1cd927ad6f
After being merged, user_events become more visible to a wider audience that have concerns with the current API. It is too late to fix this for this release, but instead of a full revert, just mark it as BROKEN (which prevents it from being selected in make config). Then we can work finding a better API. If that fails, then it will need to be completely reverted. To not have the code silently bitrot, still allow building it with COMPILE_TEST. And to prevent the uapi header from being installed, then later changed, and then have an old distro user space see the old version, move the header file out of the uapi directory. Surround the include with CONFIG_COMPILE_TEST to the current location, but when the BROKEN tag is taken off, it will use the uapi directory, and fail to compile. This is a good way to remind us to move the header back. Link: https://lore.kernel.org/all/20220330155835.5e1f6669@gandalf.local.home Link: https://lkml.kernel.org/r/20220330201755.29319-1-mathieu.desnoyers@efficios.com Suggested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1107 lines
36 KiB
Plaintext
1107 lines
36 KiB
Plaintext
# SPDX-License-Identifier: GPL-2.0-only
|
|
#
|
|
# Architectures that offer an FUNCTION_TRACER implementation should
|
|
# select HAVE_FUNCTION_TRACER:
|
|
#
|
|
|
|
config USER_STACKTRACE_SUPPORT
|
|
bool
|
|
|
|
config NOP_TRACER
|
|
bool
|
|
|
|
config HAVE_RETHOOK
|
|
bool
|
|
|
|
config RETHOOK
|
|
bool
|
|
depends on HAVE_RETHOOK
|
|
help
|
|
Enable generic return hooking feature. This is an internal
|
|
API, which will be used by other function-entry hooking
|
|
features like fprobe and kprobes.
|
|
|
|
config HAVE_FUNCTION_TRACER
|
|
bool
|
|
help
|
|
See Documentation/trace/ftrace-design.rst
|
|
|
|
config HAVE_FUNCTION_GRAPH_TRACER
|
|
bool
|
|
help
|
|
See Documentation/trace/ftrace-design.rst
|
|
|
|
config HAVE_DYNAMIC_FTRACE
|
|
bool
|
|
help
|
|
See Documentation/trace/ftrace-design.rst
|
|
|
|
config HAVE_DYNAMIC_FTRACE_WITH_REGS
|
|
bool
|
|
|
|
config HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
|
|
bool
|
|
|
|
config HAVE_DYNAMIC_FTRACE_WITH_ARGS
|
|
bool
|
|
help
|
|
If this is set, then arguments and stack can be found from
|
|
the pt_regs passed into the function callback regs parameter
|
|
by default, even without setting the REGS flag in the ftrace_ops.
|
|
This allows for use of regs_get_kernel_argument() and
|
|
kernel_stack_pointer().
|
|
|
|
config HAVE_FTRACE_MCOUNT_RECORD
|
|
bool
|
|
help
|
|
See Documentation/trace/ftrace-design.rst
|
|
|
|
config HAVE_SYSCALL_TRACEPOINTS
|
|
bool
|
|
help
|
|
See Documentation/trace/ftrace-design.rst
|
|
|
|
config HAVE_FENTRY
|
|
bool
|
|
help
|
|
Arch supports the gcc options -pg with -mfentry
|
|
|
|
config HAVE_NOP_MCOUNT
|
|
bool
|
|
help
|
|
Arch supports the gcc options -pg with -mrecord-mcount and -nop-mcount
|
|
|
|
config HAVE_OBJTOOL_MCOUNT
|
|
bool
|
|
help
|
|
Arch supports objtool --mcount
|
|
|
|
config HAVE_C_RECORDMCOUNT
|
|
bool
|
|
help
|
|
C version of recordmcount available?
|
|
|
|
config HAVE_BUILDTIME_MCOUNT_SORT
|
|
bool
|
|
help
|
|
An architecture selects this if it sorts the mcount_loc section
|
|
at build time.
|
|
|
|
config BUILDTIME_MCOUNT_SORT
|
|
bool
|
|
default y
|
|
depends on HAVE_BUILDTIME_MCOUNT_SORT && DYNAMIC_FTRACE
|
|
help
|
|
Sort the mcount_loc section at build time.
|
|
|
|
config TRACER_MAX_TRACE
|
|
bool
|
|
|
|
config TRACE_CLOCK
|
|
bool
|
|
|
|
config RING_BUFFER
|
|
bool
|
|
select TRACE_CLOCK
|
|
select IRQ_WORK
|
|
|
|
config EVENT_TRACING
|
|
select CONTEXT_SWITCH_TRACER
|
|
select GLOB
|
|
bool
|
|
|
|
config CONTEXT_SWITCH_TRACER
|
|
bool
|
|
|
|
config RING_BUFFER_ALLOW_SWAP
|
|
bool
|
|
help
|
|
Allow the use of ring_buffer_swap_cpu.
|
|
Adds a very slight overhead to tracing when enabled.
|
|
|
|
config PREEMPTIRQ_TRACEPOINTS
|
|
bool
|
|
depends on TRACE_PREEMPT_TOGGLE || TRACE_IRQFLAGS
|
|
select TRACING
|
|
default y
|
|
help
|
|
Create preempt/irq toggle tracepoints if needed, so that other parts
|
|
of the kernel can use them to generate or add hooks to them.
