linux/drivers/powercap/dtpm_cpu.c
Daniel Lezcano 7a89d7eacf powercap/drivers/dtpm: Simplify the dtpm table
The dtpm table is an array of pointers, that forces the user of the
table to define initdata along with the declaration of the table
entry. It is more efficient to create an array of dtpm structure, so
the declaration of the table entry can be done by initializing the
different fields.

Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Link: https://lore.kernel.org/r/20210312130411.29833-3-daniel.lezcano@linaro.org
2021-10-21 16:03:31 +02:00

246 lines
5.7 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright 2020 Linaro Limited
*
* Author: Daniel Lezcano <daniel.lezcano@linaro.org>
*
* The DTPM CPU is based on the energy model. It hooks the CPU in the
* DTPM tree which in turns update the power number by propagating the
* power number from the CPU energy model information to the parents.
*
* The association between the power and the performance state, allows
* to set the power of the CPU at the OPP granularity.
*
* The CPU hotplug is supported and the power numbers will be updated
* if a CPU is hot plugged / unplugged.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/cpumask.h>
#include <linux/cpufreq.h>
#include <linux/cpuhotplug.h>
#include <linux/dtpm.h>
#include <linux/energy_model.h>
#include <linux/pm_qos.h>
#include <linux/slab.h>
#include <linux/units.h>
static DEFINE_PER_CPU(struct dtpm *, dtpm_per_cpu);
struct dtpm_cpu {
struct freq_qos_request qos_req;
int cpu;
};
static u64 set_pd_power_limit(struct dtpm *dtpm, u64 power_limit)
{
struct dtpm_cpu *dtpm_cpu = dtpm->private;
struct em_perf_domain *pd = em_cpu_get(dtpm_cpu->cpu);
struct cpumask cpus;
unsigned long freq;
u64 power;
int i, nr_cpus;
cpumask_and(&cpus, cpu_online_mask, to_cpumask(pd->cpus));
nr_cpus = cpumask_weight(&cpus);
for (i = 0; i < pd->nr_perf_states; i++) {
power = pd->table[i].power * MICROWATT_PER_MILLIWATT * nr_cpus;
if (power > power_limit)
break;
}
freq = pd->table[i - 1].frequency;
freq_qos_update_request(&dtpm_cpu->qos_req, freq);
power_limit = pd->table[i - 1].power *
MICROWATT_PER_MILLIWATT * nr_cpus;
return power_limit;
}
static u64 get_pd_power_uw(struct dtpm *dtpm)
{
struct dtpm_cpu *dtpm_cpu = dtpm->private;
struct em_perf_domain *pd;
struct cpumask cpus;
unsigned long freq;
int i, nr_cpus;
pd = em_cpu_get(dtpm_cpu->cpu);
freq = cpufreq_quick_get(dtpm_cpu->cpu);
cpumask_and(&cpus, cpu_online_mask, to_cpumask(pd->cpus));
nr_cpus = cpumask_weight(&cpus);
for (i = 0; i < pd->nr_perf_states; i++) {
if (pd->table[i].frequency < freq)
continue;
return pd->table[i].power *
MICROWATT_PER_MILLIWATT * nr_cpus;
}
return 0;
}
static int update_pd_power_uw(struct dtpm *dtpm)
{
struct dtpm_cpu *dtpm_cpu = dtpm->private;
struct em_perf_domain *em = em_cpu_get(dtpm_cpu->cpu);
struct cpumask cpus;
int nr_cpus;
cpumask_and(&cpus, cpu_online_mask, to_cpumask(em->cpus));
nr_cpus = cpumask_weight(&cpus);
dtpm->power_min = em->table[0].power;
dtpm->power_min *= MICROWATT_PER_MILLIWATT;
dtpm->power_min *= nr_cpus;
