f7cfe7017b
Several inlined functions subject to paravirt patching are referencing BUG_func() after the recent switch to the alternative patching mechanism. As those functions can legally be used by non-GPL modules, BUG_func() must be usable by those modules, too. So use EXPORT_SYMBOL() when exporting BUG_func(). Fixes: 9824b00c2b58 ("x86/paravirt: Move some functions and defines to alternative.c") Signed-off-by: Juergen Gross <jgross@suse.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20240109082232.22657-1-jgross@suse.com
2526 lines
60 KiB
C
2526 lines
60 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
#define pr_fmt(fmt) "SMP alternatives: " fmt
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/list.h>
|
|
#include <linux/stringify.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/stop_machine.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/mmu_context.h>
|
|
#include <linux/bsearch.h>
|
|
#include <linux/sync_core.h>
|
|
#include <asm/text-patching.h>
|
|
#include <asm/alternative.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/mce.h>
|
|
#include <asm/nmi.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/insn.h>
|
|
#include <asm/io.h>
|
|
#include <asm/fixmap.h>
|
|
#include <asm/paravirt.h>
|
|
#include <asm/asm-prototypes.h>
|
|
#include <asm/cfi.h>
|
|
|
|
int __read_mostly alternatives_patched;
|
|
|
|
EXPORT_SYMBOL_GPL(alternatives_patched);
|
|
|
|
#define MAX_PATCH_LEN (255-1)
|
|
|
|
#define DA_ALL (~0)
|
|
#define DA_ALT 0x01
|
|
#define DA_RET 0x02
|
|
#define DA_RETPOLINE 0x04
|
|
#define DA_ENDBR 0x08
|
|
#define DA_SMP 0x10
|
|
|
|
static unsigned int __initdata_or_module debug_alternative;
|
|
|
|
static int __init debug_alt(char *str)
|
|
{
|
|
if (str && *str == '=')
|
|
str++;
|
|
|
|
if (!str || kstrtouint(str, 0, &debug_alternative))
|
|
debug_alternative = DA_ALL;
|
|
|
|
return 1;
|
|
}
|
|
__setup("debug-alternative", debug_alt);
|
|
|
|
static int noreplace_smp;
|
|
|
|
static int __init setup_noreplace_smp(char *str)
|
|
{
|
|
noreplace_smp = 1;
|
|
return 1;
|
|
}
|
|
__setup("noreplace-smp", setup_noreplace_smp);
|
|
|
|
#define DPRINTK(type, fmt, args...) \
|
|
do { \
|
|
if (debug_alternative & DA_##type) \
|
|
printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args); \
|
|
} while (0)
|
|
|
|
#define DUMP_BYTES(type, buf, len, fmt, args...) \
|
|
do { \
|
|
if (unlikely(debug_alternative & DA_##type)) { \
|
|
int j; \
|
|
\
|
|
if (!(len)) \
|
|
break; \
|
|
\
|
|
printk(KERN_DEBUG pr_fmt(fmt), ##args); \
|
|
for (j = 0; j < (len) - 1; j++) \
|
|
printk(KERN_CONT "%02hhx ", buf[j]); \
|
|
printk(KERN_CONT "%02hhx\n", buf[j]); \
|
|
} \
|
|
} while (0)
|
|
|
|
static const unsigned char x86nops[] =
|
|
{
|
|
BYTES_NOP1,
|
|
BYTES_NOP2,
|
|
BYTES_NOP3,
|
|
BYTES_NOP4,
|
|
BYTES_NOP5,
|
|
BYTES_NOP6,
|
|
BYTES_NOP7,
|
|
BYTES_NOP8,
|
|
#ifdef CONFIG_64BIT
|
|
BYTES_NOP9,
|
|
BYTES_NOP10,
|
|
BYTES_NOP11,
|
|
#endif
|
|
};
|
|
|
|
const unsigned char * const x86_nops[ASM_NOP_MAX+1] =
|
|
{
|
|
NULL,
|
|
x86nops,
|
|
x86nops + 1,
|
|
x86nops + 1 + 2,
|
|
x86nops + 1 + 2 + 3,
|
|
x86nops + 1 + 2 + 3 + 4,
|
|
x86nops + 1 + 2 + 3 + 4 + 5,
|
|
x86nops + 1 + 2 + 3 + 4 + 5 + 6,
|
|
x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
|
|
#ifdef CONFIG_64BIT
|
|
x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
|
|
x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9,
|
|
x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10,
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* Fill the buffer with a single effective instruction of size @len.
|
|
*
|
|
* In order not to issue an ORC stack depth tracking CFI entry (Call Frame Info)
|
|
* for every single-byte NOP, try to generate the maximally available NOP of
|
|
* size <= ASM_NOP_MAX such that only a single CFI entry is generated (vs one for
|
|
* each single-byte NOPs). If @len to fill out is > ASM_NOP_MAX, pad with INT3 and
|
|
* *jump* over instead of executing long and daft NOPs.
|
|
*/
|
|
static void __init_or_module add_nop(u8 *instr, unsigned int len)
|
|
{
|
|
u8 *target = instr + len;
|
|
|
|
if (!len)
|
|
return;
|
|
|
|
if (len <= ASM_NOP_MAX) {
|
|
memcpy(instr, x86_nops[len], len);
|
|
return;
|
|
}
|
|
|
|
if (len < 128) {
|
|
__text_gen_insn(instr, JMP8_INSN_OPCODE, instr, target, JMP8_INSN_SIZE);
|
|
instr += JMP8_INSN_SIZE;
|
|
} else {
|
|
__text_gen_insn(instr, JMP32_INSN_OPCODE, instr, target, JMP32_INSN_SIZE);
|
|
instr += JMP32_INSN_SIZE;
|
|
}
|
|
|
|
for (;instr < target; instr++)
|
|
*instr = INT3_INSN_OPCODE;
|
|
}
|
|
|
|
extern s32 __retpoline_sites[], __retpoline_sites_end[];
|
|
extern s32 __return_sites[], __return_sites_end[];
|
|
extern s32 __cfi_sites[], __cfi_sites_end[];
|
|
extern s32 __ibt_endbr_seal[], __ibt_endbr_seal_end[];
|
|
extern s32 __smp_locks[], __smp_locks_end[];
|
|
void text_poke_early(void *addr, const void *opcode, size_t len);
|
|
|
|
/*
|
|
* Matches NOP and NOPL, not any of the other possible NOPs.
|
|
*/
|
|
static bool insn_is_nop(struct insn *insn)
|
|
{
|
|
/* Anything NOP, but no REP NOP */
|
|
if (insn->opcode.bytes[0] == 0x90 &&
|
|
(!insn->prefixes.nbytes || insn->prefixes.bytes[0] != 0xF3))
|
|
return true;
|
|
|
|
/* NOPL */
|
|
if (insn->opcode.bytes[0] == 0x0F && insn->opcode.bytes[1] == 0x1F)
|
|
return true;
|
|
|
|
/* TODO: more nops */
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Find the offset of the first non-NOP instruction starting at @offset
|
|
* but no further than @len.
|
|
*/
|
|
static int skip_nops(u8 *instr, int offset, int len)
|
|
{
|
|
struct insn insn;
|
|
|
|
for (; offset < len; offset += insn.length) {
|
|
if (insn_decode_kernel(&insn, &instr[offset]))
|
|
break;
|
|
|
|
if (!insn_is_nop(&insn))
|
|
break;
|
|
}
|
|
|
|
return offset;
|
|
}
|
|
|
|
/*
|
|
* Optimize a sequence of NOPs, possibly preceded by an unconditional jump
|
|
* to the end of the NOP sequence into a single NOP.
|
|
*/
|
|
static bool __init_or_module
|
|
__optimize_nops(u8 *instr, size_t len, struct insn *insn, int *next, int *prev, int *target)
|
|
{
|
|
int i = *next - insn->length;
|
|
|
|
switch (insn->opcode.bytes[0]) {
|
|
case JMP8_INSN_OPCODE:
|
|
case JMP32_INSN_OPCODE:
|
|
*prev = i;
|
|
*target = *next + insn->immediate.value;
|
|
return false;
|
|
}
|
|
|
|
if (insn_is_nop(insn)) {
|
|
int nop = i;
|
|
|
|
*next = skip_nops(instr, *next, len);
|
|
if (*target && *next == *target)
|
|
nop = *prev;
|
|
|
|
add_nop(instr + nop, *next - nop);
|
|
DUMP_BYTES(ALT, instr, len, "%px: [%d:%d) optimized NOPs: ", instr, nop, *next);
|
|
return true;
|
|
}
|
|
|
|
*target = 0;
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* "noinline" to cause control flow change and thus invalidate I$ and
|
|
* cause refetch after modification.
|
|
*/
|
|
static void __init_or_module noinline optimize_nops(u8 *instr, size_t len)
|
|
{
|
|
int prev, target = 0;
|
|
|
|
for (int next, i = 0; i < len; i = next) {
|
|
struct insn insn;
|
|
|
|
if (insn_decode_kernel(&insn, &instr[i]))
|
|
return;
|
|
|
|
next = i + insn.length;
|
|
|
|
__optimize_nops(instr, len, &insn, &next, &prev, &target);
|
|
}
|
|
}
|
|
|
|
static void __init_or_module noinline optimize_nops_inplace(u8 *instr, size_t len)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
optimize_nops(instr, len);
|
|
sync_core();
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* In this context, "source" is where the instructions are placed in the
|
|
* section .altinstr_replacement, for example during kernel build by the
|
|
* toolchain.
|
|
* "Destination" is where the instructions are being patched in by this
|
|
* machinery.
|
|
*
|
|
* The source offset is:
|
|
*
|
|
* src_imm = target - src_next_ip (1)
|
|
*
|
|
* and the target offset is:
|
|
*
|
|
* dst_imm = target - dst_next_ip (2)
|
|
*
|
|
* so rework (1) as an expression for target like:
|
|
*
|
|
* target = src_imm + src_next_ip (1a)
|
|
*
|
|
* and substitute in (2) to get:
|
|
*
|
|
* dst_imm = (src_imm + src_next_ip) - dst_next_ip (3)
|
|
*
|
|
* Now, since the instruction stream is 'identical' at src and dst (it
|
|
* is being copied after all) it can be stated that:
|
|
*
|
|
* src_next_ip = src + ip_offset
|
|
* dst_next_ip = dst + ip_offset (4)
|
|
*
|
|
* Substitute (4) in (3) and observe ip_offset being cancelled out to
|
|
* obtain:
|
|
*
|
|
* dst_imm = src_imm + (src + ip_offset) - (dst + ip_offset)
|
|
* = src_imm + src - dst + ip_offset - ip_offset
|
|
* = src_imm + src - dst (5)
|
|
*
|
|
* IOW, only the relative displacement of the code block matters.
