pid_t forkret;
|
|
|
|
forkret = fork();
|
|
pkey_assert(forkret >= 0);
|
|
dprintf3("[%d] fork() ret: %d\n", getpid(), forkret);
|
|
|
|
if (!forkret) {
|
|
/* in the child */
|
|
while (1) {
|
|
dprintf1("child sleeping...\n");
|
|
sleep(30);
|
|
}
|
|
}
|
|
return forkret;
|
|
}
|
|
|
|
int sys_mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot,
|
|
unsigned long pkey)
|
|
{
|
|
int sret;
|
|
|
|
dprintf2("%s(0x%p, %zx, prot=%lx, pkey=%lx)\n", __func__,
|
|
ptr, size, orig_prot, pkey);
|
|
|
|
errno = 0;
|
|
sret = syscall(SYS_mprotect_key, ptr, size, orig_prot, pkey);
|
|
if (errno) {
|
|
dprintf2("SYS_mprotect_key sret: %d\n", sret);
|
|
dprintf2("SYS_mprotect_key prot: 0x%lx\n", orig_prot);
|
|
dprintf2("SYS_mprotect_key failed, errno: %d\n", errno);
|
|
if (DEBUG_LEVEL >= 2)
|
|
perror("SYS_mprotect_pkey");
|
|
}
|
|
return sret;
|
|
}
|
|
|
|
int sys_pkey_alloc(unsigned long flags, unsigned long init_val)
|
|
{
|
|
int ret = syscall(SYS_pkey_alloc, flags, init_val);
|
|
dprintf1("%s(flags=%lx, init_val=%lx) syscall ret: %d errno: %d\n",
|
|
__func__, flags, init_val, ret, errno);
|
|
return ret;
|
|
}
|
|
|
|
int alloc_pkey(void)
|
|
{
|
|
int ret;
|
|
unsigned long init_val = 0x0;
|
|
|
|
dprintf1("%s()::%d, pkey_reg: 0x%016llx shadow: %016llx\n",
|
|
__func__, __LINE__, __read_pkey_reg(), shadow_pkey_reg);
|
|
ret = sys_pkey_alloc(0, init_val);
|
|
/*
|
|
* pkey_alloc() sets PKEY register, so we need to reflect it in
|
|
* shadow_pkey_reg:
|
|
*/
|
|
dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
|
|
" shadow: 0x%016llx\n",
|
|
__func__, __LINE__, ret, __read_pkey_reg(),
|
|
shadow_pkey_reg);
|
|
if (ret > 0) {
|
|
/* clear both the bits: */
|
|
shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, ret,
|
|
~PKEY_MASK);
|
|
dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
|
|
" shadow: 0x%016llx\n",
|
|
__func__,
|
|
__LINE__, ret, __read_pkey_reg(),
|
|
shadow_pkey_reg);
|
|
/*
|
|
* move the new state in from init_val
|
|
* (remember, we cheated and init_val == pkey_reg format)
|
|
*/
|
|
shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, ret,
|
|
init_val);
|
|
}
|
|
dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
|
|
" shadow: 0x%016llx\n",
|
|
__func__, __LINE__, ret, __read_pkey_reg(),
|
|
shadow_pkey_reg);
|
|
dprintf1("%s()::%d errno: %d\n", __func__, __LINE__, errno);
|
|
/* for shadow checking: */
|
|
read_pkey_reg();
|
|
dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
|
|
" shadow: 0x%016llx\n",
|
|
__func__, __LINE__, ret, __read_pkey_reg(),
|
|
shadow_pkey_reg);
|
|
return ret;
|
|
}
|
|
|
|
int sys_pkey_free(unsigned long pkey)
|
|
{
|
|
int ret = syscall(SYS_pkey_free, pkey);
|
|
dprintf1("%s(pkey=%ld) syscall ret: %d\n", __func__, pkey, ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* I had a bug where pkey bits could be set by mprotect() but
|
|
* not cleared. This ensures we get lots of random bit sets
|
|
* and clears on the vma and pte pkey bits.
|
|
*/
|
|
int alloc_random_pkey(void)
|
|
{
|
|
int max_nr_pkey_allocs;
|
|
int ret;
|
|
int i;
|
|
int alloced_pkeys[NR_PKEYS];
|
|
int nr_alloced = 0;
|
|
int random_index;
|
|
memset(alloced_pkeys, 0, sizeof(alloced_pkeys));
|
|
|
|
/* allocate every possible key and make a note of which ones we got */
|
|
max_nr_pkey_allocs = NR_PKEYS;
|
|
for (i = 0; i < max_nr_pkey_allocs; i++) {
|
|
int new_pkey = alloc_pkey();
|
|
if (new_pkey < 0)
|
|
break;
|
|
alloced_pkeys[nr_alloced++] = new_pkey;
|
|
}
|
|
|
|
pkey_assert(nr_alloced > 0);
|
|
/* select a random one out of the allocated ones */
|
|
random_index = rand() % nr_alloced;
|
|
ret = alloced_pkeys[random_index];
|
|
/* now zero it out so we don't free it next */
|
|
alloced_pkeys[random_index] = 0;
|
|
|
|
/* go through the allocated ones that we did not want and free them */
|
|
for (i = 0; i < nr_alloced; i++) {
|
|
int free_ret;
|
|
if (!alloced_pkeys[i])
|
|
continue;
|
|
free_ret = sys_pkey_free(alloced_pkeys[i]);
|
|
pkey_assert(!free_ret);
|
|
}
|
|
dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
|
|
" shadow: 0x%016llx\n", __func__,
|
|
__LINE__, ret, __read_pkey_reg(), shadow_pkey_reg);
|
|
return ret;
|
|
}
|
|
|
|
int mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot,
|
|
unsigned long pkey)
|
|
{
|
|
int nr_iterations = random() % 100;
|
|
int ret;
|
|
|
|
while (0) {
|
|
int rpkey = alloc_random_pkey();
|
|
ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey);
|
|
dprintf1("sys_mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
|
|
ptr, size, orig_prot, pkey, ret);
|
|
if (nr_iterations-- < 0)
|
|
break;
|
|
|
|
dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
|
|
" shadow: 0x%016llx\n",
|
|
__func__, __LINE__, ret, __read_pkey_reg(),
|
|
shadow_pkey_reg);
|
|
sys_pkey_free(rpkey);
|
|
dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
|
|
" shadow: 0x%016llx\n",
|
|
__func__, __LINE__, ret, __read_pkey_reg(),
|
|
shadow_pkey_reg);