|
|
|
|
# All tracer options should select GENERIC_TRACER. For those options that are
|
|
# enabled by all tracers (context switch and event tracer) they select TRACING.
|
|
# This allows those options to appear when no other tracer is selected. But the
|
|
# options do not appear when something else selects it. We need the two options
|
|
# GENERIC_TRACER and TRACING to avoid circular dependencies to accomplish the
|
|
# hiding of the automatic options.
|
|
|
|
config TRACING
|
|
bool
|
|
select RING_BUFFER
|
|
select STACKTRACE if STACKTRACE_SUPPORT
|
|
select TRACEPOINTS
|
|
select NOP_TRACER
|
|
select BINARY_PRINTF
|
|
select EVENT_TRACING
|
|
select TRACE_CLOCK
|
|
|
|
config GENERIC_TRACER
|
|
bool
|
|
select TRACING
|
|
|
|
#
|
|
# Minimum requirements an architecture has to meet for us to
|
|
# be able to offer generic tracing facilities:
|
|
#
|
|
config TRACING_SUPPORT
|
|
bool
|
|
depends on TRACE_IRQFLAGS_SUPPORT
|
|
depends on STACKTRACE_SUPPORT
|
|
default y
|
|
|
|
menuconfig FTRACE
|
|
bool "Tracers"
|
|
depends on TRACING_SUPPORT
|
|
default y if DEBUG_KERNEL
|
|
help
|
|
Enable the kernel tracing infrastructure.
|
|
|
|
if FTRACE
|
|
|
|
config BOOTTIME_TRACING
|
|
bool "Boot-time Tracing support"
|
|
depends on TRACING
|
|
select BOOT_CONFIG
|
|
help
|
|
Enable developer to setup ftrace subsystem via supplemental
|
|
kernel cmdline at boot time for debugging (tracing) driver
|
|
initialization and boot process.
|
|
|
|
config FUNCTION_TRACER
|
|
bool "Kernel Function Tracer"
|
|
depends on HAVE_FUNCTION_TRACER
|
|
select KALLSYMS
|
|
select GENERIC_TRACER
|
|
select CONTEXT_SWITCH_TRACER
|
|
select GLOB
|
|
select TASKS_RCU if PREEMPTION
|
|
select TASKS_RUDE_RCU
|
|
help
|
|
Enable the kernel to trace every kernel function. This is done
|
|
by using a compiler feature to insert a small, 5-byte No-Operation
|
|
instruction at the beginning of every kernel function, which NOP
|
|
sequence is then dynamically patched into a tracer call when
|
|
tracing is enabled by the administrator. If it's runtime disabled
|
|
(the bootup default), then the overhead of the instructions is very
|
|
small and not measurable even in micro-benchmarks.
|
|
|
|
config FUNCTION_GRAPH_TRACER
|
|
bool "Kernel Function Graph Tracer"
|
|
depends on HAVE_FUNCTION_GRAPH_TRACER
|
|
depends on FUNCTION_TRACER
|
|
depends on !X86_32 || !CC_OPTIMIZE_FOR_SIZE
|
|
default y
|
|
help
|
|
Enable the kernel to trace a function at both its return
|
|
and its entry.
|
|
Its first purpose is to trace the duration of functions and
|
|
draw a call graph for each thread with some information like
|
|
the return value. This is done by setting the current return
|
|
address on the current task structure into a stack of calls.
|
|
|
|
config DYNAMIC_FTRACE
|
|
bool "enable/disable function tracing dynamically"
|
|
depends on FUNCTION_TRACER
|
|
depends on HAVE_DYNAMIC_FTRACE
|
|
default y
|
|
help
|
|
This option will modify all the calls to function tracing
|
|
dynamically (will patch them out of the binary image and
|
|
replace them with a No-Op instruction) on boot up. During
|
|
compile time, a table is made of all the locations that ftrace
|
|
can function trace, and this table is linked into the kernel
|
|
image. When this is enabled, functions can be individually
|
|
enabled, and the functions not enabled will not affect
|
|
performance of the system.
|
|
|
|
See the files in /sys/kernel/debug/tracing:
|
|
available_filter_functions
|
|
set_ftrace_filter
|
|
set_ftrace_notrace
|
|
|
|
This way a CONFIG_FUNCTION_TRACER kernel is slightly larger, but
|
|
otherwise has native performance as long as no tracing is active.
|
|
|
|
config DYNAMIC_FTRACE_WITH_REGS
|
|
def_bool y
|
|
depends on DYNAMIC_FTRACE
|
|
depends on HAVE_DYNAMIC_FTRACE_WITH_REGS
|
|
|
|
config DYNAMIC_FTRACE_WITH_DIRECT_CALLS
|
|
def_bool y
|
|
depends on DYNAMIC_FTRACE_WITH_REGS
|
|
depends on HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
|
|
|
|
config DYNAMIC_FTRACE_WITH_ARGS
|
|
def_bool y
|
|
depends on DYNAMIC_FTRACE
|
|
depends on HAVE_DYNAMIC_FTRACE_WITH_ARGS
|
|
|
|
config FPROBE
|
|
bool "Kernel Function Probe (fprobe)"
|
|
depends on FUNCTION_TRACER
|
|
depends on DYNAMIC_FTRACE_WITH_REGS
|
|
depends on HAVE_RETHOOK
|
|
select RETHOOK
|
|
default n
|
|
help
|
|
This option enables kernel function probe (fprobe) based on ftrace.
|
|
The fprobe is similar to kprobes, but probes only for kernel function
|
|
entries and exits. This also can probe multiple functions by one
|
|
fprobe.
|
|
|
|
If unsure, say N.
|
|
|
|
config FUNCTION_PROFILER
|
|
bool "Kernel function profiler"
|
|
depends on FUNCTION_TRACER
|
|
default n
|
|
help
|
|
This option enables the kernel function profiler. A file is created
|
|
in debugfs called function_profile_enabled which defaults to zero.
|
|
When a 1 is echoed into this file profiling begins, and when a
|
|
zero is entered, profiling stops. A "functions" file is created in
|
|
the trace_stat directory; this file shows the list of functions that
|
|
have been hit and their counters.
|
|
|
|
If in doubt, say N.
