linux/drivers/platform/chrome/cros_ec_lpc.c
Dustin L. Howett c8f460d991 platform/chrome: cros_ec_lpc: add quirks for the Framework Laptop (AMD)
The original Framework Laptop 13 platform (Intel 11th, 12th, and 13th
Generation at this time) uses a Microchip embedded controller in a
standard configuration.

The newer devices in this product line--Framework Laptop 13 and 16 (AMD
Ryzen)--use a NPCX embedded controller. However, they deviate from the
configuration of ChromeOS platforms built with the NPCX EC.

* The MMIO region for EC memory begins at port 0xE00 rather than the
  expected 0x900.

cros_ec_lpc's quirks system is used to address this issue.

Signed-off-by: Dustin L. Howett <dustin@howett.net>
Reviewed-by: Thomas Weißschuh <linux@weissschuh.net>
Tested-by: Thomas Weißschuh <linux@weissschuh.net>
Tested-by: Mario Limonciello <superm1@gmail.com>
Link: https://lore.kernel.org/r/20240403004713.130365-5-dustin@howett.net
Signed-off-by: Tzung-Bi Shih <tzungbi@kernel.org>
2024-04-24 16:46:00 +08:00

723 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0
// LPC interface for ChromeOS Embedded Controller
//
// Copyright (C) 2012-2015 Google, Inc
//
// This driver uses the ChromeOS EC byte-level message-based protocol for
// communicating the keyboard state (which keys are pressed) from a keyboard EC
// to the AP over some bus (such as i2c, lpc, spi). The EC does debouncing,
// but everything else (including deghosting) is done here. The main
// motivation for this is to keep the EC firmware as simple as possible, since
// it cannot be easily upgraded and EC flash/IRAM space is relatively
// expensive.
#include <linux/acpi.h>
#include <linux/dmi.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/kobject.h>
#include <linux/module.h>
#include <linux/platform_data/cros_ec_commands.h>
#include <linux/platform_data/cros_ec_proto.h>
#include <linux/platform_device.h>
#include <linux/printk.h>
#include <linux/reboot.h>
#include <linux/suspend.h>
#include "cros_ec.h"
#include "cros_ec_lpc_mec.h"
#define DRV_NAME "cros_ec_lpcs"
#define ACPI_DRV_NAME "GOOG0004"
/* True if ACPI device is present */
static bool cros_ec_lpc_acpi_device_found;
/*
* Indicates that lpc_driver_data.quirk_mmio_memory_base should
* be used as the base port for EC mapped memory.
*/
#define CROS_EC_LPC_QUIRK_REMAP_MEMORY BIT(0)
/**
* struct lpc_driver_data - driver data attached to a DMI device ID to indicate
* hardware quirks.
* @quirks: a bitfield composed of quirks from CROS_EC_LPC_QUIRK_*
* @quirk_mmio_memory_base: The first I/O port addressing EC mapped memory (used
* when quirk ...REMAP_MEMORY is set.)
*/
struct lpc_driver_data {
u32 quirks;
u16 quirk_mmio_memory_base;
};
/**
* struct cros_ec_lpc - LPC device-specific data
* @mmio_memory_base: The first I/O port addressing EC mapped memory.
*/
struct cros_ec_lpc {
u16 mmio_memory_base;
};
/**
* struct lpc_driver_ops - LPC driver operations
* @read: Copy length bytes from EC address offset into buffer dest. Returns
* the 8-bit checksum of all bytes read.
* @write: Copy length bytes from buffer msg into EC address offset. Returns
* the 8-bit checksum of all bytes written.
*/
struct lpc_driver_ops {
u8 (*read)(unsigned int offset, unsigned int length, u8 *dest);
u8 (*write)(unsigned int offset, unsigned int length, const u8 *msg);
};
static struct lpc_driver_ops cros_ec_lpc_ops = { };
/*
* A generic instance of the read function of struct lpc_driver_ops, used for
* the LPC EC.