|
|
}
|
|
pkey_assert(pkey < NR_PKEYS);
|
|
|
|
ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey);
|
|
dprintf1("mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
|
|
ptr, size, orig_prot, pkey, ret);
|
|
pkey_assert(!ret);
|
|
dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
|
|
" shadow: 0x%016llx\n", __func__,
|
|
__LINE__, ret, __read_pkey_reg(), shadow_pkey_reg);
|
|
return ret;
|
|
}
|
|
|
|
struct pkey_malloc_record {
|
|
void *ptr;
|
|
long size;
|
|
int prot;
|
|
};
|
|
struct pkey_malloc_record *pkey_malloc_records;
|
|
struct pkey_malloc_record *pkey_last_malloc_record;
|
|
long nr_pkey_malloc_records;
|
|
void record_pkey_malloc(void *ptr, long size, int prot)
|
|
{
|
|
long i;
|
|
struct pkey_malloc_record *rec = NULL;
|
|
|
|
for (i = 0; i < nr_pkey_malloc_records; i++) {
|
|
rec = &pkey_malloc_records[i];
|
|
/* find a free record */
|
|
if (rec)
|
|
break;
|
|
}
|
|
if (!rec) {
|
|
/* every record is full */
|
|
size_t old_nr_records = nr_pkey_malloc_records;
|
|
size_t new_nr_records = (nr_pkey_malloc_records * 2 + 1);
|
|
size_t new_size = new_nr_records * sizeof(struct pkey_malloc_record);
|
|
dprintf2("new_nr_records: %zd\n", new_nr_records);
|
|
dprintf2("new_size: %zd\n", new_size);
|
|
pkey_malloc_records = realloc(pkey_malloc_records, new_size);
|
|
pkey_assert(pkey_malloc_records != NULL);
|
|
rec = &pkey_malloc_records[nr_pkey_malloc_records];
|
|
/*
|
|
* realloc() does not initialize memory, so zero it from
|
|
* the first new record all the way to the end.
|
|
*/
|
|
for (i = 0; i < new_nr_records - old_nr_records; i++)
|
|
memset(rec + i, 0, sizeof(*rec));
|
|
}
|
|
dprintf3("filling malloc record[%d/%p]: {%p, %ld}\n",
|
|
(int)(rec - pkey_malloc_records), rec, ptr, size);
|
|
rec->ptr = ptr;
|
|
rec->size = size;
|
|
rec->prot = prot;
|
|
pkey_last_malloc_record = rec;
|
|
nr_pkey_malloc_records++;
|
|
}
|
|
|
|
void free_pkey_malloc(void *ptr)
|
|
{
|
|
long i;
|
|
int ret;
|
|
dprintf3("%s(%p)\n", __func__, ptr);
|
|
for (i = 0; i < nr_pkey_malloc_records; i++) {
|
|
struct pkey_malloc_record *rec = &pkey_malloc_records[i];
|
|
dprintf4("looking for ptr %p at record[%ld/%p]: {%p, %ld}\n",
|
|
ptr, i, rec, rec->ptr, rec->size);
|
|
if ((ptr < rec->ptr) ||
|
|
(ptr >= rec->ptr + rec->size))
|
|
continue;
|
|
|
|
dprintf3("found ptr %p at record[%ld/%p]: {%p, %ld}\n",
|
|
ptr, i, rec, rec->ptr, rec->size);
|
|
nr_pkey_malloc_records--;
|
|
ret = munmap(rec->ptr, rec->size);
|
|
dprintf3("munmap ret: %d\n", ret);
|
|
pkey_assert(!ret);
|
|
dprintf3("clearing rec->ptr, rec: %p\n", rec);
|
|
rec->ptr = NULL;
|
|
dprintf3("done clearing rec->ptr, rec: %p\n", rec);
|
|
return;
|
|
}
|
|
pkey_assert(false);
|
|
}
|
|
|
|
|
|
void *malloc_pkey_with_mprotect(long size, int prot, u16 pkey)
|
|
{
|
|
void *ptr;
|
|
int ret;
|
|
|
|
read_pkey_reg();
|
|
dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
|
|
size, prot, pkey);
|
|
pkey_assert(pkey < NR_PKEYS);
|
|
ptr = mmap(NULL, size, prot, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
|
|
pkey_assert(ptr != (void *)-1);
|
|
ret = mprotect_pkey((void *)ptr, PAGE_SIZE, prot, pkey);
|
|
pkey_assert(!ret);
|
|
record_pkey_malloc(ptr, size, prot);
|
|
read_pkey_reg();
|
|
|
|
dprintf1("%s() for pkey %d @ %p\n", __func__, pkey, ptr);
|
|
return ptr;
|
|
}
|
|
|
|
void *malloc_pkey_anon_huge(long size, int prot, u16 pkey)
|
|
{
|
|
int ret;
|
|
void *ptr;
|
|
|
|
dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
|
|
size, prot, pkey);
|
|
/*
|
|
* Guarantee we can fit at least one huge page in the resulting
|
|
* allocation by allocating space for 2:
|
|
*/
|
|
size = ALIGN_UP(size, HPAGE_SIZE * 2);
|
|
ptr = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
|
|
pkey_assert(ptr != (void *)-1);
|
|
record_pkey_malloc(ptr, size, prot);
|
|
mprotect_pkey(ptr, size, prot, pkey);
|
|
|
|
dprintf1("unaligned ptr: %p\n", ptr);
|
|
ptr = ALIGN_PTR_UP(ptr, HPAGE_SIZE);
|
|
dprintf1(" aligned ptr: %p\n", ptr);
|
|
ret = madvise(ptr, HPAGE_SIZE, MADV_HUGEPAGE);
|
|
dprintf1("MADV_HUGEPAGE ret: %d\n", ret);
|
|
ret = madvise(ptr, HPAGE_SIZE, MADV_WILLNEED);
|
|
dprintf1("MADV_WILLNEED ret: %d\n", ret);
|
|
memset(ptr, 0, HPAGE_SIZE);
|
|
|
|
dprintf1("mmap()'d thp for pkey %d @ %p\n", pkey, ptr);
|
|
return ptr;
|
|
}
|
|
|
|
int hugetlb_setup_ok;
|
|
#define SYSFS_FMT_NR_HUGE_PAGES "/sys/kernel/mm/hugepages/hugepages-%ldkB/nr_hugepages"
|
|
#define GET_NR_HUGE_PAGES 10
|
|
void setup_hugetlbfs(void)
|
|
{
|
|
int err;
|
|
int fd;
|
|
char buf[256];
|
|
long hpagesz_kb;
|
|
long hpagesz_mb;
|
|
|
|
if (geteuid() != 0) {
|
|
fprintf(stderr, "WARNING: not run as root, can not do hugetlb test\n");
|
|
return;
|
|
}
|
|
|
|
cat_into_file(__stringify(GET_NR_HUGE_PAGES), "/proc/sys/vm/nr_hugepages");
|
|
|
|
/*
|
|
* Now go make sure that we got the pages and that they
|
|
* are PMD-level pages. Someone might have made PUD-level
|
|
* pages the default.