|
|
|
|
config STACK_TRACER
|
|
bool "Trace max stack"
|
|
depends on HAVE_FUNCTION_TRACER
|
|
select FUNCTION_TRACER
|
|
select STACKTRACE
|
|
select KALLSYMS
|
|
help
|
|
This special tracer records the maximum stack footprint of the
|
|
kernel and displays it in /sys/kernel/debug/tracing/stack_trace.
|
|
|
|
This tracer works by hooking into every function call that the
|
|
kernel executes, and keeping a maximum stack depth value and
|
|
stack-trace saved. If this is configured with DYNAMIC_FTRACE
|
|
then it will not have any overhead while the stack tracer
|
|
is disabled.
|
|
|
|
To enable the stack tracer on bootup, pass in 'stacktrace'
|
|
on the kernel command line.
|
|
|
|
The stack tracer can also be enabled or disabled via the
|
|
sysctl kernel.stack_tracer_enabled
|
|
|
|
Say N if unsure.
|
|
|
|
config TRACE_PREEMPT_TOGGLE
|
|
bool
|
|
help
|
|
Enables hooks which will be called when preemption is first disabled,
|
|
and last enabled.
|
|
|
|
config IRQSOFF_TRACER
|
|
bool "Interrupts-off Latency Tracer"
|
|
default n
|
|
depends on TRACE_IRQFLAGS_SUPPORT
|
|
select TRACE_IRQFLAGS
|
|
select GENERIC_TRACER
|
|
select TRACER_MAX_TRACE
|
|
select RING_BUFFER_ALLOW_SWAP
|
|
select TRACER_SNAPSHOT
|
|
select TRACER_SNAPSHOT_PER_CPU_SWAP
|
|
help
|
|
This option measures the time spent in irqs-off critical
|
|
sections, with microsecond accuracy.
|
|
|
|
The default measurement method is a maximum search, which is
|
|
disabled by default and can be runtime (re-)started
|
|
via:
|
|
|
|
echo 0 > /sys/kernel/debug/tracing/tracing_max_latency
|
|
|
|
(Note that kernel size and overhead increase with this option
|
|
enabled. This option and the preempt-off timing option can be
|
|
used together or separately.)
|
|
|
|
config PREEMPT_TRACER
|
|
bool "Preemption-off Latency Tracer"
|
|
default n
|
|
depends on PREEMPTION
|
|
select GENERIC_TRACER
|
|
select TRACER_MAX_TRACE
|
|
select RING_BUFFER_ALLOW_SWAP
|
|
select TRACER_SNAPSHOT
|
|
select TRACER_SNAPSHOT_PER_CPU_SWAP
|
|
select TRACE_PREEMPT_TOGGLE
|
|
help
|
|
This option measures the time spent in preemption-off critical
|
|
sections, with microsecond accuracy.
|
|
|
|
The default measurement method is a maximum search, which is
|
|
disabled by default and can be runtime (re-)started
|
|
via:
|
|
|
|
echo 0 > /sys/kernel/debug/tracing/tracing_max_latency
|
|
|
|
(Note that kernel size and overhead increase with this option
|
|
enabled. This option and the irqs-off timing option can be
|
|
used together or separately.)
|
|
|
|
config SCHED_TRACER
|
|
bool "Scheduling Latency Tracer"
|
|
select GENERIC_TRACER
|
|
select CONTEXT_SWITCH_TRACER
|
|
select TRACER_MAX_TRACE
|
|
select TRACER_SNAPSHOT
|
|
help
|
|
This tracer tracks the latency of the highest priority task
|
|
to be scheduled in, starting from the point it has woken up.
|
|
|
|
config HWLAT_TRACER
|
|
bool "Tracer to detect hardware latencies (like SMIs)"
|
|
select GENERIC_TRACER
|
|
help
|
|
This tracer, when enabled will create one or more kernel threads,
|
|
depending on what the cpumask file is set to, which each thread
|
|
spinning in a loop looking for interruptions caused by
|
|
something other than the kernel. For example, if a
|
|
System Management Interrupt (SMI) takes a noticeable amount of
|
|
time, this tracer will detect it. This is useful for testing
|
|
if a system is reliable for Real Time tasks.
|
|
|
|
Some files are created in the tracing directory when this
|
|
is enabled:
|
|
|
|
hwlat_detector/width - time in usecs for how long to spin for
|
|
hwlat_detector/window - time in usecs between the start of each
|
|
iteration
|
|
|
|
A kernel thread is created that will spin with interrupts disabled
|
|
for "width" microseconds in every "window" cycle. It will not spin
|
|
for "window - width" microseconds, where the system can
|
|
continue to operate.
|
|
|
|
The output will appear in the trace and trace_pipe files.
|
|
|
|
When the tracer is not running, it has no affect on the system,
|
|
but when it is running, it can cause the system to be
|
|
periodically non responsive. Do not run this tracer on a
|
|
production system.
|
|
|
|
To enable this tracer, echo in "hwlat" into the current_tracer
|
|
file. Every time a latency is greater than tracing_thresh, it will
|
|
be recorded into the ring buffer.
|
|
|
|
config OSNOISE_TRACER
|
|
bool "OS Noise tracer"
|
|
select GENERIC_TRACER
|
|
help
|
|
In the context of high-performance computing (HPC), the Operating
|
|
System Noise (osnoise) refers to the interference experienced by an
|
|
application due to activities inside the operating system. In the
|
|
context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread
|
|
can cause noise to the system. Moreover, hardware-related jobs can
|
|
also cause noise, for example, via SMIs.