|
|
*/
|
|
|
|
#define apply_reloc_n(n_, p_, d_) \
|
|
do { \
|
|
s32 v = *(s##n_ *)(p_); \
|
|
v += (d_); \
|
|
BUG_ON((v >> 31) != (v >> (n_-1))); \
|
|
*(s##n_ *)(p_) = (s##n_)v; \
|
|
} while (0)
|
|
|
|
|
|
static __always_inline
|
|
void apply_reloc(int n, void *ptr, uintptr_t diff)
|
|
{
|
|
switch (n) {
|
|
case 1: apply_reloc_n(8, ptr, diff); break;
|
|
case 2: apply_reloc_n(16, ptr, diff); break;
|
|
case 4: apply_reloc_n(32, ptr, diff); break;
|
|
default: BUG();
|
|
}
|
|
}
|
|
|
|
static __always_inline
|
|
bool need_reloc(unsigned long offset, u8 *src, size_t src_len)
|
|
{
|
|
u8 *target = src + offset;
|
|
/*
|
|
* If the target is inside the patched block, it's relative to the
|
|
* block itself and does not need relocation.
|
|
*/
|
|
return (target < src || target > src + src_len);
|
|
}
|
|
|
|
static void __init_or_module noinline
|
|
apply_relocation(u8 *buf, size_t len, u8 *dest, u8 *src, size_t src_len)
|
|
{
|
|
int prev, target = 0;
|
|
|
|
for (int next, i = 0; i < len; i = next) {
|
|
struct insn insn;
|
|
|
|
if (WARN_ON_ONCE(insn_decode_kernel(&insn, &buf[i])))
|
|
return;
|
|
|
|
next = i + insn.length;
|
|
|
|
if (__optimize_nops(buf, len, &insn, &next, &prev, &target))
|
|
continue;
|
|
|
|
switch (insn.opcode.bytes[0]) {
|
|
case 0x0f:
|
|
if (insn.opcode.bytes[1] < 0x80 ||
|
|
insn.opcode.bytes[1] > 0x8f)
|
|
break;
|
|
|
|
fallthrough; /* Jcc.d32 */
|
|
case 0x70 ... 0x7f: /* Jcc.d8 */
|
|
case JMP8_INSN_OPCODE:
|
|
case JMP32_INSN_OPCODE:
|
|
case CALL_INSN_OPCODE:
|
|
if (need_reloc(next + insn.immediate.value, src, src_len)) {
|
|
apply_reloc(insn.immediate.nbytes,
|
|
buf + i + insn_offset_immediate(&insn),
|
|
src - dest);
|
|
}
|
|
|
|
/*
|
|
* Where possible, convert JMP.d32 into JMP.d8.
|
|
*/
|
|
if (insn.opcode.bytes[0] == JMP32_INSN_OPCODE) {
|
|
s32 imm = insn.immediate.value;
|
|
imm += src - dest;
|
|
imm += JMP32_INSN_SIZE - JMP8_INSN_SIZE;
|
|
if ((imm >> 31) == (imm >> 7)) {
|
|
buf[i+0] = JMP8_INSN_OPCODE;
|
|
buf[i+1] = (s8)imm;
|
|
|
|
memset(&buf[i+2], INT3_INSN_OPCODE, insn.length - 2);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (insn_rip_relative(&insn)) {
|
|
if (need_reloc(next + insn.displacement.value, src, src_len)) {
|
|
apply_reloc(insn.displacement.nbytes,
|
|
buf + i + insn_offset_displacement(&insn),
|
|
src - dest);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Low-level backend functions usable from alternative code replacements. */
|
|
DEFINE_ASM_FUNC(nop_func, "", .entry.text);
|
|
EXPORT_SYMBOL_GPL(nop_func);
|
|
|
|
noinstr void BUG_func(void)
|
|
{
|
|
BUG();
|
|
}
|
|
EXPORT_SYMBOL(BUG_func);
|
|
|
|
#define CALL_RIP_REL_OPCODE 0xff
|
|
#define CALL_RIP_REL_MODRM 0x15
|
|
|
|
/*
|
|
* Rewrite the "call BUG_func" replacement to point to the target of the
|
|
* indirect pv_ops call "call *disp(%ip)".
|
|
*/
|
|
static int alt_replace_call(u8 *instr, u8 *insn_buff, struct alt_instr *a)
|
|
{
|
|
void *target, *bug = &BUG_func;
|
|
s32 disp;
|
|
|
|
if (a->replacementlen != 5 || insn_buff[0] != CALL_INSN_OPCODE) {
|
|
pr_err("ALT_FLAG_DIRECT_CALL set for a non-call replacement instruction\n");
|
|
BUG();
|
|
}
|
|
|
|
if (a->instrlen != 6 ||
|
|
instr[0] != CALL_RIP_REL_OPCODE ||
|
|
instr[1] != CALL_RIP_REL_MODRM) {
|
|
pr_err("ALT_FLAG_DIRECT_CALL set for unrecognized indirect call\n");
|
|
BUG();
|
|
}
|
|
|
|
/* Skip CALL_RIP_REL_OPCODE and CALL_RIP_REL_MODRM */
|
|
disp = *(s32 *)(instr + 2);
|
|
#ifdef CONFIG_X86_64
|
|
/* ff 15 00 00 00 00 call *0x0(%rip) */
|
|
/* target address is stored at "next instruction + disp". */
|
|
target = *(void **)(instr + a->instrlen + disp);
|
|
#else
|
|
/* ff 15 00 00 00 00 call *0x0 */
|
|
/* target address is stored at disp. */
|
|
target = *(void **)disp;
|
|
#endif
|
|
if (!target)
|
|
target = bug;
|
|
|
|
/* (BUG_func - .) + (target - BUG_func) := target - . */
|
|
*(s32 *)(insn_buff + 1) += target - bug;
|
|
|
|
if (target == &nop_func)
|
|
return 0;
|
|
|
|
return 5;
|
|
}
|
|
|
|
/*
|
|
* Replace instructions with better alternatives for this CPU type. This runs
|
|
* before SMP is initialized to avoid SMP problems with self modifying code.
|
|
* This implies that asymmetric systems where APs have less capabilities than
|
|
* the boot processor are not handled. Tough. Make sure you disable such
|
|
* features by hand.
|
|
*
|
|
* Marked "noinline" to cause control flow change and thus insn cache
|
|
* to refetch changed I$ lines.
|
|
*/
|
|
void __init_or_module noinline apply_alternatives(struct alt_instr *start,
|
|
struct alt_instr *end)
|
|
{
|
|
struct alt_instr *a;
|
|
u8 *instr, *replacement;
|
|
u8 insn_buff[MAX_PATCH_LEN];
|
|
|
|
DPRINTK(ALT, "alt table %px, -> %px", start, end);
|
|
|
|
/*
|
|
* In the case CONFIG_X86_5LEVEL=y, KASAN_SHADOW_START is defined using
|
|
* cpu_feature_enabled(X86_FEATURE_LA57) and is therefore patched here.
|
|
* During the process, KASAN becomes confused seeing partial LA57
|
|
* conversion and triggers a false-positive out-of-bound report.
|
|
*
|
|
* Disable KASAN until the patching is complete.
|
|
*/
|
|
kasan_disable_current();
|
|
|
|
/*
|
|
* The scan order should be from start to end. A later scanned
|
|
* alternative code can overwrite previously scanned alternative code.
|
|
* Some kernel functions (e.g. memcpy, memset, etc) use this order to
|
|
* patch code.
|
|
*
|
|
* So be careful if you want to change the scan order to any other
|
|
* order.
|
|
*/
|
|
for (a = start; a < end; a++) {
|
|
int insn_buff_sz = 0;
|
|
|
|
instr = (u8 *)&a->instr_offset + a->instr_offset;
|
|
replacement = (u8 *)&a->repl_offset + a->repl_offset;
|
|
BUG_ON(a->instrlen > sizeof(insn_buff));
|
|
BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
|
|
|
|
/*
|
|
* Patch if either:
|
|
* - feature is present
|
|
* - feature not present but ALT_FLAG_NOT is set to mean,
|
|
* patch if feature is *NOT* present.
|
|
*/
|
|
if (!boot_cpu_has(a->cpuid) == !(a->flags & ALT_FLAG_NOT)) {
|
|
optimize_nops_inplace(instr, a->instrlen);
|
|
continue;
|
|
}
|
|
|
|
DPRINTK(ALT, "feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d) flags: 0x%x",
|
|
a->cpuid >> 5,
|
|
a->cpuid & 0x1f,
|
|
instr, instr, a->instrlen,
|
|
replacement, a->replacementlen, a->flags);
|
|
|
|
memcpy(insn_buff, replacement, a->replacementlen);
|
|
insn_buff_sz = a->replacementlen;
|
|
|
|
if (a->flags & ALT_FLAG_DIRECT_CALL) {
|
|
insn_buff_sz = alt_replace_call(instr, insn_buff, a);
|
|
if (insn_buff_sz < 0)
|
|
continue;
|
|
}
|
|
|
|
for (; insn_buff_sz < a->instrlen; insn_buff_sz++)
|
|
insn_buff[insn_buff_sz] = 0x90;
|
|
|
|
apply_relocation(insn_buff, a->instrlen, instr, replacement, a->replacementlen);
|
|
|
|
DUMP_BYTES(ALT, instr, a->instrlen, "%px: old_insn: ", instr);
|
|
DUMP_BYTES(ALT, replacement, a->replacementlen, "%px: rpl_insn: ", replacement);
|
|
DUMP_BYTES(ALT, insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
|
|
|
|
text_poke_early(instr, insn_buff, insn_buff_sz);
|
|
}
|
|
|
|
kasan_enable_current();
|
|
}
|
|
|
|
static inline bool is_jcc32(struct insn *insn)
|
|
{
|
|
/* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */
|
|
return insn->opcode.bytes[0] == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80;
|
|
}
|
|
|
|
#if defined(CONFIG_RETPOLINE) && defined(CONFIG_OBJTOOL)
|
|
|
|
/*
|
|
* CALL/JMP *%\reg
|
|
*/
|
|
static int emit_indirect(int op, int reg, u8 *bytes)
|
|
{
|
|
int i = 0;
|
|
u8 modrm;
|
|
|
|
switch (op) {
|
|
case CALL_INSN_OPCODE:
|
|
modrm = 0x10; /* Reg = 2; CALL r/m */
|
|
break;
|
|
|
|
case JMP32_INSN_OPCODE:
|
|
modrm = 0x20; /* Reg = 4; JMP r/m */
|
|
break;
|
|
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
return -1;
|
|
}
|
|
|
|
if (reg >= 8) {
|
|
bytes[i++] = 0x41; /* REX.B prefix */
|
|
reg -= 8;
|
|
}
|
|
|
|
modrm |= 0xc0; /* Mod = 3 */
|
|
modrm += reg;
|
|
|
|
bytes[i++] = 0xff; /* opcode */
|
|
bytes[i++] = modrm;
|
|
|
|
return i;
|
|
}
|
|
|
|
static int emit_call_track_retpoline(void *addr, struct insn *insn, int reg, u8 *bytes)
|
|
{
|
|
u8 op = insn->opcode.bytes[0];
|
|
int i = 0;
|
|
|
|
/*
|
|
* Clang does 'weird' Jcc __x86_indirect_thunk_r11 conditional
|
|
* tail-calls. Deal with them.