|
|
*/
|
|
hpagesz_kb = HPAGE_SIZE / 1024;
|
|
hpagesz_mb = hpagesz_kb / 1024;
|
|
sprintf(buf, SYSFS_FMT_NR_HUGE_PAGES, hpagesz_kb);
|
|
fd = open(buf, O_RDONLY);
|
|
if (fd < 0) {
|
|
fprintf(stderr, "opening sysfs %ldM hugetlb config: %s\n",
|
|
hpagesz_mb, strerror(errno));
|
|
return;
|
|
}
|
|
|
|
/* -1 to guarantee leaving the trailing \0 */
|
|
err = read(fd, buf, sizeof(buf)-1);
|
|
close(fd);
|
|
if (err <= 0) {
|
|
fprintf(stderr, "reading sysfs %ldM hugetlb config: %s\n",
|
|
hpagesz_mb, strerror(errno));
|
|
return;
|
|
}
|
|
|
|
if (atoi(buf) != GET_NR_HUGE_PAGES) {
|
|
fprintf(stderr, "could not confirm %ldM pages, got: '%s' expected %d\n",
|
|
hpagesz_mb, buf, GET_NR_HUGE_PAGES);
|
|
return;
|
|
}
|
|
|
|
hugetlb_setup_ok = 1;
|
|
}
|
|
|
|
void *malloc_pkey_hugetlb(long size, int prot, u16 pkey)
|
|
{
|
|
void *ptr;
|
|
int flags = MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB;
|
|
|
|
if (!hugetlb_setup_ok)
|
|
return PTR_ERR_ENOTSUP;
|
|
|
|
dprintf1("doing %s(%ld, %x, %x)\n", __func__, size, prot, pkey);
|
|
size = ALIGN_UP(size, HPAGE_SIZE * 2);
|
|
pkey_assert(pkey < NR_PKEYS);
|
|
ptr = mmap(NULL, size, PROT_NONE, flags, -1, 0);
|
|
pkey_assert(ptr != (void *)-1);
|
|
mprotect_pkey(ptr, size, prot, pkey);
|
|
|
|
record_pkey_malloc(ptr, size, prot);
|
|
|
|
dprintf1("mmap()'d hugetlbfs for pkey %d @ %p\n", pkey, ptr);
|
|
return ptr;
|
|
}
|
|
|
|
void *malloc_pkey_mmap_dax(long size, int prot, u16 pkey)
|
|
{
|
|
void *ptr;
|
|
int fd;
|
|
|
|
dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
|
|
size, prot, pkey);
|
|
pkey_assert(pkey < NR_PKEYS);
|
|
fd = open("/dax/foo", O_RDWR);
|
|
pkey_assert(fd >= 0);
|
|
|
|
ptr = mmap(0, size, prot, MAP_SHARED, fd, 0);
|
|
pkey_assert(ptr != (void *)-1);
|
|
|
|
mprotect_pkey(ptr, size, prot, pkey);
|
|
|
|
record_pkey_malloc(ptr, size, prot);
|
|
|
|
dprintf1("mmap()'d for pkey %d @ %p\n", pkey, ptr);
|
|
close(fd);
|
|
return ptr;
|
|
}
|
|
|
|
void *(*pkey_malloc[])(long size, int prot, u16 pkey) = {
|
|
|
|
malloc_pkey_with_mprotect,
|
|
malloc_pkey_with_mprotect_subpage,
|
|
malloc_pkey_anon_huge,
|
|
malloc_pkey_hugetlb
|
|
/* can not do direct with the pkey_mprotect() API:
|
|
malloc_pkey_mmap_direct,
|
|
malloc_pkey_mmap_dax,
|
|
*/
|
|
};
|
|
|
|
void *malloc_pkey(long size, int prot, u16 pkey)
|
|
{
|
|
void *ret;
|
|
static int malloc_type;
|
|
int nr_malloc_types = ARRAY_SIZE(pkey_malloc);
|
|
|
|
pkey_assert(pkey < NR_PKEYS);
|
|
|
|
while (1) {
|
|
pkey_assert(malloc_type < nr_malloc_types);
|
|
|
|
ret = pkey_malloc[malloc_type](size, prot, pkey);
|
|
pkey_assert(ret != (void *)-1);
|
|
|
|
malloc_type++;
|
|
if (malloc_type >= nr_malloc_types)
|
|
malloc_type = (random()%nr_malloc_types);
|
|
|
|
/* try again if the malloc_type we tried is unsupported */
|
|
if (ret == PTR_ERR_ENOTSUP)
|
|
continue;
|
|
|
|
break;
|
|
}
|
|
|
|
dprintf3("%s(%ld, prot=%x, pkey=%x) returning: %p\n", __func__,
|
|
size, prot, pkey, ret);
|
|
return ret;
|
|
}
|
|
|
|
int last_pkey_faults;
|
|
#define UNKNOWN_PKEY -2
|
|
void expected_pkey_fault(int pkey)
|
|
{
|
|
dprintf2("%s(): last_pkey_faults: %d pkey_faults: %d\n",
|
|
__func__, last_pkey_faults, pkey_faults);
|
|
dprintf2("%s(%d): last_si_pkey: %d\n", __func__, pkey, last_si_pkey);
|
|
pkey_assert(last_pkey_faults + 1 == pkey_faults);
|
|
|
|
/*
|
|
* For exec-only memory, we do not know the pkey in
|
|
* advance, so skip this check.