|
|
|
|
The osnoise tracer leverages the hwlat_detector by running a similar
|
|
loop with preemption, SoftIRQs and IRQs enabled, thus allowing all
|
|
the sources of osnoise during its execution. The osnoise tracer takes
|
|
note of the entry and exit point of any source of interferences,
|
|
increasing a per-cpu interference counter. It saves an interference
|
|
counter for each source of interference. The interference counter for
|
|
NMI, IRQs, SoftIRQs, and threads is increased anytime the tool
|
|
observes these interferences' entry events. When a noise happens
|
|
without any interference from the operating system level, the
|
|
hardware noise counter increases, pointing to a hardware-related
|
|
noise. In this way, osnoise can account for any source of
|
|
interference. At the end of the period, the osnoise tracer prints
|
|
the sum of all noise, the max single noise, the percentage of CPU
|
|
available for the thread, and the counters for the noise sources.
|
|
|
|
In addition to the tracer, a set of tracepoints were added to
|
|
facilitate the identification of the osnoise source.
|
|
|
|
The output will appear in the trace and trace_pipe files.
|
|
|
|
To enable this tracer, echo in "osnoise" into the current_tracer
|
|
file.
|
|
|
|
config TIMERLAT_TRACER
|
|
bool "Timerlat tracer"
|
|
select OSNOISE_TRACER
|
|
select GENERIC_TRACER
|
|
help
|
|
The timerlat tracer aims to help the preemptive kernel developers
|
|
to find sources of wakeup latencies of real-time threads.
|
|
|
|
The tracer creates a per-cpu kernel thread with real-time priority.
|
|
The tracer thread sets a periodic timer to wakeup itself, and goes
|
|
to sleep waiting for the timer to fire. At the wakeup, the thread
|
|
then computes a wakeup latency value as the difference between
|
|
the current time and the absolute time that the timer was set
|
|
to expire.
|
|
|
|
The tracer prints two lines at every activation. The first is the
|
|
timer latency observed at the hardirq context before the
|
|
activation of the thread. The second is the timer latency observed
|
|
by the thread, which is the same level that cyclictest reports. The
|
|
ACTIVATION ID field serves to relate the irq execution to its
|
|
respective thread execution.
|
|
|
|
The tracer is build on top of osnoise tracer, and the osnoise:
|
|
events can be used to trace the source of interference from NMI,
|
|
IRQs and other threads. It also enables the capture of the
|
|
stacktrace at the IRQ context, which helps to identify the code
|
|
path that can cause thread delay.
|
|
|
|
config MMIOTRACE
|
|
bool "Memory mapped IO tracing"
|
|
depends on HAVE_MMIOTRACE_SUPPORT && PCI
|
|
select GENERIC_TRACER
|
|
help
|
|
Mmiotrace traces Memory Mapped I/O access and is meant for
|
|
debugging and reverse engineering. It is called from the ioremap
|
|
implementation and works via page faults. Tracing is disabled by
|
|
default and can be enabled at run-time.
|
|
|
|
See Documentation/trace/mmiotrace.rst.
|
|
If you are not helping to develop drivers, say N.
|
|
|
|
config ENABLE_DEFAULT_TRACERS
|
|
bool "Trace process context switches and events"
|
|
depends on !GENERIC_TRACER
|
|
select TRACING
|
|
help
|
|
This tracer hooks to various trace points in the kernel,
|
|
allowing the user to pick and choose which trace point they
|
|
want to trace. It also includes the sched_switch tracer plugin.
|
|
|
|
config FTRACE_SYSCALLS
|
|
bool "Trace syscalls"
|
|
depends on HAVE_SYSCALL_TRACEPOINTS
|
|
select GENERIC_TRACER
|
|
select KALLSYMS
|
|
help
|
|
Basic tracer to catch the syscall entry and exit events.
|
|
|
|
config TRACER_SNAPSHOT
|
|
bool "Create a snapshot trace buffer"
|
|
select TRACER_MAX_TRACE
|
|
help
|
|
Allow tracing users to take snapshot of the current buffer using the
|
|
ftrace interface, e.g.:
|
|
|
|
echo 1 > /sys/kernel/debug/tracing/snapshot
|
|
cat snapshot
|
|
|
|
config TRACER_SNAPSHOT_PER_CPU_SWAP
|
|
bool "Allow snapshot to swap per CPU"
|
|
depends on TRACER_SNAPSHOT
|
|
select RING_BUFFER_ALLOW_SWAP
|
|
help
|
|
Allow doing a snapshot of a single CPU buffer instead of a
|
|
full swap (all buffers). If this is set, then the following is
|
|
allowed:
|
|
|
|
echo 1 > /sys/kernel/debug/tracing/per_cpu/cpu2/snapshot
|
|
|
|
After which, only the tracing buffer for CPU 2 was swapped with
|
|
the main tracing buffer, and the other CPU buffers remain the same.
|
|
|
|
When this is enabled, this adds a little more overhead to the
|
|
trace recording, as it needs to add some checks to synchronize
|
|
recording with swaps. But this does not affect the performance
|
|
of the overall system. This is enabled by default when the preempt
|
|
or irq latency tracers are enabled, as those need to swap as well
|
|
and already adds the overhead (plus a lot more).
|
|
|
|
config TRACE_BRANCH_PROFILING
|
|
bool
|
|
select GENERIC_TRACER
|
|
|
|
choice
|
|
prompt "Branch Profiling"
|
|
default BRANCH_PROFILE_NONE
|
|
help
|
|
The branch profiling is a software profiler. It will add hooks
|
|
into the C conditionals to test which path a branch takes.
|
|
|
|
The likely/unlikely profiler only looks at the conditions that
|
|
are annotated with a likely or unlikely macro.
|
|
|
|
The "all branch" profiler will profile every if-statement in the
|
|
kernel. This profiler will also enable the likely/unlikely
|
|
profiler.
|
|
|
|
Either of the above profilers adds a bit of overhead to the system.
|
|
If unsure, choose "No branch profiling".
|
|
|
|
config BRANCH_PROFILE_NONE
|
|
bool "No branch profiling"
|
|
help
|
|
No branch profiling. Branch profiling adds a bit of overhead.