*/
static u8 cros_ec_lpc_read_bytes(unsigned int offset, unsigned int length,
u8 *dest)
{
int sum = 0;
int i;
for (i = 0; i < length; ++i) {
dest[i] = inb(offset + i);
sum += dest[i];
}
/* Return checksum of all bytes read */
return sum;
}
/*
* A generic instance of the write function of struct lpc_driver_ops, used for
* the LPC EC.
*/
static u8 cros_ec_lpc_write_bytes(unsigned int offset, unsigned int length,
const u8 *msg)
{
int sum = 0;
int i;
for (i = 0; i < length; ++i) {
outb(msg[i], offset + i);
sum += msg[i];
}
/* Return checksum of all bytes written */
return sum;
}
/*
* An instance of the read function of struct lpc_driver_ops, used for the
* MEC variant of LPC EC.
*/
static u8 cros_ec_lpc_mec_read_bytes(unsigned int offset, unsigned int length,
u8 *dest)
{
int in_range = cros_ec_lpc_mec_in_range(offset, length);
if (in_range < 0)
return 0;
return in_range ?
cros_ec_lpc_io_bytes_mec(MEC_IO_READ,
offset - EC_HOST_CMD_REGION0,
length, dest) :
cros_ec_lpc_read_bytes(offset, length, dest);
}
/*
* An instance of the write function of struct lpc_driver_ops, used for the
* MEC variant of LPC EC.
*/
static u8 cros_ec_lpc_mec_write_bytes(unsigned int offset, unsigned int length,
const u8 *msg)
{
int in_range = cros_ec_lpc_mec_in_range(offset, length);
if (in_range < 0)
return 0;
return in_range ?
cros_ec_lpc_io_bytes_mec(MEC_IO_WRITE,
offset - EC_HOST_CMD_REGION0,
length, (u8 *)msg) :
cros_ec_lpc_write_bytes(offset, length, msg);
}
static int ec_response_timed_out(void)
{
unsigned long one_second = jiffies + HZ;
u8 data;
usleep_range(200, 300);
do {
if (!(cros_ec_lpc_ops.read(EC_LPC_ADDR_HOST_CMD, 1, &data) &
EC_LPC_STATUS_BUSY_MASK))
return 0;
usleep_range(100, 200);
} while (time_before(jiffies, one_second));
return 1;
}
static int cros_ec_pkt_xfer_lpc(struct cros_ec_device *ec,
struct cros_ec_command *msg)
{
struct ec_host_response response;
u8 sum;
int ret = 0;
u8 *dout;
ret = cros_ec_prepare_tx(ec, msg);
if (ret < 0)
goto done;
/* Write buffer */
cros_ec_lpc_ops.write(EC_LPC_ADDR_HOST_PACKET, ret, ec->dout);
/* Here we go */
sum = EC_COMMAND_PROTOCOL_3;
cros_ec_lpc_ops.write(EC_LPC_ADDR_HOST_CMD, 1, &sum);
if (ec_response_timed_out()) {
dev_warn(ec->dev, "EC response timed out\n");
ret = -EIO;
goto done;
}
/* Check result */
msg->result = cros_ec_lpc_ops.read(EC_LPC_ADDR_HOST_DATA, 1, &sum);
ret = cros_ec_check_result(ec, msg);
if (ret)
goto done;
/* Read back response */
dout = (u8 *)&response;
sum = cros_ec_lpc_ops.read(EC_LPC_ADDR_HOST_PACKET, sizeof(response),
dout);
msg->result = response.result;
if (response.data_len > msg->insize) {
dev_err(ec->dev,