|
|
*/
|
|
if (pkey != UNKNOWN_PKEY)
|
|
pkey_assert(last_si_pkey == pkey);
|
|
|
|
#if defined(__i386__) || defined(__x86_64__) /* arch */
|
|
/*
|
|
* The signal handler shold have cleared out PKEY register to let the
|
|
* test program continue. We now have to restore it.
|
|
*/
|
|
if (__read_pkey_reg() != 0)
|
|
#else /* arch */
|
|
if (__read_pkey_reg() != shadow_pkey_reg)
|
|
#endif /* arch */
|
|
pkey_assert(0);
|
|
|
|
__write_pkey_reg(shadow_pkey_reg);
|
|
dprintf1("%s() set pkey_reg=%016llx to restore state after signal "
|
|
"nuked it\n", __func__, shadow_pkey_reg);
|
|
last_pkey_faults = pkey_faults;
|
|
last_si_pkey = -1;
|
|
}
|
|
|
|
#define do_not_expect_pkey_fault(msg) do { \
|
|
if (last_pkey_faults != pkey_faults) \
|
|
dprintf0("unexpected PKey fault: %s\n", msg); \
|
|
pkey_assert(last_pkey_faults == pkey_faults); \
|
|
} while (0)
|
|
|
|
int test_fds[10] = { -1 };
|
|
int nr_test_fds;
|
|
void __save_test_fd(int fd)
|
|
{
|
|
pkey_assert(fd >= 0);
|
|
pkey_assert(nr_test_fds < ARRAY_SIZE(test_fds));
|
|
test_fds[nr_test_fds] = fd;
|
|
nr_test_fds++;
|
|
}
|
|
|
|
int get_test_read_fd(void)
|
|
{
|
|
int test_fd = open("/etc/passwd", O_RDONLY);
|
|
__save_test_fd(test_fd);
|
|
return test_fd;
|
|
}
|
|
|
|
void close_test_fds(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nr_test_fds; i++) {
|
|
if (test_fds[i] < 0)
|
|
continue;
|
|
close(test_fds[i]);
|
|
test_fds[i] = -1;
|
|
}
|
|
nr_test_fds = 0;
|
|
}
|
|
|
|
#define barrier() __asm__ __volatile__("": : :"memory")
|
|
__attribute__((noinline)) int read_ptr(int *ptr)
|
|
{
|
|
/*
|
|
* Keep GCC from optimizing this away somehow
|
|
*/
|
|
barrier();
|
|
return *ptr;
|
|
}
|
|
|
|
void test_pkey_alloc_free_attach_pkey0(int *ptr, u16 pkey)
|
|
{
|
|
int i, err;
|
|
int max_nr_pkey_allocs;
|
|
int alloced_pkeys[NR_PKEYS];
|
|
int nr_alloced = 0;
|
|
long size;
|
|
|
|
pkey_assert(pkey_last_malloc_record);
|
|
size = pkey_last_malloc_record->size;
|
|
/*
|
|
* This is a bit of a hack. But mprotect() requires
|
|
* huge-page-aligned sizes when operating on hugetlbfs.
|
|
* So, make sure that we use something that's a multiple
|
|
* of a huge page when we can.
|
|
*/
|
|
if (size >= HPAGE_SIZE)
|
|
size = HPAGE_SIZE;
|
|
|
|
/* allocate every possible key and make sure key-0 never got allocated */
|
|
max_nr_pkey_allocs = NR_PKEYS;
|
|
for (i = 0; i < max_nr_pkey_allocs; i++) {
|
|
int new_pkey = alloc_pkey();
|
|
pkey_assert(new_pkey != 0);
|
|
|
|
if (new_pkey < 0)
|
|
break;
|
|
alloced_pkeys[nr_alloced++] = new_pkey;
|
|
}
|
|
/* free all the allocated keys */
|
|
for (i = 0; i < nr_alloced; i++) {
|
|
int free_ret;
|
|
|
|
if (!alloced_pkeys[i])
|
|
continue;
|
|
free_ret = sys_pkey_free(alloced_pkeys[i]);
|
|
pkey_assert(!free_ret);
|
|
}
|
|
|
|
/* attach key-0 in various modes */
|
|
err = sys_mprotect_pkey(ptr, size, PROT_READ, 0);
|
|
pkey_assert(!err);
|
|
err = sys_mprotect_pkey(ptr, size, PROT_WRITE, 0);
|
|
pkey_assert(!err);
|
|
err = sys_mprotect_pkey(ptr, size, PROT_EXEC, 0);
|
|
pkey_assert(!err);
|
|
err = sys_mprotect_pkey(ptr, size, PROT_READ|PROT_WRITE, 0);
|
|
pkey_assert(!err);
|
|
err = sys_mprotect_pkey(ptr, size, PROT_READ|PROT_WRITE|PROT_EXEC, 0);
|
|
pkey_assert(!err);
|
|
}
|
|
|
|
void test_read_of_write_disabled_region(int *ptr, u16 pkey)
|
|
{
|
|
int ptr_contents;
|
|
|
|
dprintf1("disabling write access to PKEY[1], doing read\n");
|
|
pkey_write_deny(pkey);
|
|
ptr_contents = read_ptr(ptr);
|
|
dprintf1("*ptr: %d\n", ptr_contents);
|
|
dprintf1("\n");
|
|
}
|
|
void test_read_of_access_disabled_region(int *ptr, u16 pkey)
|
|
{
|
|
int ptr_contents;
|
|
|
|
dprintf1("disabling access to PKEY[%02d], doing read @ %p\n", pkey, ptr);
|
|
read_pkey_reg();
|
|
pkey_access_deny(pkey);
|
|
ptr_contents = read_ptr(ptr);
|
|
dprintf1("*ptr: %d\n", ptr_contents);
|
|
expected_pkey_fault(pkey);
|
|
}
|
|
|
|
void test_read_of_access_disabled_region_with_page_already_mapped(int *ptr,
|
|
u16 pkey)
|
|
{
|
|
int ptr_contents;
|
|
|
|
dprintf1("disabling access to PKEY[%02d], doing read @ %p\n",
|
|
pkey, ptr);
|
|
ptr_contents = read_ptr(ptr);
|
|
dprintf1("reading ptr before disabling the read : %d\n",
|
|
ptr_contents);
|
|
read_pkey_reg();
|
|
pkey_access_deny(pkey);
|
|
ptr_contents = read_ptr(ptr);
|
|
dprintf1("*ptr: %d\n", ptr_contents);
|
|
expected_pkey_fault(pkey);
|
|
}
|
|
|
|
void test_write_of_write_disabled_region_with_page_already_mapped(int *ptr,
|
|
u16 pkey)
|
|
{
|
|
*ptr = __LINE__;
|
|
dprintf1("disabling write access; after accessing the page, "
|
|
"to PKEY[%02d], doing write\n", pkey);
|
|
pkey_write_deny(pkey);
|
|
*ptr = __LINE__;
|
|
expected_pkey_fault(pkey);
|
|
}
|
|
|
|