|
|
*/
|
|
if (is_jcc32(insn)) {
|
|
bytes[i++] = op;
|
|
op = insn->opcode.bytes[1];
|
|
goto clang_jcc;
|
|
}
|
|
|
|
if (insn->length == 6)
|
|
bytes[i++] = 0x2e; /* CS-prefix */
|
|
|
|
switch (op) {
|
|
case CALL_INSN_OPCODE:
|
|
__text_gen_insn(bytes+i, op, addr+i,
|
|
__x86_indirect_call_thunk_array[reg],
|
|
CALL_INSN_SIZE);
|
|
i += CALL_INSN_SIZE;
|
|
break;
|
|
|
|
case JMP32_INSN_OPCODE:
|
|
clang_jcc:
|
|
__text_gen_insn(bytes+i, op, addr+i,
|
|
__x86_indirect_jump_thunk_array[reg],
|
|
JMP32_INSN_SIZE);
|
|
i += JMP32_INSN_SIZE;
|
|
break;
|
|
|
|
default:
|
|
WARN(1, "%pS %px %*ph\n", addr, addr, 6, addr);
|
|
return -1;
|
|
}
|
|
|
|
WARN_ON_ONCE(i != insn->length);
|
|
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* Rewrite the compiler generated retpoline thunk calls.
|
|
*
|
|
* For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate
|
|
* indirect instructions, avoiding the extra indirection.
|
|
*
|
|
* For example, convert:
|
|
*
|
|
* CALL __x86_indirect_thunk_\reg
|
|
*
|
|
* into:
|
|
*
|
|
* CALL *%\reg
|
|
*
|
|
* It also tries to inline spectre_v2=retpoline,lfence when size permits.
|
|
*/
|
|
static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes)
|
|
{
|
|
retpoline_thunk_t *target;
|
|
int reg, ret, i = 0;
|
|
u8 op, cc;
|
|
|
|
target = addr + insn->length + insn->immediate.value;
|
|
reg = target - __x86_indirect_thunk_array;
|
|
|
|
if (WARN_ON_ONCE(reg & ~0xf))
|
|
return -1;
|
|
|
|
/* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */
|
|
BUG_ON(reg == 4);
|
|
|
|
if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) &&
|
|
!cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
|
|
if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
|
|
return emit_call_track_retpoline(addr, insn, reg, bytes);
|
|
|
|
return -1;
|
|
}
|
|
|
|
op = insn->opcode.bytes[0];
|
|
|
|
/*
|
|
* Convert:
|
|
*
|
|
* Jcc.d32 __x86_indirect_thunk_\reg
|
|
*
|
|
* into:
|
|
*
|
|
* Jncc.d8 1f
|
|
* [ LFENCE ]
|
|
* JMP *%\reg
|
|
* [ NOP ]
|
|
* 1:
|
|
*/
|
|
if (is_jcc32(insn)) {
|
|
cc = insn->opcode.bytes[1] & 0xf;
|
|
cc ^= 1; /* invert condition */
|
|
|
|
bytes[i++] = 0x70 + cc; /* Jcc.d8 */
|
|
bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */
|
|
|
|
/* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */
|
|
op = JMP32_INSN_OPCODE;
|
|
}
|
|
|
|
/*
|
|
* For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE.
|
|
*/
|
|
if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
|
|
bytes[i++] = 0x0f;
|
|
bytes[i++] = 0xae;
|
|
bytes[i++] = 0xe8; /* LFENCE */
|
|
}
|
|
|
|
ret = emit_indirect(op, reg, bytes + i);
|
|
if (ret < 0)
|
|
return ret;
|
|
i += ret;
|
|
|
|
/*
|
|
* The compiler is supposed to EMIT an INT3 after every unconditional
|
|
* JMP instruction due to AMD BTC. However, if the compiler is too old
|
|
* or SLS isn't enabled, we still need an INT3 after indirect JMPs
|
|
* even on Intel.
|
|
*/
|
|
if (op == JMP32_INSN_OPCODE && i < insn->length)
|
|
bytes[i++] = INT3_INSN_OPCODE;
|
|
|
|
for (; i < insn->length;)
|
|
bytes[i++] = BYTES_NOP1;
|
|
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* Generated by 'objtool --retpoline'.
|
|
*/
|
|
void __init_or_module noinline apply_retpolines(s32 *start, s32 *end)
|
|
{
|
|
s32 *s;
|
|
|
|
for (s = start; s < end; s++) {
|
|
void *addr = (void *)s + *s;
|
|
struct insn insn;
|
|
int len, ret;
|
|
u8 bytes[16];
|
|
u8 op1, op2;
|
|
|
|
ret = insn_decode_kernel(&insn, addr);
|
|
if (WARN_ON_ONCE(ret < 0))
|
|
continue;
|
|
|
|
op1 = insn.opcode.bytes[0];
|
|
op2 = insn.opcode.bytes[1];
|
|
|
|
switch (op1) {
|
|
case CALL_INSN_OPCODE:
|
|
case JMP32_INSN_OPCODE:
|
|
break;
|
|
|
|
case 0x0f: /* escape */
|
|
if (op2 >= 0x80 && op2 <= 0x8f)
|
|
break;
|
|
fallthrough;
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
continue;
|
|
}
|
|
|
|
DPRINTK(RETPOLINE, "retpoline at: %pS (%px) len: %d to: %pS",
|
|
addr, addr, insn.length,
|
|
addr + insn.length + insn.immediate.value);
|
|
|
|
len = patch_retpoline(addr, &insn, bytes);
|
|
if (len == insn.length) {
|
|
optimize_nops(bytes, len);
|
|
DUMP_BYTES(RETPOLINE, ((u8*)addr), len, "%px: orig: ", addr);
|
|
DUMP_BYTES(RETPOLINE, ((u8*)bytes), len, "%px: repl: ", addr);
|
|
text_poke_early(addr, bytes, len);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_RETHUNK
|
|
|
|
/*
|
|
* Rewrite the compiler generated return thunk tail-calls.
|
|
*
|
|
* For example, convert:
|
|
*
|
|
* JMP __x86_return_thunk
|
|
*
|
|
* into:
|
|
*
|
|
* RET
|
|
*/
|
|
static int patch_return(void *addr, struct insn *insn, u8 *bytes)
|
|
{
|
|
int i = 0;
|
|
|
|
/* Patch the custom return thunks... */
|
|
if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
|
|
i = JMP32_INSN_SIZE;
|
|
__text_gen_insn(bytes, JMP32_INSN_OPCODE, addr, x86_return_thunk, i);
|
|
} else {
|
|
/* ... or patch them out if not needed. */
|
|
bytes[i++] = RET_INSN_OPCODE;
|
|
}
|
|
|
|
for (; i < insn->length;)
|
|
bytes[i++] = INT3_INSN_OPCODE;
|
|
return i;
|
|
}
|
|
|
|
void __init_or_module noinline apply_returns(s32 *start, s32 *end)
|
|
{
|
|
s32 *s;
|
|
|
|
if (cpu_feature_enabled(X86_FEATURE_RETHUNK))
|
|
static_call_force_reinit();
|
|
|
|
for (s = start; s < end; s++) {
|
|
void *dest = NULL, *addr = (void *)s + *s;
|
|
struct insn insn;
|
|
int len, ret;
|
|
u8 bytes[16];
|
|
u8 op;
|
|
|
|
ret = insn_decode_kernel(&insn, addr);
|
|
if (WARN_ON_ONCE(ret < 0))
|
|
continue;
|
|
|
|
op = insn.opcode.bytes[0];
|
|
if (op == JMP32_INSN_OPCODE)
|
|
dest = addr + insn.length + insn.immediate.value;
|
|
|
|
if (__static_call_fixup(addr, op, dest) ||
|
|
WARN_ONCE(dest != &__x86_return_thunk,
|
|
"missing return thunk: %pS-%pS: %*ph",
|
|
addr, dest, 5, addr))
|
|
continue;
|
|
|
|
DPRINTK(RET, "return thunk at: %pS (%px) len: %d to: %pS",
|
|
addr, addr, insn.length,
|
|
addr + insn.length + insn.immediate.value);
|
|
|
|
len = patch_return(addr, &insn, bytes);
|
|
if (len == insn.length) {
|
|
DUMP_BYTES(RET, ((u8*)addr), len, "%px: orig: ", addr);
|
|
DUMP_BYTES(RET, ((u8*)bytes), len, "%px: repl: ", addr);
|
|
text_poke_early(addr, bytes, len);
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
|
|
#endif /* CONFIG_RETHUNK */
|
|
|
|
#else /* !CONFIG_RETPOLINE || !CONFIG_OBJTOOL */
|
|
|
|
void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { }
|
|
void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
|
|
|
|
#endif /* CONFIG_RETPOLINE && CONFIG_OBJTOOL */
|
|
|
|
#ifdef CONFIG_X86_KERNEL_IBT
|
|
|
|
static void poison_cfi(void *addr);
|
|
|
|
static void __init_or_module poison_endbr(void *addr, bool warn)
|
|
{
|
|
u32 endbr, poison = gen_endbr_poison();
|
|
|
|
if (WARN_ON_ONCE(get_kernel_nofault(endbr, addr)))
|
|
return;
|
|
|
|
if (!is_endbr(endbr)) {
|
|
WARN_ON_ONCE(warn);
|
|
return;
|
|
}
|
|
|
|
DPRINTK(ENDBR, "ENDBR at: %pS (%px)", addr, addr);
|
|
|
|
/*
|
|
* When we have IBT, the lack of ENDBR will trigger #CP
|
|
*/
|
|
DUMP_BYTES(ENDBR, ((u8*)addr), 4, "%px: orig: ", addr);
|
|
DUMP_BYTES(ENDBR, ((u8*)&poison), 4, "%px: repl: ", addr);
|
|
text_poke_early(addr, &poison, 4);
|
|
}
|
|
|
|
/*
|
|
* Generated by: objtool --ibt
|
|
*
|
|
* Seal the functions for indirect calls by clobbering the ENDBR instructions
|
|
* and the kCFI hash value.
|
|
*/
|
|
void __init_or_module noinline apply_seal_endbr(s32 *start, s32 *end)
|
|
{
|
|
s32 *s;
|
|
|
|
for (s = start; s < end; s++) {
|
|
void *addr = (void *)s + *s;
|
|
|
|
poison_endbr(addr, true);
|
|
if (IS_ENABLED(CONFIG_FINEIBT))
|
|
poison_cfi(addr - 16);
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
void __init_or_module apply_seal_endbr(s32 *start, s32 *end) { }
|
|
|
|
#endif /* CONFIG_X86_KERNEL_IBT */
|
|
|
|
#ifdef CONFIG_FINEIBT
|
|
#define __CFI_DEFAULT CFI_DEFAULT
|
|
#elif defined(CONFIG_CFI_CLANG)
|
|
#define __CFI_DEFAULT CFI_KCFI
|
|
#else
|
|
#define __CFI_DEFAULT CFI_OFF
|
|
#endif
|
|
|
|
enum cfi_mode cfi_mode __ro_after_init = __CFI_DEFAULT;
|
|
|
|
#ifdef CONFIG_CFI_CLANG
|
|
struct bpf_insn;
|
|
|
|
/* Must match bpf_func_t / DEFINE_BPF_PROG_RUN() */
|
|
extern unsigned int __bpf_prog_runX(const void *ctx,
|
|
const struct bpf_insn *insn);
|
|
|
|
/*
|
|
* Force a reference to the external symbol so the compiler generates
|
|
* __kcfi_typid.