|
|
Only enable it if you want to analyse the branching behavior.
|
|
Otherwise keep it disabled.
|
|
|
|
config PROFILE_ANNOTATED_BRANCHES
|
|
bool "Trace likely/unlikely profiler"
|
|
select TRACE_BRANCH_PROFILING
|
|
help
|
|
This tracer profiles all likely and unlikely macros
|
|
in the kernel. It will display the results in:
|
|
|
|
/sys/kernel/debug/tracing/trace_stat/branch_annotated
|
|
|
|
Note: this will add a significant overhead; only turn this
|
|
on if you need to profile the system's use of these macros.
|
|
|
|
config PROFILE_ALL_BRANCHES
|
|
bool "Profile all if conditionals" if !FORTIFY_SOURCE
|
|
select TRACE_BRANCH_PROFILING
|
|
help
|
|
This tracer profiles all branch conditions. Every if ()
|
|
taken in the kernel is recorded whether it hit or miss.
|
|
The results will be displayed in:
|
|
|
|
/sys/kernel/debug/tracing/trace_stat/branch_all
|
|
|
|
This option also enables the likely/unlikely profiler.
|
|
|
|
This configuration, when enabled, will impose a great overhead
|
|
on the system. This should only be enabled when the system
|
|
is to be analyzed in much detail.
|
|
endchoice
|
|
|
|
config TRACING_BRANCHES
|
|
bool
|
|
help
|
|
Selected by tracers that will trace the likely and unlikely
|
|
conditions. This prevents the tracers themselves from being
|
|
profiled. Profiling the tracing infrastructure can only happen
|
|
when the likelys and unlikelys are not being traced.
|
|
|
|
config BRANCH_TRACER
|
|
bool "Trace likely/unlikely instances"
|
|
depends on TRACE_BRANCH_PROFILING
|
|
select TRACING_BRANCHES
|
|
help
|
|
This traces the events of likely and unlikely condition
|
|
calls in the kernel. The difference between this and the
|
|
"Trace likely/unlikely profiler" is that this is not a
|
|
histogram of the callers, but actually places the calling
|
|
events into a running trace buffer to see when and where the
|
|
events happened, as well as their results.
|
|
|
|
Say N if unsure.
|
|
|
|
config BLK_DEV_IO_TRACE
|
|
bool "Support for tracing block IO actions"
|
|
depends on SYSFS
|
|
depends on BLOCK
|
|
select RELAY
|
|
select DEBUG_FS
|
|
select TRACEPOINTS
|
|
select GENERIC_TRACER
|
|
select STACKTRACE
|
|
help
|
|
Say Y here if you want to be able to trace the block layer actions
|
|
on a given queue. Tracing allows you to see any traffic happening
|
|
on a block device queue. For more information (and the userspace
|
|
support tools needed), fetch the blktrace tools from:
|
|
|
|
git://git.kernel.dk/blktrace.git
|
|
|
|
Tracing also is possible using the ftrace interface, e.g.:
|
|
|
|
echo 1 > /sys/block/sda/sda1/trace/enable
|
|
echo blk > /sys/kernel/debug/tracing/current_tracer
|
|
cat /sys/kernel/debug/tracing/trace_pipe
|
|
|
|
If unsure, say N.
|
|
|
|
config KPROBE_EVENTS
|
|
depends on KPROBES
|
|
depends on HAVE_REGS_AND_STACK_ACCESS_API
|
|
bool "Enable kprobes-based dynamic events"
|
|
select TRACING
|
|
select PROBE_EVENTS
|
|
select DYNAMIC_EVENTS
|
|
default y
|
|
help
|
|
This allows the user to add tracing events (similar to tracepoints)
|
|
on the fly via the ftrace interface. See
|
|
Documentation/trace/kprobetrace.rst for more details.
|
|
|
|
Those events can be inserted wherever kprobes can probe, and record
|
|
various register and memory values.
|
|
|
|
This option is also required by perf-probe subcommand of perf tools.
|
|
If you want to use perf tools, this option is strongly recommended.
|
|
|
|
config KPROBE_EVENTS_ON_NOTRACE
|
|
bool "Do NOT protect notrace function from kprobe events"
|
|
depends on KPROBE_EVENTS
|
|
depends on DYNAMIC_FTRACE
|
|
default n
|
|
help
|
|
This is only for the developers who want to debug ftrace itself
|
|
using kprobe events.
|
|
|
|
If kprobes can use ftrace instead of breakpoint, ftrace related
|
|
functions are protected from kprobe-events to prevent an infinite
|
|
recursion or any unexpected execution path which leads to a kernel
|
|
crash.
|
|
|
|
This option disables such protection and allows you to put kprobe
|
|
events on ftrace functions for debugging ftrace by itself.
|
|
Note that this might let you shoot yourself in the foot.
|
|
|
|
If unsure, say N.
|
|
|
|
config UPROBE_EVENTS
|
|
bool "Enable uprobes-based dynamic events"
|
|
depends on ARCH_SUPPORTS_UPROBES
|
|
depends on MMU
|
|
depends on PERF_EVENTS
|
|
select UPROBES
|
|
select PROBE_EVENTS
|
|
select DYNAMIC_EVENTS
|
|
select TRACING
|
|
default y
|
|
help
|
|
This allows the user to add tracing events on top of userspace
|
|
dynamic events (similar to tracepoints) on the fly via the trace
|
|
events interface. Those events can be inserted wherever uprobes
|
|
can probe, and record various registers.
|
|
This option is required if you plan to use perf-probe subcommand
|
|
of perf tools on user space applications.
|
|
|
|
config BPF_EVENTS
|
|
depends on BPF_SYSCALL
|
|
depends on (KPROBE_EVENTS || UPROBE_EVENTS) && PERF_EVENTS
|
|
bool
|
|
default y
|
|
help
|
|
This allows the user to attach BPF programs to kprobe, uprobe, and
|
|
tracepoint events.