void test_write_of_write_disabled_region(int *ptr, u16 pkey)
|
|
{
|
|
dprintf1("disabling write access to PKEY[%02d], doing write\n", pkey);
|
|
pkey_write_deny(pkey);
|
|
*ptr = __LINE__;
|
|
expected_pkey_fault(pkey);
|
|
}
|
|
void test_write_of_access_disabled_region(int *ptr, u16 pkey)
|
|
{
|
|
dprintf1("disabling access to PKEY[%02d], doing write\n", pkey);
|
|
pkey_access_deny(pkey);
|
|
*ptr = __LINE__;
|
|
expected_pkey_fault(pkey);
|
|
}
|
|
|
|
void test_write_of_access_disabled_region_with_page_already_mapped(int *ptr,
|
|
u16 pkey)
|
|
{
|
|
*ptr = __LINE__;
|
|
dprintf1("disabling access; after accessing the page, "
|
|
" to PKEY[%02d], doing write\n", pkey);
|
|
pkey_access_deny(pkey);
|
|
*ptr = __LINE__;
|
|
expected_pkey_fault(pkey);
|
|
}
|
|
|
|
void test_kernel_write_of_access_disabled_region(int *ptr, u16 pkey)
|
|
{
|
|
int ret;
|
|
int test_fd = get_test_read_fd();
|
|
|
|
dprintf1("disabling access to PKEY[%02d], "
|
|
"having kernel read() to buffer\n", pkey);
|
|
pkey_access_deny(pkey);
|
|
ret = read(test_fd, ptr, 1);
|
|
dprintf1("read ret: %d\n", ret);
|
|
pkey_assert(ret);
|
|
}
|
|
void test_kernel_write_of_write_disabled_region(int *ptr, u16 pkey)
|
|
{
|
|
int ret;
|
|
int test_fd = get_test_read_fd();
|
|
|
|
pkey_write_deny(pkey);
|
|
ret = read(test_fd, ptr, 100);
|
|
dprintf1("read ret: %d\n", ret);
|
|
if (ret < 0 && (DEBUG_LEVEL > 0))
|
|
perror("verbose read result (OK for this to be bad)");
|
|
pkey_assert(ret);
|
|
}
|
|
|
|
void test_kernel_gup_of_access_disabled_region(int *ptr, u16 pkey)
|
|
{
|
|
int pipe_ret, vmsplice_ret;
|
|
struct iovec iov;
|
|
int pipe_fds[2];
|
|
|
|
pipe_ret = pipe(pipe_fds);
|
|
|
|
pkey_assert(pipe_ret == 0);
|
|
dprintf1("disabling access to PKEY[%02d], "
|
|
"having kernel vmsplice from buffer\n", pkey);
|
|
pkey_access_deny(pkey);
|
|
iov.iov_base = ptr;
|
|
iov.iov_len = PAGE_SIZE;
|
|
vmsplice_ret = vmsplice(pipe_fds[1], &iov, 1, SPLICE_F_GIFT);
|
|
dprintf1("vmsplice() ret: %d\n", vmsplice_ret);
|
|
pkey_assert(vmsplice_ret == -1);
|
|
|
|
close(pipe_fds[0]);
|
|
close(pipe_fds[1]);
|
|
}
|
|
|
|
void test_kernel_gup_write_to_write_disabled_region(int *ptr, u16 pkey)
|
|
{
|
|
int ignored = 0xdada;
|
|
int futex_ret;
|
|
int some_int = __LINE__;
|
|
|
|
dprintf1("disabling write to PKEY[%02d], "
|
|
"doing futex gunk in buffer\n", pkey);
|
|
*ptr = some_int;
|
|
pkey_write_deny(pkey);
|
|
futex_ret = syscall(SYS_futex, ptr, FUTEX_WAIT, some_int-1, NULL,
|
|
&ignored, ignored);
|
|
if (DEBUG_LEVEL > 0)
|
|
perror("futex");
|
|
dprintf1("futex() ret: %d\n", futex_ret);
|
|
}
|
|
|
|
/* Assumes that all pkeys other than 'pkey' are unallocated */
|
|
void test_pkey_syscalls_on_non_allocated_pkey(int *ptr, u16 pkey)
|
|
{
|
|
int err;
|
|
int i;
|
|
|
|
/* Note: 0 is the default pkey, so don't mess with it */
|
|
for (i = 1; i < NR_PKEYS; i++) {
|
|
if (pkey == i)
|
|
continue;
|
|
|
|
dprintf1("trying get/set/free to non-allocated pkey: %2d\n", i);
|
|
err = sys_pkey_free(i);
|
|
pkey_assert(err);
|
|
|
|
err = sys_pkey_free(i);
|
|
pkey_assert(err);
|
|
|
|
err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, i);
|
|
pkey_assert(err);
|
|
}
|
|
}
|
|
|
|
/* Assumes that all pkeys other than 'pkey' are unallocated */
|
|
void test_pkey_syscalls_bad_args(int *ptr, u16 pkey)
|
|
{
|
|
int err;
|
|
int bad_pkey = NR_PKEYS+99;
|
|
|
|
/* pass a known-invalid pkey in: */
|
|
err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, bad_pkey);
|
|
pkey_assert(err);
|
|
}
|
|
|
|
void become_child(void)
|
|
{
|
|
pid_t forkret;
|
|
|
|
forkret = fork();
|
|
pkey_assert(forkret >= 0);
|
|
dprintf3("[%d] fork() ret: %d\n", getpid(), forkret);
|
|
|
|
if (!forkret) {
|
|
/* in the child */
|
|
return;
|
|
}
|
|
exit(0);
|
|
}
|
|
|
|
/* Assumes that all pkeys other than 'pkey' are unallocated */
|
|
void test_pkey_alloc_exhaust(int *ptr, u16 pkey)
|
|
{
|
|
int err;
|
|
int allocated_pkeys[NR_PKEYS] = {0};
|
|
int nr_allocated_pkeys = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < NR_PKEYS*3; i++) {
|
|
int new_pkey;
|
|
dprintf1("%s() alloc loop: %d\n", __func__, i);
|
|
new_pkey = alloc_pkey();
|
|
dprintf4("%s()::%d, err: %d pkey_reg: 0x%016llx"
|
|
" shadow: 0x%016llx\n",
|
|
__func__, __LINE__, err, __read_pkey_reg(),
|
|
shadow_pkey_reg);
|
|
read_pkey_reg(); /* for shadow checking */
|
|
dprintf2("%s() errno: %d ENOSPC: %d\n", __func__, errno, ENOSPC);
|
|
if ((new_pkey == -1) && (errno == ENOSPC)) {
|
|
dprintf2("%s() failed to allocate pkey after %d tries\n",
|
|
__func__, nr_allocated_pkeys);
|
|
} else {
|
|
/*
|
|
* Ensure the number of successes never
|
|
* exceeds the number of keys supported
|
|
* in the hardware.