"packet too long (%d bytes, expected %d)",
response.data_len, msg->insize);
ret = -EMSGSIZE;
goto done;
}
/* Read response and process checksum */
sum += cros_ec_lpc_ops.read(EC_LPC_ADDR_HOST_PACKET +
sizeof(response), response.data_len,
msg->data);
if (sum) {
dev_err(ec->dev,
"bad packet checksum %02x\n",
response.checksum);
ret = -EBADMSG;
goto done;
}
/* Return actual amount of data received */
ret = response.data_len;
done:
return ret;
}
static int cros_ec_cmd_xfer_lpc(struct cros_ec_device *ec,
struct cros_ec_command *msg)
{
struct ec_lpc_host_args args;
u8 sum;
int ret = 0;
if (msg->outsize > EC_PROTO2_MAX_PARAM_SIZE ||
msg->insize > EC_PROTO2_MAX_PARAM_SIZE) {
dev_err(ec->dev,
"invalid buffer sizes (out %d, in %d)\n",
msg->outsize, msg->insize);
return -EINVAL;
}
/* Now actually send the command to the EC and get the result */
args.flags = EC_HOST_ARGS_FLAG_FROM_HOST;
args.command_version = msg->version;
args.data_size = msg->outsize;
/* Initialize checksum */
sum = msg->command + args.flags + args.command_version + args.data_size;
/* Copy data and update checksum */
sum += cros_ec_lpc_ops.write(EC_LPC_ADDR_HOST_PARAM, msg->outsize,
msg->data);
/* Finalize checksum and write args */
args.checksum = sum;
cros_ec_lpc_ops.write(EC_LPC_ADDR_HOST_ARGS, sizeof(args),
(u8 *)&args);
/* Here we go */
sum = msg->command;
cros_ec_lpc_ops.write(EC_LPC_ADDR_HOST_CMD, 1, &sum);
if (ec_response_timed_out()) {
dev_warn(ec->dev, "EC response timed out\n");
ret = -EIO;
goto done;
}
/* Check result */
msg->result = cros_ec_lpc_ops.read(EC_LPC_ADDR_HOST_DATA, 1, &sum);
ret = cros_ec_check_result(ec, msg);
if (ret)
goto done;
/* Read back args */
cros_ec_lpc_ops.read(EC_LPC_ADDR_HOST_ARGS, sizeof(args), (u8 *)&args);
if (args.data_size > msg->insize) {
dev_err(ec->dev,
"packet too long (%d bytes, expected %d)",
args.data_size, msg->insize);
ret = -ENOSPC;
goto done;
}
/* Start calculating response checksum */
sum = msg->command + args.flags + args.command_version + args.data_size;
/* Read response and update checksum */
sum += cros_ec_lpc_ops.read(EC_LPC_ADDR_HOST_PARAM, args.data_size,
msg->data);
/* Verify checksum */
if (args.checksum != sum) {
dev_err(ec->dev,
"bad packet checksum, expected %02x, got %02x\n",
args.checksum, sum);
ret = -EBADMSG;
goto done;
}
/* Return actual amount of data received */
ret = args.data_size;
done:
return ret;
}
/* Returns num bytes read, or negative on error. Doesn't need locking. */
static int cros_ec_lpc_readmem(struct cros_ec_device *ec, unsigned int offset,
unsigned int bytes, void *dest)
{
struct cros_ec_lpc *ec_lpc = ec->priv;
int i = offset;