|
|
*/
|
|
__ADDRESSABLE(__bpf_prog_runX);
|
|
|
|
/* u32 __ro_after_init cfi_bpf_hash = __kcfi_typeid___bpf_prog_runX; */
|
|
asm (
|
|
" .pushsection .data..ro_after_init,\"aw\",@progbits \n"
|
|
" .type cfi_bpf_hash,@object \n"
|
|
" .globl cfi_bpf_hash \n"
|
|
" .p2align 2, 0x0 \n"
|
|
"cfi_bpf_hash: \n"
|
|
" .long __kcfi_typeid___bpf_prog_runX \n"
|
|
" .size cfi_bpf_hash, 4 \n"
|
|
" .popsection \n"
|
|
);
|
|
|
|
/* Must match bpf_callback_t */
|
|
extern u64 __bpf_callback_fn(u64, u64, u64, u64, u64);
|
|
|
|
__ADDRESSABLE(__bpf_callback_fn);
|
|
|
|
/* u32 __ro_after_init cfi_bpf_subprog_hash = __kcfi_typeid___bpf_callback_fn; */
|
|
asm (
|
|
" .pushsection .data..ro_after_init,\"aw\",@progbits \n"
|
|
" .type cfi_bpf_subprog_hash,@object \n"
|
|
" .globl cfi_bpf_subprog_hash \n"
|
|
" .p2align 2, 0x0 \n"
|
|
"cfi_bpf_subprog_hash: \n"
|
|
" .long __kcfi_typeid___bpf_callback_fn \n"
|
|
" .size cfi_bpf_subprog_hash, 4 \n"
|
|
" .popsection \n"
|
|
);
|
|
|
|
u32 cfi_get_func_hash(void *func)
|
|
{
|
|
u32 hash;
|
|
|
|
func -= cfi_get_offset();
|
|
switch (cfi_mode) {
|
|
case CFI_FINEIBT:
|
|
func += 7;
|
|
break;
|
|
case CFI_KCFI:
|
|
func += 1;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
if (get_kernel_nofault(hash, func))
|
|
return 0;
|
|
|
|
return hash;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_FINEIBT
|
|
|
|
static bool cfi_rand __ro_after_init = true;
|
|
static u32 cfi_seed __ro_after_init;
|
|
|
|
/*
|
|
* Re-hash the CFI hash with a boot-time seed while making sure the result is
|
|
* not a valid ENDBR instruction.
|
|
*/
|
|
static u32 cfi_rehash(u32 hash)
|
|
{
|
|
hash ^= cfi_seed;
|
|
while (unlikely(is_endbr(hash) || is_endbr(-hash))) {
|
|
bool lsb = hash & 1;
|
|
hash >>= 1;
|
|
if (lsb)
|
|
hash ^= 0x80200003;
|
|
}
|
|
return hash;
|
|
}
|
|
|
|
static __init int cfi_parse_cmdline(char *str)
|
|
{
|
|
if (!str)
|
|
return -EINVAL;
|
|
|
|
while (str) {
|
|
char *next = strchr(str, ',');
|
|
if (next) {
|
|
*next = 0;
|
|
next++;
|
|
}
|
|
|
|
if (!strcmp(str, "auto")) {
|
|
cfi_mode = CFI_DEFAULT;
|
|
} else if (!strcmp(str, "off")) {
|
|
cfi_mode = CFI_OFF;
|
|
cfi_rand = false;
|
|
} else if (!strcmp(str, "kcfi")) {
|
|
cfi_mode = CFI_KCFI;
|
|
} else if (!strcmp(str, "fineibt")) {
|
|
cfi_mode = CFI_FINEIBT;
|
|
} else if (!strcmp(str, "norand")) {
|
|
cfi_rand = false;
|
|
} else {
|
|
pr_err("Ignoring unknown cfi option (%s).", str);
|
|
}
|
|
|
|
str = next;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
early_param("cfi", cfi_parse_cmdline);
|
|
|
|
/*
|
|
* kCFI FineIBT
|
|
*
|
|
* __cfi_\func: __cfi_\func:
|
|
* movl $0x12345678,%eax // 5 endbr64 // 4
|
|
* nop subl $0x12345678,%r10d // 7
|
|
* nop jz 1f // 2
|
|
* nop ud2 // 2
|
|
* nop 1: nop // 1
|
|
* nop
|
|
* nop
|
|
* nop
|
|
* nop
|
|
* nop
|
|
* nop
|
|
* nop
|
|
*
|
|
*
|
|
* caller: caller:
|
|
* movl $(-0x12345678),%r10d // 6 movl $0x12345678,%r10d // 6
|
|
* addl $-15(%r11),%r10d // 4 sub $16,%r11 // 4
|
|
* je 1f // 2 nop4 // 4
|
|
* ud2 // 2
|
|
* 1: call __x86_indirect_thunk_r11 // 5 call *%r11; nop2; // 5
|
|
*
|
|
*/
|
|
|
|
asm( ".pushsection .rodata \n"
|
|
"fineibt_preamble_start: \n"
|
|
" endbr64 \n"
|
|
" subl $0x12345678, %r10d \n"
|
|
" je fineibt_preamble_end \n"
|
|
" ud2 \n"
|
|
" nop \n"
|
|
"fineibt_preamble_end: \n"
|
|
".popsection\n"
|
|
);
|
|
|
|
extern u8 fineibt_preamble_start[];
|
|
extern u8 fineibt_preamble_end[];
|
|
|
|
#define fineibt_preamble_size (fineibt_preamble_end - fineibt_preamble_start)
|
|
#define fineibt_preamble_hash 7
|
|
|
|
asm( ".pushsection .rodata \n"
|
|
"fineibt_caller_start: \n"
|
|
" movl $0x12345678, %r10d \n"
|
|
" sub $16, %r11 \n"
|
|
ASM_NOP4
|
|
"fineibt_caller_end: \n"
|
|
".popsection \n"
|
|
);
|
|
|
|
extern u8 fineibt_caller_start[];
|
|
extern u8 fineibt_caller_end[];
|
|
|
|
#define fineibt_caller_size (fineibt_caller_end - fineibt_caller_start)
|
|
#define fineibt_caller_hash 2
|
|
|
|
#define fineibt_caller_jmp (fineibt_caller_size - 2)
|
|
|
|
static u32 decode_preamble_hash(void *addr)
|
|
{
|
|
u8 *p = addr;
|
|
|
|
/* b8 78 56 34 12 mov $0x12345678,%eax */
|
|
if (p[0] == 0xb8)
|
|
return *(u32 *)(addr + 1);
|
|
|
|
return 0; /* invalid hash value */
|
|
}
|
|
|
|
static u32 decode_caller_hash(void *addr)
|
|
{
|
|
u8 *p = addr;
|
|
|
|
/* 41 ba 78 56 34 12 mov $0x12345678,%r10d */
|
|
if (p[0] == 0x41 && p[1] == 0xba)
|
|
return -*(u32 *)(addr + 2);
|
|
|
|
/* e8 0c 78 56 34 12 jmp.d8 +12 */
|
|
if (p[0] == JMP8_INSN_OPCODE && p[1] == fineibt_caller_jmp)
|
|
return -*(u32 *)(addr + 2);
|
|
|
|
return 0; /* invalid hash value */
|
|
}
|
|
|
|
/* .retpoline_sites */
|
|
static int cfi_disable_callers(s32 *start, s32 *end)
|
|
{
|
|
/*
|
|
* Disable kCFI by patching in a JMP.d8, this leaves the hash immediate
|
|
* in tact for later usage. Also see decode_caller_hash() and
|
|
* cfi_rewrite_callers().
|
|
*/
|
|
const u8 jmp[] = { JMP8_INSN_OPCODE, fineibt_caller_jmp };
|
|
s32 *s;
|
|
|
|
for (s = start; s < end; s++) {
|
|
void *addr = (void *)s + *s;
|
|
u32 hash;
|
|
|
|
addr -= fineibt_caller_size;
|
|
hash = decode_caller_hash(addr);
|
|
if (!hash) /* nocfi callers */
|
|
continue;
|
|
|
|
text_poke_early(addr, jmp, 2);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cfi_enable_callers(s32 *start, s32 *end)
|
|
{
|
|
/*
|
|
* Re-enable kCFI, undo what cfi_disable_callers() did.
|
|
*/
|
|
const u8 mov[] = { 0x41, 0xba };
|
|
s32 *s;
|
|
|
|
for (s = start; s < end; s++) {
|
|
void *addr = (void *)s + *s;
|
|
u32 hash;
|
|
|
|
addr -= fineibt_caller_size;
|
|
hash = decode_caller_hash(addr);
|
|
if (!hash) /* nocfi callers */
|
|
continue;
|
|
|
|
text_poke_early(addr, mov, 2);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* .cfi_sites */
|
|
static int cfi_rand_preamble(s32 *start, s32 *end)
|
|
{
|
|
s32 *s;
|
|
|
|
for (s = start; s < end; s++) {
|
|
void *addr = (void *)s + *s;
|
|
u32 hash;
|
|
|
|
hash = decode_preamble_hash(addr);
|
|
if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
|
|
addr, addr, 5, addr))
|
|
return -EINVAL;
|
|
|
|
hash = cfi_rehash(hash);
|
|
text_poke_early(addr + 1, &hash, 4);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cfi_rewrite_preamble(s32 *start, s32 *end)
|
|
{
|
|
s32 *s;
|
|
|
|
for (s = start; s < end; s++) {
|
|
void *addr = (void *)s + *s;
|
|
u32 hash;
|
|
|
|
hash = decode_preamble_hash(addr);
|
|
if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
|
|
addr, addr, 5, addr))
|
|
return -EINVAL;
|
|
|
|
text_poke_early(addr, fineibt_preamble_start, fineibt_preamble_size);
|
|
WARN_ON(*(u32 *)(addr + fineibt_preamble_hash) != 0x12345678);
|
|
text_poke_early(addr + fineibt_preamble_hash, &hash, 4);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cfi_rewrite_endbr(s32 *start, s32 *end)
|
|
{
|
|
s32 *s;
|
|
|
|
for (s = start; s < end; s++) {
|
|
void *addr = (void *)s + *s;
|
|
|
|
poison_endbr(addr+16, false);
|
|
}
|
|
}
|
|
|
|
/* .retpoline_sites */
|
|
static int cfi_rand_callers(s32 *start, s32 *end)
|
|
{
|
|
s32 *s;
|
|
|
|
for (s = start; s < end; s++) {
|
|
void *addr = (void *)s + *s;
|
|
u32 hash;
|
|
|
|
addr -= fineibt_caller_size;
|
|
hash = decode_caller_hash(addr);
|
|
if (hash) {
|
|
hash = -cfi_rehash(hash);
|
|
text_poke_early(addr + 2, &hash, 4);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cfi_rewrite_callers(s32 *start, s32 *end)
|
|
{
|
|
s32 *s;
|
|
|
|
for (s = start; s < end; s++) {
|
|
void *addr = (void *)s + *s;
|
|
u32 hash;
|
|
|
|
addr -= fineibt_caller_size;
|
|
hash = decode_caller_hash(addr);
|
|
if (hash) {
|
|
text_poke_early(addr, fineibt_caller_start, fineibt_caller_size);
|
|
WARN_ON(*(u32 *)(addr + fineibt_caller_hash) != 0x12345678);
|
|
text_poke_early(addr + fineibt_caller_hash, &hash, 4);
|
|
}
|
|
/* rely on apply_retpolines() */
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
|
|
s32 *start_cfi, s32 *end_cfi, bool builtin)
|
|
{
|
|
int ret;
|
|
|
|
if (WARN_ONCE(fineibt_preamble_size != 16,
|
|
"FineIBT preamble wrong size: %ld", fineibt_preamble_size))
|
|
return;
|
|
|
|
if (cfi_mode == CFI_DEFAULT) {
|
|
cfi_mode = CFI_KCFI;
|
|
if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
|
|
cfi_mode = CFI_FINEIBT;
|
|
}
|
|
|
|
/*
|
|
* Rewrite the callers to not use the __cfi_ stubs, such that we might
|
|
* rewrite them. This disables all CFI. If this succeeds but any of the
|
|
* later stages fails, we're without CFI.