|
|
*/
|
|
pkey_assert(nr_allocated_pkeys < NR_PKEYS);
|
|
allocated_pkeys[nr_allocated_pkeys++] = new_pkey;
|
|
}
|
|
|
|
/*
|
|
* Make sure that allocation state is properly
|
|
* preserved across fork().
|
|
*/
|
|
if (i == NR_PKEYS*2)
|
|
become_child();
|
|
}
|
|
|
|
dprintf3("%s()::%d\n", __func__, __LINE__);
|
|
|
|
/*
|
|
* On x86:
|
|
* There are 16 pkeys supported in hardware. Three are
|
|
* allocated by the time we get here:
|
|
* 1. The default key (0)
|
|
* 2. One possibly consumed by an execute-only mapping.
|
|
* 3. One allocated by the test code and passed in via
|
|
* 'pkey' to this function.
|
|
* Ensure that we can allocate at least another 13 (16-3).
|
|
*
|
|
* On powerpc:
|
|
* There are either 5, 28, 29 or 32 pkeys supported in
|
|
* hardware depending on the page size (4K or 64K) and
|
|
* platform (powernv or powervm). Four are allocated by
|
|
* the time we get here. These include pkey-0, pkey-1,
|
|
* exec-only pkey and the one allocated by the test code.
|
|
* Ensure that we can allocate the remaining.
|
|
*/
|
|
pkey_assert(i >= (NR_PKEYS - get_arch_reserved_keys() - 1));
|
|
|
|
for (i = 0; i < nr_allocated_pkeys; i++) {
|
|
err = sys_pkey_free(allocated_pkeys[i]);
|
|
pkey_assert(!err);
|
|
read_pkey_reg(); /* for shadow checking */
|
|
}
|
|
}
|
|
|
|
void arch_force_pkey_reg_init(void)
|
|
{
|
|
#if defined(__i386__) || defined(__x86_64__) /* arch */
|
|
u64 *buf;
|
|
|
|
/*
|
|
* All keys should be allocated and set to allow reads and
|
|
* writes, so the register should be all 0. If not, just
|
|
* skip the test.
|
|
*/
|
|
if (read_pkey_reg())
|
|
return;
|
|
|
|
/*
|
|
* Just allocate an absurd about of memory rather than
|
|
* doing the XSAVE size enumeration dance.
|
|
*/
|
|
buf = mmap(NULL, 1*MB, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
|
|
|
|
/* These __builtins require compiling with -mxsave */
|
|
|
|
/* XSAVE to build a valid buffer: */
|
|
__builtin_ia32_xsave(buf, XSTATE_PKEY);
|
|
/* Clear XSTATE_BV[PKRU]: */
|
|
buf[XSTATE_BV_OFFSET/sizeof(u64)] &= ~XSTATE_PKEY;
|
|
/* XRSTOR will likely get PKRU back to the init state: */
|
|
__builtin_ia32_xrstor(buf, XSTATE_PKEY);
|
|
|
|
munmap(buf, 1*MB);
|
|
#endif
|
|
}
|
|
|
|
|
|
/*
|
|
* This is mostly useless on ppc for now. But it will not
|
|
* hurt anything and should give some better coverage as
|
|
* a long-running test that continually checks the pkey
|
|
* register.
|
|
*/
|
|
void test_pkey_init_state(int *ptr, u16 pkey)
|
|
{
|
|
int err;
|
|
int allocated_pkeys[NR_PKEYS] = {0};
|
|
int nr_allocated_pkeys = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < NR_PKEYS; i++) {
|
|
int new_pkey = alloc_pkey();
|
|
|
|
if (new_pkey < 0)
|
|
continue;
|
|
allocated_pkeys[nr_allocated_pkeys++] = new_pkey;
|
|
}
|
|
|
|
dprintf3("%s()::%d\n", __func__, __LINE__);
|
|
|
|
arch_force_pkey_reg_init();
|
|
|
|
/*
|
|
* Loop for a bit, hoping to get exercise the kernel
|
|
* context switch code.
|
|
*/
|
|
for (i = 0; i < 1000000; i++)
|
|
read_pkey_reg();
|
|
|
|
for (i = 0; i < nr_allocated_pkeys; i++) {
|
|
err = sys_pkey_free(allocated_pkeys[i]);
|
|
pkey_assert(!err);
|
|
read_pkey_reg(); /* for shadow checking */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* pkey 0 is special. It is allocated by default, so you do not
|
|
* have to call pkey_alloc() to use it first. Make sure that it
|
|
* is usable.
|
|
*/
|
|
void test_mprotect_with_pkey_0(int *ptr, u16 pkey)
|
|
{
|
|
long size;
|
|
int prot;
|
|
|
|
assert(pkey_last_malloc_record);
|
|
size = pkey_last_malloc_record->size;
|
|
/*
|
|
* This is a bit of a hack. But mprotect() requires
|
|
* huge-page-aligned sizes when operating on hugetlbfs.