char *s = dest;
int cnt = 0;
if (offset >= EC_MEMMAP_SIZE - bytes)
return -EINVAL;
/* fixed length */
if (bytes) {
cros_ec_lpc_ops.read(ec_lpc->mmio_memory_base + offset, bytes, s);
return bytes;
}
/* string */
for (; i < EC_MEMMAP_SIZE; i++, s++) {
cros_ec_lpc_ops.read(ec_lpc->mmio_memory_base + i, 1, s);
cnt++;
if (!*s)
break;
}
return cnt;
}
static void cros_ec_lpc_acpi_notify(acpi_handle device, u32 value, void *data)
{
static const char *env[] = { "ERROR=PANIC", NULL };
struct cros_ec_device *ec_dev = data;
bool ec_has_more_events;
int ret;
ec_dev->last_event_time = cros_ec_get_time_ns();
if (value == ACPI_NOTIFY_CROS_EC_PANIC) {
dev_emerg(ec_dev->dev, "CrOS EC Panic Reported. Shutdown is imminent!");
blocking_notifier_call_chain(&ec_dev->panic_notifier, 0, ec_dev);
kobject_uevent_env(&ec_dev->dev->kobj, KOBJ_CHANGE, (char **)env);
/* Begin orderly shutdown. EC will force reset after a short period. */
hw_protection_shutdown("CrOS EC Panic", -1);
/* Do not query for other events after a panic is reported */
return;
}
if (ec_dev->mkbp_event_supported)
do {
ret = cros_ec_get_next_event(ec_dev, NULL,
&ec_has_more_events);
if (ret > 0)
blocking_notifier_call_chain(
&ec_dev->event_notifier, 0,
ec_dev);
} while (ec_has_more_events);
if (value == ACPI_NOTIFY_DEVICE_WAKE)
pm_system_wakeup();
}
static int cros_ec_lpc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct acpi_device *adev;
acpi_status status;
struct cros_ec_device *ec_dev;
struct cros_ec_lpc *ec_lpc;
struct lpc_driver_data *driver_data;
u8 buf[2] = {};
int irq, ret;
u32 quirks;
ec_lpc = devm_kzalloc(dev, sizeof(*ec_lpc), GFP_KERNEL);
if (!ec_lpc)
return -ENOMEM;
ec_lpc->mmio_memory_base = EC_LPC_ADDR_MEMMAP;
driver_data = platform_get_drvdata(pdev);
if (driver_data) {
quirks = driver_data->quirks;
if (quirks)
dev_info(dev, "loaded with quirks %8.08x\n", quirks);
if (quirks & CROS_EC_LPC_QUIRK_REMAP_MEMORY)
ec_lpc->mmio_memory_base = driver_data->quirk_mmio_memory_base;
}
/*
* The Framework Laptop (and possibly other non-ChromeOS devices)
* only exposes the eight I/O ports that are required for the Microchip EC.
* Requesting a larger reservation will fail.
*/
if (!devm_request_region(dev, EC_HOST_CMD_REGION0,
EC_HOST_CMD_MEC_REGION_SIZE, dev_name(dev))) {
dev_err(dev, "couldn't reserve MEC region\n");
return -EBUSY;
}
cros_ec_lpc_mec_init(EC_HOST_CMD_REGION0,
EC_LPC_ADDR_MEMMAP + EC_MEMMAP_SIZE);
/*
* Read the mapped ID twice, the first one is assuming the
* EC is a Microchip Embedded Controller (MEC) variant, if the
* protocol fails, fallback to the non MEC variant and try to
* read again the ID.