|
|
*/
|
|
ret = cfi_disable_callers(start_retpoline, end_retpoline);
|
|
if (ret)
|
|
goto err;
|
|
|
|
if (cfi_rand) {
|
|
if (builtin) {
|
|
cfi_seed = get_random_u32();
|
|
cfi_bpf_hash = cfi_rehash(cfi_bpf_hash);
|
|
cfi_bpf_subprog_hash = cfi_rehash(cfi_bpf_subprog_hash);
|
|
}
|
|
|
|
ret = cfi_rand_preamble(start_cfi, end_cfi);
|
|
if (ret)
|
|
goto err;
|
|
|
|
ret = cfi_rand_callers(start_retpoline, end_retpoline);
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
|
|
switch (cfi_mode) {
|
|
case CFI_OFF:
|
|
if (builtin)
|
|
pr_info("Disabling CFI\n");
|
|
return;
|
|
|
|
case CFI_KCFI:
|
|
ret = cfi_enable_callers(start_retpoline, end_retpoline);
|
|
if (ret)
|
|
goto err;
|
|
|
|
if (builtin)
|
|
pr_info("Using kCFI\n");
|
|
return;
|
|
|
|
case CFI_FINEIBT:
|
|
/* place the FineIBT preamble at func()-16 */
|
|
ret = cfi_rewrite_preamble(start_cfi, end_cfi);
|
|
if (ret)
|
|
goto err;
|
|
|
|
/* rewrite the callers to target func()-16 */
|
|
ret = cfi_rewrite_callers(start_retpoline, end_retpoline);
|
|
if (ret)
|
|
goto err;
|
|
|
|
/* now that nobody targets func()+0, remove ENDBR there */
|
|
cfi_rewrite_endbr(start_cfi, end_cfi);
|
|
|
|
if (builtin)
|
|
pr_info("Using FineIBT CFI\n");
|
|
return;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
err:
|
|
pr_err("Something went horribly wrong trying to rewrite the CFI implementation.\n");
|
|
}
|
|
|
|
static inline void poison_hash(void *addr)
|
|
{
|
|
*(u32 *)addr = 0;
|
|
}
|
|
|
|
static void poison_cfi(void *addr)
|
|
{
|
|
switch (cfi_mode) {
|
|
case CFI_FINEIBT:
|
|
/*
|
|
* __cfi_\func:
|
|
* osp nopl (%rax)
|
|
* subl $0, %r10d
|
|
* jz 1f
|
|
* ud2
|
|
* 1: nop
|
|
*/
|
|
poison_endbr(addr, false);
|
|
poison_hash(addr + fineibt_preamble_hash);
|
|
break;
|
|
|
|
case CFI_KCFI:
|
|
/*
|
|
* __cfi_\func:
|
|
* movl $0, %eax
|
|
* .skip 11, 0x90
|
|
*/
|
|
poison_hash(addr + 1);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
|
|
s32 *start_cfi, s32 *end_cfi, bool builtin)
|
|
{
|
|
}
|
|
|
|
#ifdef CONFIG_X86_KERNEL_IBT
|
|
static void poison_cfi(void *addr) { }
|
|
#endif
|
|
|
|
#endif
|
|
|
|
void apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
|
|
s32 *start_cfi, s32 *end_cfi)
|
|
{
|
|
return __apply_fineibt(start_retpoline, end_retpoline,
|
|
start_cfi, end_cfi,
|
|
/* .builtin = */ false);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
static void alternatives_smp_lock(const s32 *start, const s32 *end,
|
|
u8 *text, u8 *text_end)
|
|
{
|
|
const s32 *poff;
|
|
|
|
for (poff = start; poff < end; poff++) {
|
|
u8 *ptr = (u8 *)poff + *poff;
|
|
|
|
if (!*poff || ptr < text || ptr >= text_end)
|
|
continue;
|
|
/* turn DS segment override prefix into lock prefix */
|
|
if (*ptr == 0x3e)
|
|
text_poke(ptr, ((unsigned char []){0xf0}), 1);
|
|
}
|
|
}
|
|
|
|
static void alternatives_smp_unlock(const s32 *start, const s32 *end,
|
|
u8 *text, u8 *text_end)
|
|
{
|
|
const s32 *poff;
|
|
|
|
for (poff = start; poff < end; poff++) {
|
|
u8 *ptr = (u8 *)poff + *poff;
|
|
|
|
if (!*poff || ptr < text || ptr >= text_end)
|
|
continue;
|
|
/* turn lock prefix into DS segment override prefix */
|
|
if (*ptr == 0xf0)
|
|
text_poke(ptr, ((unsigned char []){0x3E}), 1);
|
|
}
|
|
}
|
|
|
|
struct smp_alt_module {
|
|
/* what is this ??? */
|
|
struct module *mod;
|
|
char *name;
|
|
|
|
/* ptrs to lock prefixes */
|
|
const s32 *locks;
|
|
const s32 *locks_end;
|
|
|
|
/* .text segment, needed to avoid patching init code ;) */
|
|
u8 *text;
|
|
u8 *text_end;
|
|
|
|
struct list_head next;
|
|
};
|
|
static LIST_HEAD(smp_alt_modules);
|
|
static bool uniproc_patched = false; /* protected by text_mutex */
|
|
|
|
void __init_or_module alternatives_smp_module_add(struct module *mod,
|
|
char *name,
|
|
void *locks, void *locks_end,
|
|
void *text, void *text_end)
|
|
{
|
|
struct smp_alt_module *smp;
|
|
|
|
mutex_lock(&text_mutex);
|
|
if (!uniproc_patched)
|
|
goto unlock;
|
|
|
|
if (num_possible_cpus() == 1)
|
|
/* Don't bother remembering, we'll never have to undo it. */
|
|
goto smp_unlock;
|
|
|
|
smp = kzalloc(sizeof(*smp), GFP_KERNEL);
|
|
if (NULL == smp)
|
|
/* we'll run the (safe but slow) SMP code then ... */
|
|
goto unlock;
|
|
|
|
smp->mod = mod;
|
|
smp->name = name;
|
|
smp->locks = locks;
|
|
smp->locks_end = locks_end;
|
|
smp->text = text;
|
|
smp->text_end = text_end;
|
|
DPRINTK(SMP, "locks %p -> %p, text %p -> %p, name %s\n",
|
|
smp->locks, smp->locks_end,
|
|
smp->text, smp->text_end, smp->name);
|
|
|
|
list_add_tail(&smp->next, &smp_alt_modules);
|
|
smp_unlock:
|
|
alternatives_smp_unlock(locks, locks_end, text, text_end);
|
|
unlock:
|
|
mutex_unlock(&text_mutex);
|
|
}
|
|
|
|
void __init_or_module alternatives_smp_module_del(struct module *mod)
|
|
{
|
|
struct smp_alt_module *item;
|
|
|
|
mutex_lock(&text_mutex);
|
|
list_for_each_entry(item, &smp_alt_modules, next) {
|
|
if (mod != item->mod)
|
|
continue;
|
|
list_del(&item->next);
|
|
kfree(item);
|
|
break;
|
|
}
|
|
mutex_unlock(&text_mutex);
|
|
}
|
|
|
|
void alternatives_enable_smp(void)
|
|
{
|
|
struct smp_alt_module *mod;
|
|
|
|
/* Why bother if there are no other CPUs? */
|
|
BUG_ON(num_possible_cpus() == 1);
|
|
|
|
mutex_lock(&text_mutex);
|
|
|
|
if (uniproc_patched) {
|
|
pr_info("switching to SMP code\n");
|
|
BUG_ON(num_online_cpus() != 1);
|
|
clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
|
|
clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
|
|
list_for_each_entry(mod, &smp_alt_modules, next)
|
|
alternatives_smp_lock(mod->locks, mod->locks_end,
|
|
mod->text, mod->text_end);
|
|
uniproc_patched = false;
|
|
}
|
|
mutex_unlock(&text_mutex);
|
|
}
|
|
|
|
/*
|
|
* Return 1 if the address range is reserved for SMP-alternatives.
|
|
* Must hold text_mutex.
|
|
*/
|
|
int alternatives_text_reserved(void *start, void *end)
|
|
{
|
|
struct smp_alt_module *mod;
|
|
const s32 *poff;
|
|
u8 *text_start = start;
|
|
u8 *text_end = end;
|
|
|
|
lockdep_assert_held(&text_mutex);
|
|
|
|
list_for_each_entry(mod, &smp_alt_modules, next) {
|
|
if (mod->text > text_end || mod->text_end < text_start)
|
|
continue;
|
|
for (poff = mod->locks; poff < mod->locks_end; poff++) {
|
|
const u8 *ptr = (const u8 *)poff + *poff;
|
|
|
|
if (text_start <= ptr && text_end > ptr)
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
/*
|
|
* Self-test for the INT3 based CALL emulation code.
|
|
*
|
|
* This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
|
|
* properly and that there is a stack gap between the INT3 frame and the
|
|
* previous context. Without this gap doing a virtual PUSH on the interrupted
|
|
* stack would corrupt the INT3 IRET frame.
|
|
*
|
|
* See entry_{32,64}.S for more details.
|
|
*/
|
|
|
|
/*
|
|
* We define the int3_magic() function in assembly to control the calling
|
|
* convention such that we can 'call' it from assembly.