|
|
|
|
config DYNAMIC_EVENTS
|
|
def_bool n
|
|
|
|
config PROBE_EVENTS
|
|
def_bool n
|
|
|
|
config BPF_KPROBE_OVERRIDE
|
|
bool "Enable BPF programs to override a kprobed function"
|
|
depends on BPF_EVENTS
|
|
depends on FUNCTION_ERROR_INJECTION
|
|
default n
|
|
help
|
|
Allows BPF to override the execution of a probed function and
|
|
set a different return value. This is used for error injection.
|
|
|
|
config FTRACE_MCOUNT_RECORD
|
|
def_bool y
|
|
depends on DYNAMIC_FTRACE
|
|
depends on HAVE_FTRACE_MCOUNT_RECORD
|
|
|
|
config FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY
|
|
bool
|
|
depends on FTRACE_MCOUNT_RECORD
|
|
|
|
config FTRACE_MCOUNT_USE_CC
|
|
def_bool y
|
|
depends on $(cc-option,-mrecord-mcount)
|
|
depends on !FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY
|
|
depends on FTRACE_MCOUNT_RECORD
|
|
|
|
config FTRACE_MCOUNT_USE_OBJTOOL
|
|
def_bool y
|
|
depends on HAVE_OBJTOOL_MCOUNT
|
|
depends on !FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY
|
|
depends on !FTRACE_MCOUNT_USE_CC
|
|
depends on FTRACE_MCOUNT_RECORD
|
|
|
|
config FTRACE_MCOUNT_USE_RECORDMCOUNT
|
|
def_bool y
|
|
depends on !FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY
|
|
depends on !FTRACE_MCOUNT_USE_CC
|
|
depends on !FTRACE_MCOUNT_USE_OBJTOOL
|
|
depends on FTRACE_MCOUNT_RECORD
|
|
|
|
config TRACING_MAP
|
|
bool
|
|
depends on ARCH_HAVE_NMI_SAFE_CMPXCHG
|
|
help
|
|
tracing_map is a special-purpose lock-free map for tracing,
|
|
separated out as a stand-alone facility in order to allow it
|
|
to be shared between multiple tracers. It isn't meant to be
|
|
generally used outside of that context, and is normally
|
|
selected by tracers that use it.
|
|
|
|
config SYNTH_EVENTS
|
|
bool "Synthetic trace events"
|
|
select TRACING
|
|
select DYNAMIC_EVENTS
|
|
default n
|
|
help
|
|
Synthetic events are user-defined trace events that can be
|
|
used to combine data from other trace events or in fact any
|
|
data source. Synthetic events can be generated indirectly
|
|
via the trace() action of histogram triggers or directly
|
|
by way of an in-kernel API.
|
|
|
|
See Documentation/trace/events.rst or
|
|
Documentation/trace/histogram.rst for details and examples.
|
|
|
|
If in doubt, say N.
|
|
|
|
config USER_EVENTS
|
|
bool "User trace events"
|
|
select TRACING
|
|
select DYNAMIC_EVENTS
|
|
depends on BROKEN || COMPILE_TEST # API needs to be straighten out
|
|
help
|
|
User trace events are user-defined trace events that
|
|
can be used like an existing kernel trace event. User trace
|
|
events are generated by writing to a tracefs file. User
|
|
processes can determine if their tracing events should be
|
|
generated by memory mapping a tracefs file and checking for
|
|
an associated byte being non-zero.
|
|
|
|
If in doubt, say N.
|
|
|
|
config HIST_TRIGGERS
|
|
bool "Histogram triggers"
|
|
depends on ARCH_HAVE_NMI_SAFE_CMPXCHG
|
|
select TRACING_MAP
|
|
select TRACING
|
|
select DYNAMIC_EVENTS
|
|
select SYNTH_EVENTS
|
|
default n
|
|
help
|
|
Hist triggers allow one or more arbitrary trace event fields
|
|
to be aggregated into hash tables and dumped to stdout by
|
|
reading a debugfs/tracefs file. They're useful for
|
|
gathering quick and dirty (though precise) summaries of
|
|
event activity as an initial guide for further investigation
|
|
using more advanced tools.
|
|
|
|
Inter-event tracing of quantities such as latencies is also
|
|
supported using hist triggers under this option.
|
|
|
|
See Documentation/trace/histogram.rst.
|
|
If in doubt, say N.
|
|
|
|
config TRACE_EVENT_INJECT
|
|
bool "Trace event injection"
|
|
depends on TRACING
|
|
help
|
|
Allow user-space to inject a specific trace event into the ring
|
|
buffer. This is mainly used for testing purpose.
|
|
|
|
If unsure, say N.
|
|
|
|
config TRACEPOINT_BENCHMARK
|
|
bool "Add tracepoint that benchmarks tracepoints"
|
|
help
|
|
This option creates the tracepoint "benchmark:benchmark_event".
|
|
When the tracepoint is enabled, it kicks off a kernel thread that
|
|
goes into an infinite loop (calling cond_resched() to let other tasks
|
|
run), and calls the tracepoint. Each iteration will record the time
|
|
it took to write to the tracepoint and the next iteration that
|
|
data will be passed to the tracepoint itself. That is, the tracepoint
|
|
will report the time it took to do the previous tracepoint.
|
|
The string written to the tracepoint is a static string of 128 bytes
|
|
to keep the time the same. The initial string is simply a write of
|
|
"START". The second string records the cold cache time of the first
|
|
write which is not added to the rest of the calculations.
|
|
|
|
As it is a tight loop, it benchmarks as hot cache. That's fine because
|
|
we care most about hot paths that are probably in cache already.