dtpm->power_max = em->table[em->nr_perf_states - 1].power;
dtpm->power_max *= MICROWATT_PER_MILLIWATT;
dtpm->power_max *= nr_cpus;
return 0;
}
static void pd_release(struct dtpm *dtpm)
{
struct dtpm_cpu *dtpm_cpu = dtpm->private;
if (freq_qos_request_active(&dtpm_cpu->qos_req))
freq_qos_remove_request(&dtpm_cpu->qos_req);
kfree(dtpm_cpu);
}
static struct dtpm_ops dtpm_ops = {
.set_power_uw = set_pd_power_limit,
.get_power_uw = get_pd_power_uw,
.update_power_uw = update_pd_power_uw,
.release = pd_release,
};
static int cpuhp_dtpm_cpu_offline(unsigned int cpu)
{
struct em_perf_domain *pd;
struct dtpm *dtpm;
pd = em_cpu_get(cpu);
if (!pd)
return -EINVAL;
dtpm = per_cpu(dtpm_per_cpu, cpu);
return dtpm_update_power(dtpm);
}
static int cpuhp_dtpm_cpu_online(unsigned int cpu)
{
struct dtpm *dtpm;
struct dtpm_cpu *dtpm_cpu;
struct cpufreq_policy *policy;
struct em_perf_domain *pd;
char name[CPUFREQ_NAME_LEN];
int ret = -ENOMEM;
policy = cpufreq_cpu_get(cpu);
if (!policy)
return 0;
pd = em_cpu_get(cpu);
if (!pd)
return -EINVAL;
dtpm = per_cpu(dtpm_per_cpu, cpu);
if (dtpm)
return dtpm_update_power(dtpm);
dtpm = dtpm_alloc(&dtpm_ops);
if (!dtpm)
return -EINVAL;
dtpm_cpu = kzalloc(sizeof(*dtpm_cpu), GFP_KERNEL);
if (!dtpm_cpu)
goto out_kfree_dtpm;
dtpm->private = dtpm_cpu;
dtpm_cpu->cpu = cpu;
for_each_cpu(cpu, policy->related_cpus)
per_cpu(dtpm_per_cpu, cpu) = dtpm;
snprintf(name, sizeof(name), "cpu%d-cpufreq", dtpm_cpu->cpu);
ret = dtpm_register(name, dtpm, NULL);
if (ret)
goto out_kfree_dtpm_cpu;
ret = freq_qos_add_request(&policy->constraints,
&dtpm_cpu->qos_req, FREQ_QOS_MAX,
pd->table[pd->nr_perf_states - 1].frequency);
if (ret)
goto out_dtpm_unregister;
return 0;
out_dtpm_unregister:
dtpm_unregister(dtpm);
dtpm_cpu = NULL;
dtpm = NULL;
out_kfree_dtpm_cpu:
for_each_cpu(cpu, policy->related_cpus)
per_cpu(dtpm_per_cpu, cpu) = NULL;
kfree(dtpm_cpu);
out_kfree_dtpm:
kfree(dtpm);
return ret;
}
static int __init dtpm_cpu_init(void)
{
int ret;
/*
* The callbacks at CPU hotplug time are calling
* dtpm_update_power() which in turns calls update_pd_power().
*
* The function update_pd_power() uses the online mask to
* figure out the power consumption limits.
*
* At CPUHP_AP_ONLINE_DYN, the CPU is present in the CPU
* online mask when the cpuhp_dtpm_cpu_online function is
* called, but the CPU is still in the online mask for the
* tear down callback. So the power can not be updated when
* the CPU is unplugged.
*
* At CPUHP_AP_DTPM_CPU_DEAD, the situation is the opposite as
* above. The CPU online mask is not up to date when the CPU
* is plugged in.
*
* For this reason, we need to call the online and offline
* callbacks at different moments when the CPU online mask is
* consistent with the power numbers we want to update.
*/
ret = cpuhp_setup_state(CPUHP_AP_DTPM_CPU_DEAD, "dtpm_cpu:offline",
NULL, cpuhp_dtpm_cpu_offline);
if (ret < 0)
return ret;
ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "dtpm_cpu:online",
cpuhp_dtpm_cpu_online, NULL);
if (ret < 0)
return ret;
return 0;
}
DTPM_DECLARE(dtpm_cpu, dtpm_cpu_init);