|
|
*/
|
|
|
|
extern void int3_magic(unsigned int *ptr); /* defined in asm */
|
|
|
|
asm (
|
|
" .pushsection .init.text, \"ax\", @progbits\n"
|
|
" .type int3_magic, @function\n"
|
|
"int3_magic:\n"
|
|
ANNOTATE_NOENDBR
|
|
" movl $1, (%" _ASM_ARG1 ")\n"
|
|
ASM_RET
|
|
" .size int3_magic, .-int3_magic\n"
|
|
" .popsection\n"
|
|
);
|
|
|
|
extern void int3_selftest_ip(void); /* defined in asm below */
|
|
|
|
static int __init
|
|
int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
|
|
{
|
|
unsigned long selftest = (unsigned long)&int3_selftest_ip;
|
|
struct die_args *args = data;
|
|
struct pt_regs *regs = args->regs;
|
|
|
|
OPTIMIZER_HIDE_VAR(selftest);
|
|
|
|
if (!regs || user_mode(regs))
|
|
return NOTIFY_DONE;
|
|
|
|
if (val != DIE_INT3)
|
|
return NOTIFY_DONE;
|
|
|
|
if (regs->ip - INT3_INSN_SIZE != selftest)
|
|
return NOTIFY_DONE;
|
|
|
|
int3_emulate_call(regs, (unsigned long)&int3_magic);
|
|
return NOTIFY_STOP;
|
|
}
|
|
|
|
/* Must be noinline to ensure uniqueness of int3_selftest_ip. */
|
|
static noinline void __init int3_selftest(void)
|
|
{
|
|
static __initdata struct notifier_block int3_exception_nb = {
|
|
.notifier_call = int3_exception_notify,
|
|
.priority = INT_MAX-1, /* last */
|
|
};
|
|
unsigned int val = 0;
|
|
|
|
BUG_ON(register_die_notifier(&int3_exception_nb));
|
|
|
|
/*
|
|
* Basically: int3_magic(&val); but really complicated :-)
|
|
*
|
|
* INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb
|
|
* notifier above will emulate CALL for us.
|
|
*/
|
|
asm volatile ("int3_selftest_ip:\n\t"
|
|
ANNOTATE_NOENDBR
|
|
" int3; nop; nop; nop; nop\n\t"
|
|
: ASM_CALL_CONSTRAINT
|
|
: __ASM_SEL_RAW(a, D) (&val)
|
|
: "memory");
|
|
|
|
BUG_ON(val != 1);
|
|
|
|
unregister_die_notifier(&int3_exception_nb);
|
|
}
|
|
|
|
static __initdata int __alt_reloc_selftest_addr;
|
|
|
|
extern void __init __alt_reloc_selftest(void *arg);
|
|
__visible noinline void __init __alt_reloc_selftest(void *arg)
|
|
{
|
|
WARN_ON(arg != &__alt_reloc_selftest_addr);
|
|
}
|
|
|
|
static noinline void __init alt_reloc_selftest(void)
|
|
{
|
|
/*
|
|
* Tests apply_relocation().
|
|
*
|
|
* This has a relative immediate (CALL) in a place other than the first
|
|
* instruction and additionally on x86_64 we get a RIP-relative LEA:
|
|
*
|
|
* lea 0x0(%rip),%rdi # 5d0: R_X86_64_PC32 .init.data+0x5566c
|
|
* call +0 # 5d5: R_X86_64_PLT32 __alt_reloc_selftest-0x4
|
|
*
|
|
* Getting this wrong will either crash and burn or tickle the WARN
|
|
* above.
|
|
*/
|
|
asm_inline volatile (
|
|
ALTERNATIVE("", "lea %[mem], %%" _ASM_ARG1 "; call __alt_reloc_selftest;", X86_FEATURE_ALWAYS)
|
|
: /* output */
|
|
: [mem] "m" (__alt_reloc_selftest_addr)
|
|
: _ASM_ARG1
|
|
);
|
|
}
|
|
|
|
void __init alternative_instructions(void)
|
|
{
|
|
int3_selftest();
|
|
|
|
/*
|
|
* The patching is not fully atomic, so try to avoid local
|
|
* interruptions that might execute the to be patched code.
|
|
* Other CPUs are not running.
|
|
*/
|
|
stop_nmi();
|
|
|
|
/*
|
|
* Don't stop machine check exceptions while patching.
|
|
* MCEs only happen when something got corrupted and in this
|
|
* case we must do something about the corruption.
|
|
* Ignoring it is worse than an unlikely patching race.
|
|
* Also machine checks tend to be broadcast and if one CPU
|
|
* goes into machine check the others follow quickly, so we don't
|
|
* expect a machine check to cause undue problems during to code
|
|
* patching.
|
|
*/
|
|
|
|
/*
|
|
* Make sure to set (artificial) features depending on used paravirt
|
|
* functions which can later influence alternative patching.
|
|
*/
|
|
paravirt_set_cap();
|
|
|
|
__apply_fineibt(__retpoline_sites, __retpoline_sites_end,
|
|
__cfi_sites, __cfi_sites_end, true);
|
|
|
|
/*
|
|
* Rewrite the retpolines, must be done before alternatives since
|
|
* those can rewrite the retpoline thunks.
|
|
*/
|
|
apply_retpolines(__retpoline_sites, __retpoline_sites_end);
|
|
apply_returns(__return_sites, __return_sites_end);
|
|
|
|
apply_alternatives(__alt_instructions, __alt_instructions_end);
|
|
|
|
/*
|
|
* Now all calls are established. Apply the call thunks if
|
|
* required.
|
|
*/
|
|
callthunks_patch_builtin_calls();
|
|
|
|
/*
|
|
* Seal all functions that do not have their address taken.
|
|
*/
|
|
apply_seal_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end);
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* Patch to UP if other cpus not imminent. */
|
|
if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
|
|
uniproc_patched = true;
|
|
alternatives_smp_module_add(NULL, "core kernel",
|
|
__smp_locks, __smp_locks_end,
|
|
_text, _etext);
|
|
}
|
|
|
|
if (!uniproc_patched || num_possible_cpus() == 1) {
|
|
free_init_pages("SMP alternatives",
|
|
(unsigned long)__smp_locks,
|
|
(unsigned long)__smp_locks_end);
|
|
}
|
|
#endif
|
|
|
|
restart_nmi();
|
|
alternatives_patched = 1;
|
|
|
|
alt_reloc_selftest();
|
|
}
|
|
|
|
/**
|
|
* text_poke_early - Update instructions on a live kernel at boot time
|
|
* @addr: address to modify
|
|
* @opcode: source of the copy
|
|
* @len: length to copy
|
|
*
|
|
* When you use this code to patch more than one byte of an instruction
|
|
* you need to make sure that other CPUs cannot execute this code in parallel.
|
|
* Also no thread must be currently preempted in the middle of these
|
|
* instructions. And on the local CPU you need to be protected against NMI or
|
|
* MCE handlers seeing an inconsistent instruction while you patch.
|
|
*/
|
|
void __init_or_module text_poke_early(void *addr, const void *opcode,
|
|
size_t len)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (boot_cpu_has(X86_FEATURE_NX) &&
|
|
is_module_text_address((unsigned long)addr)) {
|
|
/*
|
|
* Modules text is marked initially as non-executable, so the
|
|
* code cannot be running and speculative code-fetches are
|
|
* prevented. Just change the code.
|
|
*/
|
|
memcpy(addr, opcode, len);
|
|
} else {
|
|
local_irq_save(flags);
|
|
memcpy(addr, opcode, len);
|
|
sync_core();
|
|
local_irq_restore(flags);
|
|
|
|
/*
|
|
* Could also do a CLFLUSH here to speed up CPU recovery; but
|
|
* that causes hangs on some VIA CPUs.
|
|
*/
|
|
}
|
|
}
|
|
|
|
typedef struct {
|
|
struct mm_struct *mm;
|
|
} temp_mm_state_t;
|
|
|
|
/*
|
|
* Using a temporary mm allows to set temporary mappings that are not accessible
|
|
* by other CPUs. Such mappings are needed to perform sensitive memory writes
|
|
* that override the kernel memory protections (e.g., W^X), without exposing the
|
|
* temporary page-table mappings that are required for these write operations to
|
|
* other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
|
|
* mapping is torn down.
|
|
*
|
|
* Context: The temporary mm needs to be used exclusively by a single core. To
|
|
* harden security IRQs must be disabled while the temporary mm is
|
|
* loaded, thereby preventing interrupt handler bugs from overriding
|
|
* the kernel memory protection.
|
|
*/
|
|
static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
|
|
{
|
|
temp_mm_state_t temp_state;
|
|
|
|
lockdep_assert_irqs_disabled();
|
|
|
|
/*
|
|
* Make sure not to be in TLB lazy mode, as otherwise we'll end up
|
|
* with a stale address space WITHOUT being in lazy mode after
|
|
* restoring the previous mm.
|
|
*/
|
|
if (this_cpu_read(cpu_tlbstate_shared.is_lazy))
|
|
leave_mm(smp_processor_id());
|
|
|
|
temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
|
|
switch_mm_irqs_off(NULL, mm, current);
|
|
|
|
/*
|
|
* If breakpoints are enabled, disable them while the temporary mm is
|
|
* used. Userspace might set up watchpoints on addresses that are used
|
|
* in the temporary mm, which would lead to wrong signals being sent or
|
|
* crashes.
|
|
*
|
|
* Note that breakpoints are not disabled selectively, which also causes
|
|
* kernel breakpoints (e.g., perf's) to be disabled. This might be
|
|
* undesirable, but still seems reasonable as the code that runs in the
|
|
* temporary mm should be short.
|
|
*/
|
|
if (hw_breakpoint_active())
|
|
hw_breakpoint_disable();
|
|
|
|
return temp_state;
|
|
}
|
|
|
|
static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
|
|
{
|
|
lockdep_assert_irqs_disabled();
|
|
switch_mm_irqs_off(NULL, prev_state.mm, current);
|
|
|
|
/*
|
|
* Restore the breakpoints if they were disabled before the temporary mm
|
|
* was loaded.
|
|
*/
|
|
if (hw_breakpoint_active())
|
|
hw_breakpoint_restore();
|
|
}
|
|
|
|
__ro_after_init struct mm_struct *poking_mm;
|
|
__ro_after_init unsigned long poking_addr;
|
|
|
|
static void text_poke_memcpy(void *dst, const void *src, size_t len)
|
|
{
|
|
memcpy(dst, src, len);
|
|
}
|
|
|
|
static void text_poke_memset(void *dst, const void *src, size_t len)
|
|
{
|
|
int c = *(const int *)src;
|
|
|
|
memset(dst, c, len);
|
|
}
|
|
|
|
typedef void text_poke_f(void *dst, const void *src, size_t len);
|
|
|
|
static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len)
|
|
{
|
|
bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
|
|
struct page *pages[2] = {NULL};
|
|
temp_mm_state_t prev;
|
|
unsigned long flags;
|
|
pte_t pte, *ptep;
|
|
spinlock_t *ptl;
|
|
pgprot_t pgprot;
|
|
|
|
/*
|
|
* While boot memory allocator is running we cannot use struct pages as
|
|
* they are not yet initialized. There is no way to recover.
|
|
*/
|
|
BUG_ON(!after_bootmem);
|
|
|
|
if (!core_kernel_text((unsigned long)addr)) {
|
|
pages[0] = vmalloc_to_page(addr);
|
|
if (cross_page_boundary)
|
|
pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
|
|
} else {
|
|
pages[0] = virt_to_page(addr);
|
|
WARN_ON(!PageReserved(pages[0]));
|
|
if (cross_page_boundary)
|
|
pages[1] = virt_to_page(addr + PAGE_SIZE);
|
|
}
|
|
/*
|
|
* If something went wrong, crash and burn since recovery paths are not
|
|
* implemented.