|
|
|
|
An example of the output:
|
|
|
|
START
|
|
first=3672 [COLD CACHED]
|
|
last=632 first=3672 max=632 min=632 avg=316 std=446 std^2=199712
|
|
last=278 first=3672 max=632 min=278 avg=303 std=316 std^2=100337
|
|
last=277 first=3672 max=632 min=277 avg=296 std=258 std^2=67064
|
|
last=273 first=3672 max=632 min=273 avg=292 std=224 std^2=50411
|
|
last=273 first=3672 max=632 min=273 avg=288 std=200 std^2=40389
|
|
last=281 first=3672 max=632 min=273 avg=287 std=183 std^2=33666
|
|
|
|
|
|
config RING_BUFFER_BENCHMARK
|
|
tristate "Ring buffer benchmark stress tester"
|
|
depends on RING_BUFFER
|
|
help
|
|
This option creates a test to stress the ring buffer and benchmark it.
|
|
It creates its own ring buffer such that it will not interfere with
|
|
any other users of the ring buffer (such as ftrace). It then creates
|
|
a producer and consumer that will run for 10 seconds and sleep for
|
|
10 seconds. Each interval it will print out the number of events
|
|
it recorded and give a rough estimate of how long each iteration took.
|
|
|
|
It does not disable interrupts or raise its priority, so it may be
|
|
affected by processes that are running.
|
|
|
|
If unsure, say N.
|
|
|
|
config TRACE_EVAL_MAP_FILE
|
|
bool "Show eval mappings for trace events"
|
|
depends on TRACING
|
|
help
|
|
The "print fmt" of the trace events will show the enum/sizeof names
|
|
instead of their values. This can cause problems for user space tools
|
|
that use this string to parse the raw data as user space does not know
|
|
how to convert the string to its value.
|
|
|
|
To fix this, there's a special macro in the kernel that can be used
|
|
to convert an enum/sizeof into its value. If this macro is used, then
|
|
the print fmt strings will be converted to their values.
|
|
|
|
If something does not get converted properly, this option can be
|
|
used to show what enums/sizeof the kernel tried to convert.
|
|
|
|
This option is for debugging the conversions. A file is created
|
|
in the tracing directory called "eval_map" that will show the
|
|
names matched with their values and what trace event system they
|
|
belong too.
|
|
|
|
Normally, the mapping of the strings to values will be freed after
|
|
boot up or module load. With this option, they will not be freed, as
|
|
they are needed for the "eval_map" file. Enabling this option will
|
|
increase the memory footprint of the running kernel.
|
|
|
|
If unsure, say N.
|
|
|
|
config FTRACE_RECORD_RECURSION
|
|
bool "Record functions that recurse in function tracing"
|
|
depends on FUNCTION_TRACER
|
|
help
|
|
All callbacks that attach to the function tracing have some sort
|
|
of protection against recursion. Even though the protection exists,
|
|
it adds overhead. This option will create a file in the tracefs
|
|
file system called "recursed_functions" that will list the functions
|
|
that triggered a recursion.
|
|
|
|
This will add more overhead to cases that have recursion.
|
|
|
|
If unsure, say N
|
|
|
|
config FTRACE_RECORD_RECURSION_SIZE
|
|
int "Max number of recursed functions to record"
|
|
default 128
|
|
depends on FTRACE_RECORD_RECURSION
|
|
help
|
|
This defines the limit of number of functions that can be
|
|
listed in the "recursed_functions" file, that lists all
|
|
the functions that caused a recursion to happen.
|
|
This file can be reset, but the limit can not change in
|
|
size at runtime.
|
|
|
|
config RING_BUFFER_RECORD_RECURSION
|
|
bool "Record functions that recurse in the ring buffer"
|
|
depends on FTRACE_RECORD_RECURSION
|
|
# default y, because it is coupled with FTRACE_RECORD_RECURSION
|
|
default y
|
|
help
|
|
The ring buffer has its own internal recursion. Although when
|
|
recursion happens it wont cause harm because of the protection,
|
|
but it does cause an unwanted overhead. Enabling this option will
|
|
place where recursion was detected into the ftrace "recursed_functions"
|
|
file.
|
|
|
|
This will add more overhead to cases that have recursion.
|
|
|
|
config GCOV_PROFILE_FTRACE
|
|
bool "Enable GCOV profiling on ftrace subsystem"
|
|
depends on GCOV_KERNEL
|
|
help
|
|
Enable GCOV profiling on ftrace subsystem for checking
|
|
which functions/lines are tested.
|
|
|
|
If unsure, say N.
|
|
|
|
Note that on a kernel compiled with this config, ftrace will
|
|
run significantly slower.
|
|
|
|
config FTRACE_SELFTEST
|
|
bool
|
|
|
|
config FTRACE_STARTUP_TEST
|
|
bool "Perform a startup test on ftrace"
|
|
depends on GENERIC_TRACER
|
|
select FTRACE_SELFTEST
|
|
help
|
|
This option performs a series of startup tests on ftrace. On bootup
|
|
a series of tests are made to verify that the tracer is
|
|
functioning properly. It will do tests on all the configured
|
|
tracers of ftrace.
|
|
|
|
config EVENT_TRACE_STARTUP_TEST
|
|
bool "Run selftest on trace events"
|
|
depends on FTRACE_STARTUP_TEST
|
|
default y
|
|
help
|
|
This option performs a test on all trace events in the system.
|
|
It basically just enables each event and runs some code that
|
|
will trigger events (not necessarily the event it enables)
|
|
This may take some time run as there are a lot of events.
|
|
|
|
config EVENT_TRACE_TEST_SYSCALLS
|
|
bool "Run selftest on syscall events"
|
|
depends on EVENT_TRACE_STARTUP_TEST
|
|
help
|
|
This option will also enable testing every syscall event.