*/
cros_ec_lpc_ops.read = cros_ec_lpc_mec_read_bytes;
cros_ec_lpc_ops.write = cros_ec_lpc_mec_write_bytes;
cros_ec_lpc_ops.read(EC_LPC_ADDR_MEMMAP + EC_MEMMAP_ID, 2, buf);
if (buf[0] != 'E' || buf[1] != 'C') {
if (!devm_request_region(dev, ec_lpc->mmio_memory_base, EC_MEMMAP_SIZE,
dev_name(dev))) {
dev_err(dev, "couldn't reserve memmap region\n");
return -EBUSY;
}
/* Re-assign read/write operations for the non MEC variant */
cros_ec_lpc_ops.read = cros_ec_lpc_read_bytes;
cros_ec_lpc_ops.write = cros_ec_lpc_write_bytes;
cros_ec_lpc_ops.read(ec_lpc->mmio_memory_base + EC_MEMMAP_ID, 2,
buf);
if (buf[0] != 'E' || buf[1] != 'C') {
dev_err(dev, "EC ID not detected\n");
return -ENODEV;
}
/* Reserve the remaining I/O ports required by the non-MEC protocol. */
if (!devm_request_region(dev, EC_HOST_CMD_REGION0 + EC_HOST_CMD_MEC_REGION_SIZE,
EC_HOST_CMD_REGION_SIZE - EC_HOST_CMD_MEC_REGION_SIZE,
dev_name(dev))) {
dev_err(dev, "couldn't reserve remainder of region0\n");
return -EBUSY;
}
if (!devm_request_region(dev, EC_HOST_CMD_REGION1,
EC_HOST_CMD_REGION_SIZE, dev_name(dev))) {
dev_err(dev, "couldn't reserve region1\n");
return -EBUSY;
}
}
ec_dev = devm_kzalloc(dev, sizeof(*ec_dev), GFP_KERNEL);
if (!ec_dev)
return -ENOMEM;
platform_set_drvdata(pdev, ec_dev);
ec_dev->dev = dev;
ec_dev->phys_name = dev_name(dev);
ec_dev->cmd_xfer = cros_ec_cmd_xfer_lpc;
ec_dev->pkt_xfer = cros_ec_pkt_xfer_lpc;
ec_dev->cmd_readmem = cros_ec_lpc_readmem;
ec_dev->din_size = sizeof(struct ec_host_response) +
sizeof(struct ec_response_get_protocol_info);
ec_dev->dout_size = sizeof(struct ec_host_request);
ec_dev->priv = ec_lpc;
/*
* Some boards do not have an IRQ allotted for cros_ec_lpc,
* which makes ENXIO an expected (and safe) scenario.
*/
irq = platform_get_irq_optional(pdev, 0);
if (irq > 0)
ec_dev->irq = irq;
else if (irq != -ENXIO) {
dev_err(dev, "couldn't retrieve IRQ number (%d)\n", irq);
return irq;
}
ret = cros_ec_register(ec_dev);
if (ret) {
dev_err(dev, "couldn't register ec_dev (%d)\n", ret);
return ret;
}
/*
* Connect a notify handler to process MKBP messages if we have a
* companion ACPI device.
*/
adev = ACPI_COMPANION(dev);
if (adev) {
status = acpi_install_notify_handler(adev->handle,
ACPI_ALL_NOTIFY,
cros_ec_lpc_acpi_notify,
ec_dev);
if (ACPI_FAILURE(status))
dev_warn(dev, "Failed to register notifier %08x\n",
status);
}
return 0;
}
static void cros_ec_lpc_remove(struct platform_device *pdev)
{
struct cros_ec_device *ec_dev = platform_get_drvdata(pdev);
struct acpi_device *adev;
adev = ACPI_COMPANION(&pdev->dev);
if (adev)
acpi_remove_notify_handler(adev->handle, ACPI_ALL_NOTIFY,
cros_ec_lpc_acpi_notify);
cros_ec_unregister(ec_dev);
}
static const struct acpi_device_id cros_ec_lpc_acpi_device_ids[] = {
{ ACPI_DRV_NAME, 0 },
{ }
};
MODULE_DEVICE_TABLE(acpi, cros_ec_lpc_acpi_device_ids);
static const struct lpc_driver_data framework_laptop_amd_lpc_driver_data __initconst = {
.quirks = CROS_EC_LPC_QUIRK_REMAP_MEMORY,
.quirk_mmio_memory_base = 0xE00,
};
static const struct dmi_system_id cros_ec_lpc_dmi_table[] __initconst = {
{
/*
* Today all Chromebooks/boxes ship with Google_* as version and
* coreboot as bios vendor. No other systems with this
* combination are known to date.