|
|
*/
|
|
BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
|
|
|
|
/*
|
|
* Map the page without the global bit, as TLB flushing is done with
|
|
* flush_tlb_mm_range(), which is intended for non-global PTEs.
|
|
*/
|
|
pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
|
|
|
|
/*
|
|
* The lock is not really needed, but this allows to avoid open-coding.
|
|
*/
|
|
ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
|
|
|
|
/*
|
|
* This must not fail; preallocated in poking_init().
|
|
*/
|
|
VM_BUG_ON(!ptep);
|
|
|
|
local_irq_save(flags);
|
|
|
|
pte = mk_pte(pages[0], pgprot);
|
|
set_pte_at(poking_mm, poking_addr, ptep, pte);
|
|
|
|
if (cross_page_boundary) {
|
|
pte = mk_pte(pages[1], pgprot);
|
|
set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
|
|
}
|
|
|
|
/*
|
|
* Loading the temporary mm behaves as a compiler barrier, which
|
|
* guarantees that the PTE will be set at the time memcpy() is done.
|
|
*/
|
|
prev = use_temporary_mm(poking_mm);
|
|
|
|
kasan_disable_current();
|
|
func((u8 *)poking_addr + offset_in_page(addr), src, len);
|
|
kasan_enable_current();
|
|
|
|
/*
|
|
* Ensure that the PTE is only cleared after the instructions of memcpy
|
|
* were issued by using a compiler barrier.
|
|
*/
|
|
barrier();
|
|
|
|
pte_clear(poking_mm, poking_addr, ptep);
|
|
if (cross_page_boundary)
|
|
pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
|
|
|
|
/*
|
|
* Loading the previous page-table hierarchy requires a serializing
|
|
* instruction that already allows the core to see the updated version.
|
|
* Xen-PV is assumed to serialize execution in a similar manner.
|
|
*/
|
|
unuse_temporary_mm(prev);
|
|
|
|
/*
|
|
* Flushing the TLB might involve IPIs, which would require enabled
|
|
* IRQs, but not if the mm is not used, as it is in this point.
|
|
*/
|
|
flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
|
|
(cross_page_boundary ? 2 : 1) * PAGE_SIZE,
|
|
PAGE_SHIFT, false);
|
|
|
|
if (func == text_poke_memcpy) {
|
|
/*
|
|
* If the text does not match what we just wrote then something is
|
|
* fundamentally screwy; there's nothing we can really do about that.
|
|
*/
|
|
BUG_ON(memcmp(addr, src, len));
|
|
}
|
|
|
|
local_irq_restore(flags);
|
|
pte_unmap_unlock(ptep, ptl);
|
|
return addr;
|
|
}
|
|
|
|
/**
|
|
* text_poke - Update instructions on a live kernel
|
|
* @addr: address to modify
|
|
* @opcode: source of the copy
|
|
* @len: length to copy
|
|
*
|
|
* Only atomic text poke/set should be allowed when not doing early patching.
|
|
* It means the size must be writable atomically and the address must be aligned
|
|
* in a way that permits an atomic write. It also makes sure we fit on a single
|
|
* page.
|
|
*
|
|
* Note that the caller must ensure that if the modified code is part of a
|
|
* module, the module would not be removed during poking. This can be achieved
|
|
* by registering a module notifier, and ordering module removal and patching
|
|
* through a mutex.
|
|
*/
|
|
void *text_poke(void *addr, const void *opcode, size_t len)
|
|
{
|
|
lockdep_assert_held(&text_mutex);
|
|
|
|
return __text_poke(text_poke_memcpy, addr, opcode, len);
|
|
}
|
|
|
|
/**
|
|
* text_poke_kgdb - Update instructions on a live kernel by kgdb
|
|
* @addr: address to modify
|
|
* @opcode: source of the copy
|
|
* @len: length to copy
|
|
*
|
|
* Only atomic text poke/set should be allowed when not doing early patching.
|
|
* It means the size must be writable atomically and the address must be aligned
|
|
* in a way that permits an atomic write. It also makes sure we fit on a single
|
|
* page.
|
|
*
|
|
* Context: should only be used by kgdb, which ensures no other core is running,
|
|
* despite the fact it does not hold the text_mutex.
|
|
*/
|
|
void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
|
|
{
|
|
return __text_poke(text_poke_memcpy, addr, opcode, len);
|
|
}
|
|
|
|
void *text_poke_copy_locked(void *addr, const void *opcode, size_t len,
|
|
bool core_ok)
|
|
{
|
|
unsigned long start = (unsigned long)addr;
|
|
size_t patched = 0;
|
|
|
|
if (WARN_ON_ONCE(!core_ok && core_kernel_text(start)))
|
|
return NULL;
|
|
|
|
while (patched < len) {
|
|
unsigned long ptr = start + patched;
|
|
size_t s;
|
|
|
|
s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
|
|
|
|
__text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s);
|
|
patched += s;
|
|
}
|
|
return addr;
|
|
}
|
|
|
|
/**
|
|
* text_poke_copy - Copy instructions into (an unused part of) RX memory
|
|
* @addr: address to modify
|
|
* @opcode: source of the copy
|
|
* @len: length to copy, could be more than 2x PAGE_SIZE
|
|
*
|
|
* Not safe against concurrent execution; useful for JITs to dump
|
|
* new code blocks into unused regions of RX memory. Can be used in
|
|
* conjunction with synchronize_rcu_tasks() to wait for existing
|
|
* execution to quiesce after having made sure no existing functions
|
|
* pointers are live.
|
|
*/
|
|
void *text_poke_copy(void *addr, const void *opcode, size_t len)
|
|
{
|
|
mutex_lock(&text_mutex);
|
|
addr = text_poke_copy_locked(addr, opcode, len, false);
|
|
mutex_unlock(&text_mutex);
|
|
return addr;
|
|
}
|
|
|
|
/**
|
|
* text_poke_set - memset into (an unused part of) RX memory
|
|
* @addr: address to modify
|
|
* @c: the byte to fill the area with
|
|
* @len: length to copy, could be more than 2x PAGE_SIZE
|
|
*
|
|
* This is useful to overwrite unused regions of RX memory with illegal
|
|
* instructions.
|
|
*/
|
|
void *text_poke_set(void *addr, int c, size_t len)
|
|
{
|
|
unsigned long start = (unsigned long)addr;
|
|
size_t patched = 0;
|
|
|
|
if (WARN_ON_ONCE(core_kernel_text(start)))
|
|
return NULL;
|
|
|
|
mutex_lock(&text_mutex);
|
|
while (patched < len) {
|
|
unsigned long ptr = start + patched;
|
|
size_t s;
|
|
|
|
s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
|
|
|
|
__text_poke(text_poke_memset, (void *)ptr, (void *)&c, s);
|
|
patched += s;
|
|
}
|
|
mutex_unlock(&text_mutex);
|
|
return addr;
|
|
}
|
|
|
|
static void do_sync_core(void *info)
|
|
{
|
|
sync_core();
|
|
}
|
|
|
|
void text_poke_sync(void)
|
|
{
|
|
on_each_cpu(do_sync_core, NULL, 1);
|
|
}
|
|
|
|
/*
|
|
* NOTE: crazy scheme to allow patching Jcc.d32 but not increase the size of
|
|
* this thing. When len == 6 everything is prefixed with 0x0f and we map
|
|
* opcode to Jcc.d8, using len to distinguish.
|
|
*/
|
|
struct text_poke_loc {
|
|
/* addr := _stext + rel_addr */
|
|
s32 rel_addr;
|
|
s32 disp;
|
|
u8 len;
|
|
u8 opcode;
|
|
const u8 text[POKE_MAX_OPCODE_SIZE];
|
|
/* see text_poke_bp_batch() */
|
|
u8 old;
|
|
};
|
|
|
|
struct bp_patching_desc {
|
|
struct text_poke_loc *vec;
|
|
int nr_entries;
|
|
atomic_t refs;
|
|
};
|
|
|
|
static struct bp_patching_desc bp_desc;
|
|
|
|
static __always_inline
|
|
struct bp_patching_desc *try_get_desc(void)
|
|
{
|
|
struct bp_patching_desc *desc = &bp_desc;
|
|
|
|
if (!raw_atomic_inc_not_zero(&desc->refs))
|
|
return NULL;
|
|
|
|
return desc;
|
|
}
|
|
|
|
static __always_inline void put_desc(void)
|
|
{
|
|
struct bp_patching_desc *desc = &bp_desc;
|
|
|
|
smp_mb__before_atomic();
|
|
raw_atomic_dec(&desc->refs);
|
|
}
|
|
|
|
static __always_inline void *text_poke_addr(struct text_poke_loc *tp)
|
|
{
|
|
return _stext + tp->rel_addr;
|
|
}
|
|
|
|
static __always_inline int patch_cmp(const void *key, const void *elt)
|
|
{
|
|
struct text_poke_loc *tp = (struct text_poke_loc *) elt;
|
|
|
|
if (key < text_poke_addr(tp))
|
|
return -1;
|
|
if (key > text_poke_addr(tp))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
noinstr int poke_int3_handler(struct pt_regs *regs)
|
|
{
|
|
struct bp_patching_desc *desc;
|
|
struct text_poke_loc *tp;
|
|
int ret = 0;
|
|
void *ip;
|
|
|
|
if (user_mode(regs))
|
|
return 0;
|
|
|
|
/*
|
|
* Having observed our INT3 instruction, we now must observe
|
|
* bp_desc with non-zero refcount:
|
|
*
|
|
* bp_desc.refs = 1 INT3
|
|
* WMB RMB
|
|
* write INT3 if (bp_desc.refs != 0)
|
|
*/
|
|
smp_rmb();
|
|
|
|
desc = try_get_desc();
|
|
if (!desc)
|
|
return 0;
|
|
|
|
/*
|
|
* Discount the INT3. See text_poke_bp_batch().
|
|
*/
|
|
ip = (void *) regs->ip - INT3_INSN_SIZE;
|
|
|
|
/*
|
|
* Skip the binary search if there is a single member in the vector.
|
|
*/
|
|
if (unlikely(desc->nr_entries > 1)) {
|
|
tp = __inline_bsearch(ip, desc->vec, desc->nr_entries,
|
|
sizeof(struct text_poke_loc),
|
|
patch_cmp);
|
|
if (!tp)
|
|
goto out_put;
|
|
} else {
|
|
tp = desc->vec;
|
|
if (text_poke_addr(tp) != ip)
|
|
goto out_put;
|
|
}
|
|
|
|
ip += tp->len;
|
|
|
|
switch (tp->opcode) {
|
|
case INT3_INSN_OPCODE:
|
|
/*
|
|
* Someone poked an explicit INT3, they'll want to handle it,
|
|
* do not consume.