|
|
* So, make sure that we use something that's a multiple
|
|
* of a huge page when we can.
|
|
*/
|
|
if (size >= HPAGE_SIZE)
|
|
size = HPAGE_SIZE;
|
|
prot = pkey_last_malloc_record->prot;
|
|
|
|
/* Use pkey 0 */
|
|
mprotect_pkey(ptr, size, prot, 0);
|
|
|
|
/* Make sure that we can set it back to the original pkey. */
|
|
mprotect_pkey(ptr, size, prot, pkey);
|
|
}
|
|
|
|
void test_ptrace_of_child(int *ptr, u16 pkey)
|
|
{
|
|
__attribute__((__unused__)) int peek_result;
|
|
pid_t child_pid;
|
|
void *ignored = 0;
|
|
long ret;
|
|
int status;
|
|
/*
|
|
* This is the "control" for our little expermient. Make sure
|
|
* we can always access it when ptracing.
|
|
*/
|
|
int *plain_ptr_unaligned = malloc(HPAGE_SIZE);
|
|
int *plain_ptr = ALIGN_PTR_UP(plain_ptr_unaligned, PAGE_SIZE);
|
|
|
|
/*
|
|
* Fork a child which is an exact copy of this process, of course.
|
|
* That means we can do all of our tests via ptrace() and then plain
|
|
* memory access and ensure they work differently.
|
|
*/
|
|
child_pid = fork_lazy_child();
|
|
dprintf1("[%d] child pid: %d\n", getpid(), child_pid);
|
|
|
|
ret = ptrace(PTRACE_ATTACH, child_pid, ignored, ignored);
|
|
if (ret)
|
|
perror("attach");
|
|
dprintf1("[%d] attach ret: %ld %d\n", getpid(), ret, __LINE__);
|
|
pkey_assert(ret != -1);
|
|
ret = waitpid(child_pid, &status, WUNTRACED);
|
|
if ((ret != child_pid) || !(WIFSTOPPED(status))) {
|
|
fprintf(stderr, "weird waitpid result %ld stat %x\n",
|
|
ret, status);
|
|
pkey_assert(0);
|
|
}
|
|
dprintf2("waitpid ret: %ld\n", ret);
|
|
dprintf2("waitpid status: %d\n", status);
|
|
|
|
pkey_access_deny(pkey);
|
|
pkey_write_deny(pkey);
|
|
|
|
/* Write access, untested for now:
|
|
ret = ptrace(PTRACE_POKEDATA, child_pid, peek_at, data);
|
|
pkey_assert(ret != -1);
|
|
dprintf1("poke at %p: %ld\n", peek_at, ret);
|
|
*/
|
|
|
|
/*
|
|
* Try to access the pkey-protected "ptr" via ptrace:
|
|
*/
|
|
ret = ptrace(PTRACE_PEEKDATA, child_pid, ptr, ignored);
|
|
/* expect it to work, without an error: */
|
|
pkey_assert(ret != -1);
|
|
/* Now access from the current task, and expect an exception: */
|
|
peek_result = read_ptr(ptr);
|
|
expected_pkey_fault(pkey);
|
|
|
|
/*
|
|
* Try to access the NON-pkey-protected "plain_ptr" via ptrace:
|
|
*/
|
|
ret = ptrace(PTRACE_PEEKDATA, child_pid, plain_ptr, ignored);
|
|
/* expect it to work, without an error: */
|
|
pkey_assert(ret != -1);
|
|
/* Now access from the current task, and expect NO exception: */
|
|
peek_result = read_ptr(plain_ptr);
|
|
do_not_expect_pkey_fault("read plain pointer after ptrace");
|
|
|
|
ret = ptrace(PTRACE_DETACH, child_pid, ignored, 0);
|
|
pkey_assert(ret != -1);
|
|
|
|
ret = kill(child_pid, SIGKILL);
|
|
pkey_assert(ret != -1);
|
|
|
|
wait(&status);
|
|
|
|
free(plain_ptr_unaligned);
|
|
}
|
|
|
|
void *get_pointer_to_instructions(void)
|
|
{
|
|
void *p1;
|
|
|
|
p1 = ALIGN_PTR_UP(&lots_o_noops_around_write, PAGE_SIZE);
|
|
dprintf3("&lots_o_noops: %p\n", &lots_o_noops_around_write);
|
|
/* lots_o_noops_around_write should be page-aligned already */
|
|
assert(p1 == &lots_o_noops_around_write);
|
|
|
|
/* Point 'p1' at the *second* page of the function: */
|
|
p1 += PAGE_SIZE;
|
|
|
|
/*
|
|
* Try to ensure we fault this in on next touch to ensure
|
|
* we get an instruction fault as opposed to a data one
|
|
*/
|
|
madvise(p1, PAGE_SIZE, MADV_DONTNEED);
|
|
|
|
return p1;
|
|
}
|
|
|
|
void test_executing_on_unreadable_memory(int *ptr, u16 pkey)
|
|
{
|
|
void *p1;
|
|
int scratch;
|
|
int ptr_contents;
|
|
int ret;
|
|
|
|
p1 = get_pointer_to_instructions();
|
|
lots_o_noops_around_write(&scratch);
|
|
ptr_contents = read_ptr(p1);
|
|
dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);
|
|
|
|
ret = mprotect_pkey(p1, PAGE_SIZE, PROT_EXEC, (u64)pkey);
|
|
pkey_assert(!ret);
|
|
pkey_access_deny(pkey);
|
|
|
|
dprintf2("pkey_reg: %016llx\n", read_pkey_reg());
|
|
|
|
/*
|
|
* Make sure this is an *instruction* fault
|
|
*/
|
|
madvise(p1, PAGE_SIZE, MADV_DONTNEED);
|
|
lots_o_noops_around_write(&scratch);
|
|
do_not_expect_pkey_fault("executing on PROT_EXEC memory");
|
|
expect_fault_on_read_execonly_key(p1, pkey);
|
|
}
|
|
|
|
void test_implicit_mprotect_exec_only_memory(int *ptr, u16 pkey)
|
|
{
|
|
void *p1;
|
|
int scratch;
|
|
int ptr_contents;
|
|
int ret;
|
|
|
|
dprintf1("%s() start\n", __func__);
|
|
|
|
p1 = get_pointer_to_instructions();
|
|
lots_o_noops_around_write(&scratch);
|
|
ptr_contents = read_ptr(p1);
|
|
dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);
|
|
|
|
/* Use a *normal* mprotect(), not mprotect_pkey(): */
|
|
ret = mprotect(p1, PAGE_SIZE, PROT_EXEC);
|
|
pkey_assert(!ret);
|
|
|
|
/*
|
|
* Reset the shadow, assuming that the above mprotect()
|
|
* correctly changed PKRU, but to an unknown value since
|
|
* the actual alllocated pkey is unknown.