|
|
It only enables the event and disables it and runs various loads
|
|
with the event enabled. This adds a bit more time for kernel boot
|
|
up since it runs this on every system call defined.
|
|
|
|
TBD - enable a way to actually call the syscalls as we test their
|
|
events
|
|
|
|
config FTRACE_SORT_STARTUP_TEST
|
|
bool "Verify compile time sorting of ftrace functions"
|
|
depends on DYNAMIC_FTRACE
|
|
depends on BUILDTIME_MCOUNT_SORT
|
|
help
|
|
Sorting of the mcount_loc sections that is used to find the
|
|
where the ftrace knows where to patch functions for tracing
|
|
and other callbacks is done at compile time. But if the sort
|
|
is not done correctly, it will cause non-deterministic failures.
|
|
When this is set, the sorted sections will be verified that they
|
|
are in deed sorted and will warn if they are not.
|
|
|
|
If unsure, say N
|
|
|
|
config RING_BUFFER_STARTUP_TEST
|
|
bool "Ring buffer startup self test"
|
|
depends on RING_BUFFER
|
|
help
|
|
Run a simple self test on the ring buffer on boot up. Late in the
|
|
kernel boot sequence, the test will start that kicks off
|
|
a thread per cpu. Each thread will write various size events
|
|
into the ring buffer. Another thread is created to send IPIs
|
|
to each of the threads, where the IPI handler will also write
|
|
to the ring buffer, to test/stress the nesting ability.
|
|
If any anomalies are discovered, a warning will be displayed
|
|
and all ring buffers will be disabled.
|
|
|
|
The test runs for 10 seconds. This will slow your boot time
|
|
by at least 10 more seconds.
|
|
|
|
At the end of the test, statics and more checks are done.
|
|
It will output the stats of each per cpu buffer. What
|
|
was written, the sizes, what was read, what was lost, and
|
|
other similar details.
|
|
|
|
If unsure, say N
|
|
|
|
config RING_BUFFER_VALIDATE_TIME_DELTAS
|
|
bool "Verify ring buffer time stamp deltas"
|
|
depends on RING_BUFFER
|
|
help
|
|
This will audit the time stamps on the ring buffer sub
|
|
buffer to make sure that all the time deltas for the
|
|
events on a sub buffer matches the current time stamp.
|
|
This audit is performed for every event that is not
|
|
interrupted, or interrupting another event. A check
|
|
is also made when traversing sub buffers to make sure
|
|
that all the deltas on the previous sub buffer do not
|
|
add up to be greater than the current time stamp.
|
|
|
|
NOTE: This adds significant overhead to recording of events,
|
|
and should only be used to test the logic of the ring buffer.
|
|
Do not use it on production systems.
|
|
|
|
Only say Y if you understand what this does, and you
|
|
still want it enabled. Otherwise say N
|
|
|
|
config MMIOTRACE_TEST
|
|
tristate "Test module for mmiotrace"
|
|
depends on MMIOTRACE && m
|
|
help
|
|
This is a dumb module for testing mmiotrace. It is very dangerous
|
|
as it will write garbage to IO memory starting at a given address.
|
|
However, it should be safe to use on e.g. unused portion of VRAM.
|
|
|
|
Say N, unless you absolutely know what you are doing.
|
|
|
|
config PREEMPTIRQ_DELAY_TEST
|
|
tristate "Test module to create a preempt / IRQ disable delay thread to test latency tracers"
|
|
depends on m
|
|
help
|
|
Select this option to build a test module that can help test latency
|
|
tracers by executing a preempt or irq disable section with a user
|
|
configurable delay. The module busy waits for the duration of the
|
|
critical section.
|
|
|
|
For example, the following invocation generates a burst of three
|
|
irq-disabled critical sections for 500us:
|
|
modprobe preemptirq_delay_test test_mode=irq delay=500 burst_size=3
|
|
|
|
What's more, if you want to attach the test on the cpu which the latency
|
|
tracer is running on, specify cpu_affinity=cpu_num at the end of the
|
|
command.
|
|
|
|
If unsure, say N
|
|
|
|
config SYNTH_EVENT_GEN_TEST
|
|
tristate "Test module for in-kernel synthetic event generation"
|
|
depends on SYNTH_EVENTS
|
|
help
|
|
This option creates a test module to check the base
|
|
functionality of in-kernel synthetic event definition and
|
|
generation.
|
|
|
|
To test, insert the module, and then check the trace buffer
|
|
for the generated sample events.
|
|
|
|
If unsure, say N.
|
|
|
|
config KPROBE_EVENT_GEN_TEST
|
|
tristate "Test module for in-kernel kprobe event generation"
|
|
depends on KPROBE_EVENTS
|
|
help
|
|
This option creates a test module to check the base
|
|
functionality of in-kernel kprobe event definition.
|
|
|
|
To test, insert the module, and then check the trace buffer
|
|
for the generated kprobe events.
|
|
|
|
If unsure, say N.
|
|
|
|
config HIST_TRIGGERS_DEBUG
|
|
bool "Hist trigger debug support"
|
|
depends on HIST_TRIGGERS
|
|
help
|
|
Add "hist_debug" file for each event, which when read will
|
|
dump out a bunch of internal details about the hist triggers
|
|
defined on that event.
|
|
|
|
The hist_debug file serves a couple of purposes:
|
|
|
|
- Helps developers verify that nothing is broken.
|
|
|
|
- Provides educational information to support the details
|
|
of the hist trigger internals as described by
|
|
Documentation/trace/histogram-design.rst.
|
|
|
|
The hist_debug output only covers the data structures
|
|
related to the histogram definitions themselves and doesn't
|
|
display the internals of map buckets or variable values of
|
|
running histograms.
|
|
|
|
If unsure, say N.
|
|
|
|
endif # FTRACE
|