|
|
*/
|
|
goto out_put;
|
|
|
|
case RET_INSN_OPCODE:
|
|
int3_emulate_ret(regs);
|
|
break;
|
|
|
|
case CALL_INSN_OPCODE:
|
|
int3_emulate_call(regs, (long)ip + tp->disp);
|
|
break;
|
|
|
|
case JMP32_INSN_OPCODE:
|
|
case JMP8_INSN_OPCODE:
|
|
int3_emulate_jmp(regs, (long)ip + tp->disp);
|
|
break;
|
|
|
|
case 0x70 ... 0x7f: /* Jcc */
|
|
int3_emulate_jcc(regs, tp->opcode & 0xf, (long)ip, tp->disp);
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
ret = 1;
|
|
|
|
out_put:
|
|
put_desc();
|
|
return ret;
|
|
}
|
|
|
|
#define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc))
|
|
static struct text_poke_loc tp_vec[TP_VEC_MAX];
|
|
static int tp_vec_nr;
|
|
|
|
/**
|
|
* text_poke_bp_batch() -- update instructions on live kernel on SMP
|
|
* @tp: vector of instructions to patch
|
|
* @nr_entries: number of entries in the vector
|
|
*
|
|
* Modify multi-byte instruction by using int3 breakpoint on SMP.
|
|
* We completely avoid stop_machine() here, and achieve the
|
|
* synchronization using int3 breakpoint.
|
|
*
|
|
* The way it is done:
|
|
* - For each entry in the vector:
|
|
* - add a int3 trap to the address that will be patched
|
|
* - sync cores
|
|
* - For each entry in the vector:
|
|
* - update all but the first byte of the patched range
|
|
* - sync cores
|
|
* - For each entry in the vector:
|
|
* - replace the first byte (int3) by the first byte of
|
|
* replacing opcode
|
|
* - sync cores
|
|
*/
|
|
static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
|
|
{
|
|
unsigned char int3 = INT3_INSN_OPCODE;
|
|
unsigned int i;
|
|
int do_sync;
|
|
|
|
lockdep_assert_held(&text_mutex);
|
|
|
|
bp_desc.vec = tp;
|
|
bp_desc.nr_entries = nr_entries;
|
|
|
|
/*
|
|
* Corresponds to the implicit memory barrier in try_get_desc() to
|
|
* ensure reading a non-zero refcount provides up to date bp_desc data.
|
|
*/
|
|
atomic_set_release(&bp_desc.refs, 1);
|
|
|
|
/*
|
|
* Function tracing can enable thousands of places that need to be
|
|
* updated. This can take quite some time, and with full kernel debugging
|
|
* enabled, this could cause the softlockup watchdog to trigger.
|
|
* This function gets called every 256 entries added to be patched.
|
|
* Call cond_resched() here to make sure that other tasks can get scheduled
|
|
* while processing all the functions being patched.
|
|
*/
|
|
cond_resched();
|
|
|
|
/*
|
|
* Corresponding read barrier in int3 notifier for making sure the
|
|
* nr_entries and handler are correctly ordered wrt. patching.
|
|
*/
|
|
smp_wmb();
|
|
|
|
/*
|
|
* First step: add a int3 trap to the address that will be patched.
|
|
*/
|
|
for (i = 0; i < nr_entries; i++) {
|
|
tp[i].old = *(u8 *)text_poke_addr(&tp[i]);
|
|
text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE);
|
|
}
|
|
|
|
text_poke_sync();
|
|
|
|
/*
|
|
* Second step: update all but the first byte of the patched range.
|
|
*/
|
|
for (do_sync = 0, i = 0; i < nr_entries; i++) {
|
|
u8 old[POKE_MAX_OPCODE_SIZE+1] = { tp[i].old, };
|
|
u8 _new[POKE_MAX_OPCODE_SIZE+1];
|
|
const u8 *new = tp[i].text;
|
|
int len = tp[i].len;
|
|
|
|
if (len - INT3_INSN_SIZE > 0) {
|
|
memcpy(old + INT3_INSN_SIZE,
|
|
text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
|
|
len - INT3_INSN_SIZE);
|
|
|
|
if (len == 6) {
|
|
_new[0] = 0x0f;
|
|
memcpy(_new + 1, new, 5);
|
|
new = _new;
|
|
}
|
|
|
|
text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
|
|
new + INT3_INSN_SIZE,
|
|
len - INT3_INSN_SIZE);
|
|
|
|
do_sync++;
|
|
}
|
|
|
|
/*
|
|
* Emit a perf event to record the text poke, primarily to
|
|
* support Intel PT decoding which must walk the executable code
|
|
* to reconstruct the trace. The flow up to here is:
|
|
* - write INT3 byte
|
|
* - IPI-SYNC
|
|
* - write instruction tail
|
|
* At this point the actual control flow will be through the
|
|
* INT3 and handler and not hit the old or new instruction.
|
|
* Intel PT outputs FUP/TIP packets for the INT3, so the flow
|
|
* can still be decoded. Subsequently:
|
|
* - emit RECORD_TEXT_POKE with the new instruction
|
|
* - IPI-SYNC
|
|
* - write first byte
|
|
* - IPI-SYNC
|
|
* So before the text poke event timestamp, the decoder will see
|
|
* either the old instruction flow or FUP/TIP of INT3. After the
|
|
* text poke event timestamp, the decoder will see either the
|
|
* new instruction flow or FUP/TIP of INT3. Thus decoders can
|
|
* use the timestamp as the point at which to modify the
|
|
* executable code.
|
|
* The old instruction is recorded so that the event can be
|
|
* processed forwards or backwards.
|
|
*/
|
|
perf_event_text_poke(text_poke_addr(&tp[i]), old, len, new, len);
|
|
}
|
|
|
|
if (do_sync) {
|
|
/*
|
|
* According to Intel, this core syncing is very likely
|
|
* not necessary and we'd be safe even without it. But
|
|
* better safe than sorry (plus there's not only Intel).
|
|
*/
|
|
text_poke_sync();
|
|
}
|
|
|
|
/*
|
|
* Third step: replace the first byte (int3) by the first byte of
|
|
* replacing opcode.
|
|
*/
|
|
for (do_sync = 0, i = 0; i < nr_entries; i++) {
|
|
u8 byte = tp[i].text[0];
|
|
|
|
if (tp[i].len == 6)
|
|
byte = 0x0f;
|
|
|
|
if (byte == INT3_INSN_OPCODE)
|
|
continue;
|
|
|
|
text_poke(text_poke_addr(&tp[i]), &byte, INT3_INSN_SIZE);
|
|
do_sync++;
|
|
}
|
|
|
|
if (do_sync)
|
|
text_poke_sync();
|
|
|
|
/*
|
|
* Remove and wait for refs to be zero.
|
|
*/
|
|
if (!atomic_dec_and_test(&bp_desc.refs))
|
|
atomic_cond_read_acquire(&bp_desc.refs, !VAL);
|
|
}
|
|
|
|
static void text_poke_loc_init(struct text_poke_loc *tp, void *addr,
|
|
const void *opcode, size_t len, const void *emulate)
|
|
{
|
|
struct insn insn;
|
|
int ret, i = 0;
|
|
|
|
if (len == 6)
|
|
i = 1;
|
|
memcpy((void *)tp->text, opcode+i, len-i);
|
|
if (!emulate)
|
|
emulate = opcode;
|
|
|
|
ret = insn_decode_kernel(&insn, emulate);
|
|
BUG_ON(ret < 0);
|
|
|
|
tp->rel_addr = addr - (void *)_stext;
|
|
tp->len = len;
|
|
tp->opcode = insn.opcode.bytes[0];
|
|
|
|
if (is_jcc32(&insn)) {
|
|
/*
|
|
* Map Jcc.d32 onto Jcc.d8 and use len to distinguish.
|
|
*/
|
|
tp->opcode = insn.opcode.bytes[1] - 0x10;
|
|
}
|
|
|
|
switch (tp->opcode) {
|
|
case RET_INSN_OPCODE:
|
|
case JMP32_INSN_OPCODE:
|
|
case JMP8_INSN_OPCODE:
|
|
/*
|
|
* Control flow instructions without implied execution of the
|
|
* next instruction can be padded with INT3.
|
|
*/
|
|
for (i = insn.length; i < len; i++)
|
|
BUG_ON(tp->text[i] != INT3_INSN_OPCODE);
|
|
break;
|
|
|
|
default:
|
|
BUG_ON(len != insn.length);
|
|
}
|
|
|
|
switch (tp->opcode) {
|
|
case INT3_INSN_OPCODE:
|
|
case RET_INSN_OPCODE:
|
|
break;
|
|
|
|
case CALL_INSN_OPCODE:
|
|
case JMP32_INSN_OPCODE:
|
|
case JMP8_INSN_OPCODE:
|
|
case 0x70 ... 0x7f: /* Jcc */
|
|
tp->disp = insn.immediate.value;
|
|
break;
|
|
|
|
default: /* assume NOP */
|
|
switch (len) {
|
|
case 2: /* NOP2 -- emulate as JMP8+0 */
|
|
BUG_ON(memcmp(emulate, x86_nops[len], len));
|
|
tp->opcode = JMP8_INSN_OPCODE;
|
|
tp->disp = 0;
|
|
break;
|
|
|
|
case 5: /* NOP5 -- emulate as JMP32+0 */
|
|
BUG_ON(memcmp(emulate, x86_nops[len], len));
|
|
tp->opcode = JMP32_INSN_OPCODE;
|
|
tp->disp = 0;
|
|
break;
|
|
|
|
default: /* unknown instruction */
|
|
BUG();
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We hard rely on the tp_vec being ordered; ensure this is so by flushing
|
|
* early if needed.
|
|
*/
|
|
static bool tp_order_fail(void *addr)
|
|
{
|
|
struct text_poke_loc *tp;
|
|
|
|
if (!tp_vec_nr)
|
|
return false;
|
|
|
|
if (!addr) /* force */
|
|
return true;
|
|
|
|
tp = &tp_vec[tp_vec_nr - 1];
|
|
if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static void text_poke_flush(void *addr)
|
|
{
|
|
if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) {
|
|
text_poke_bp_batch(tp_vec, tp_vec_nr);
|
|
tp_vec_nr = 0;
|
|
}
|
|
}
|
|
|
|
void text_poke_finish(void)
|
|
{
|
|
text_poke_flush(NULL);
|
|
}
|
|
|
|
void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate)
|
|
{
|
|
struct text_poke_loc *tp;
|
|
|
|
text_poke_flush(addr);
|
|
|
|
tp = &tp_vec[tp_vec_nr++];
|
|
text_poke_loc_init(tp, addr, opcode, len, emulate);
|
|
}
|
|
|
|
/**
|
|
* text_poke_bp() -- update instructions on live kernel on SMP
|
|
* @addr: address to patch
|
|
* @opcode: opcode of new instruction
|
|
* @len: length to copy
|
|
* @emulate: instruction to be emulated
|
|
*
|
|
* Update a single instruction with the vector in the stack, avoiding
|
|
* dynamically allocated memory. This function should be used when it is
|
|
* not possible to allocate memory.
|
|
*/
|
|
void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate)
|
|
{
|
|
struct text_poke_loc tp;
|
|
|
|
text_poke_loc_init(&tp, addr, opcode, len, emulate);
|
|
text_poke_bp_batch(&tp, 1);
|
|
}
|