|
|
*/
|
|
shadow_pkey_reg = __read_pkey_reg();
|
|
|
|
dprintf2("pkey_reg: %016llx\n", read_pkey_reg());
|
|
|
|
/* Make sure this is an *instruction* fault */
|
|
madvise(p1, PAGE_SIZE, MADV_DONTNEED);
|
|
lots_o_noops_around_write(&scratch);
|
|
do_not_expect_pkey_fault("executing on PROT_EXEC memory");
|
|
expect_fault_on_read_execonly_key(p1, UNKNOWN_PKEY);
|
|
|
|
/*
|
|
* Put the memory back to non-PROT_EXEC. Should clear the
|
|
* exec-only pkey off the VMA and allow it to be readable
|
|
* again. Go to PROT_NONE first to check for a kernel bug
|
|
* that did not clear the pkey when doing PROT_NONE.
|
|
*/
|
|
ret = mprotect(p1, PAGE_SIZE, PROT_NONE);
|
|
pkey_assert(!ret);
|
|
|
|
ret = mprotect(p1, PAGE_SIZE, PROT_READ|PROT_EXEC);
|
|
pkey_assert(!ret);
|
|
ptr_contents = read_ptr(p1);
|
|
do_not_expect_pkey_fault("plain read on recently PROT_EXEC area");
|
|
}
|
|
|
|
void test_mprotect_pkey_on_unsupported_cpu(int *ptr, u16 pkey)
|
|
{
|
|
int size = PAGE_SIZE;
|
|
int sret;
|
|
|
|
if (cpu_has_pkeys()) {
|
|
dprintf1("SKIP: %s: no CPU support\n", __func__);
|
|
return;
|
|
}
|
|
|
|
sret = syscall(SYS_mprotect_key, ptr, size, PROT_READ, pkey);
|
|
pkey_assert(sret < 0);
|
|
}
|
|
|
|
void (*pkey_tests[])(int *ptr, u16 pkey) = {
|
|
test_read_of_write_disabled_region,
|
|
test_read_of_access_disabled_region,
|
|
test_read_of_access_disabled_region_with_page_already_mapped,
|
|
test_write_of_write_disabled_region,
|
|
test_write_of_write_disabled_region_with_page_already_mapped,
|
|
test_write_of_access_disabled_region,
|
|
test_write_of_access_disabled_region_with_page_already_mapped,
|
|
test_kernel_write_of_access_disabled_region,
|
|
test_kernel_write_of_write_disabled_region,
|
|
test_kernel_gup_of_access_disabled_region,
|
|
test_kernel_gup_write_to_write_disabled_region,
|
|
test_executing_on_unreadable_memory,
|
|
test_implicit_mprotect_exec_only_memory,
|
|
test_mprotect_with_pkey_0,
|
|
test_ptrace_of_child,
|
|
test_pkey_init_state,
|
|
test_pkey_syscalls_on_non_allocated_pkey,
|
|
test_pkey_syscalls_bad_args,
|
|
test_pkey_alloc_exhaust,
|
|
test_pkey_alloc_free_attach_pkey0,
|
|
};
|
|
|
|
void run_tests_once(void)
|
|
{
|
|
int *ptr;
|
|
int prot = PROT_READ|PROT_WRITE;
|
|
|
|
for (test_nr = 0; test_nr < ARRAY_SIZE(pkey_tests); test_nr++) {
|
|
int pkey;
|
|
int orig_pkey_faults = pkey_faults;
|
|
|
|
dprintf1("======================\n");
|
|
dprintf1("test %d preparing...\n", test_nr);
|
|
|
|
tracing_on();
|
|
pkey = alloc_random_pkey();
|
|
dprintf1("test %d starting with pkey: %d\n", test_nr, pkey);
|
|
ptr = malloc_pkey(PAGE_SIZE, prot, pkey);
|
|
dprintf1("test %d starting...\n", test_nr);
|
|
pkey_tests[test_nr](ptr, pkey);
|
|
dprintf1("freeing test memory: %p\n", ptr);
|
|
free_pkey_malloc(ptr);
|
|
sys_pkey_free(pkey);
|
|
|
|
dprintf1("pkey_faults: %d\n", pkey_faults);
|
|
dprintf1("orig_pkey_faults: %d\n", orig_pkey_faults);
|
|
|
|
tracing_off();
|
|
close_test_fds();
|
|
|
|
printf("test %2d PASSED (iteration %d)\n", test_nr, iteration_nr);
|
|
dprintf1("======================\n\n");
|
|
}
|
|
iteration_nr++;
|
|
}
|
|
|
|
void pkey_setup_shadow(void)
|
|
{
|
|
shadow_pkey_reg = __read_pkey_reg();
|
|
}
|
|
|
|
int main(void)
|
|
{
|
|
int nr_iterations = 22;
|
|
int pkeys_supported = is_pkeys_supported();
|
|
|
|
srand((unsigned int)time(NULL));
|
|
|
|
setup_handlers();
|
|
|
|
printf("has pkeys: %d\n", pkeys_supported);
|
|
|
|
if (!pkeys_supported) {
|
|
int size = PAGE_SIZE;
|
|
int *ptr;
|
|
|
|
printf("running PKEY tests for unsupported CPU/OS\n");
|
|
|
|
ptr = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
|
|
assert(ptr != (void *)-1);
|
|
test_mprotect_pkey_on_unsupported_cpu(ptr, 1);
|
|
exit(0);
|
|
}
|
|
|
|
pkey_setup_shadow();
|
|
printf("startup pkey_reg: %016llx\n", read_pkey_reg());
|
|
setup_hugetlbfs();
|
|
|
|
while (nr_iterations-- > 0)
|
|
run_tests_once();
|
|
|
|
printf("done (all tests OK)\n");
|
|
return 0;
|
|
}
|