*/
.matches = {
DMI_MATCH(DMI_BIOS_VENDOR, "coreboot"),
DMI_MATCH(DMI_BIOS_VERSION, "Google_"),
},
},
{
/*
* If the box is running custom coreboot firmware then the
* DMI BIOS version string will not be matched by "Google_",
* but the system vendor string will still be matched by
* "GOOGLE".
*/
.matches = {
DMI_MATCH(DMI_BIOS_VENDOR, "coreboot"),
DMI_MATCH(DMI_SYS_VENDOR, "GOOGLE"),
},
},
{
/* x86-link, the Chromebook Pixel. */
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "GOOGLE"),
DMI_MATCH(DMI_PRODUCT_NAME, "Link"),
},
},
{
/* x86-samus, the Chromebook Pixel 2. */
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "GOOGLE"),
DMI_MATCH(DMI_PRODUCT_NAME, "Samus"),
},
},
{
/* x86-peppy, the Acer C720 Chromebook. */
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
DMI_MATCH(DMI_PRODUCT_NAME, "Peppy"),
},
},
{
/* x86-glimmer, the Lenovo Thinkpad Yoga 11e. */
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "GOOGLE"),
DMI_MATCH(DMI_PRODUCT_NAME, "Glimmer"),
},
},
/* A small number of non-Chromebook/box machines also use the ChromeOS EC */
{
/* the Framework Laptop 13 (AMD Ryzen) and 16 (AMD Ryzen) */
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Framework"),
DMI_MATCH(DMI_PRODUCT_NAME, "AMD Ryzen"),
DMI_MATCH(DMI_PRODUCT_FAMILY, "Laptop"),
},
.driver_data = (void *)&framework_laptop_amd_lpc_driver_data,
},
{
/* the Framework Laptop (Intel 11th, 12th, 13th Generation) */
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Framework"),
DMI_MATCH(DMI_PRODUCT_NAME, "Laptop"),
},
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(dmi, cros_ec_lpc_dmi_table);
#ifdef CONFIG_PM_SLEEP
static int cros_ec_lpc_prepare(struct device *dev)
{
struct cros_ec_device *ec_dev = dev_get_drvdata(dev);
return cros_ec_suspend_prepare(ec_dev);
}
static void cros_ec_lpc_complete(struct device *dev)
{
struct cros_ec_device *ec_dev = dev_get_drvdata(dev);
cros_ec_resume_complete(ec_dev);
}
static int cros_ec_lpc_suspend_late(struct device *dev)
{
struct cros_ec_device *ec_dev = dev_get_drvdata(dev);
return cros_ec_suspend_late(ec_dev);
}
static int cros_ec_lpc_resume_early(struct device *dev)
{
struct cros_ec_device *ec_dev = dev_get_drvdata(dev);
return cros_ec_resume_early(ec_dev);
}
#endif
static const struct dev_pm_ops cros_ec_lpc_pm_ops = {
#ifdef CONFIG_PM_SLEEP
.prepare = cros_ec_lpc_prepare,
.complete = cros_ec_lpc_complete,
#endif
SET_LATE_SYSTEM_SLEEP_PM_OPS(cros_ec_lpc_suspend_late, cros_ec_lpc_resume_early)
};
static struct platform_driver cros_ec_lpc_driver = {
.driver = {
.name = DRV_NAME,
.acpi_match_table = cros_ec_lpc_acpi_device_ids,
.pm = &cros_ec_lpc_pm_ops,
/*
* ACPI child devices may probe before us, and they racily
* check our drvdata pointer. Force synchronous probe until
* those races are resolved.
*/
.probe_type = PROBE_FORCE_SYNCHRONOUS,
},
.probe = cros_ec_lpc_probe,
.remove_new = cros_ec_lpc_remove,
};
static struct platform_device cros_ec_lpc_device = {
.name = DRV_NAME
};
static acpi_status cros_ec_lpc_parse_device(acpi_handle handle, u32 level,
void *context, void **retval)
{
*(bool *)context = true;
return AE_CTRL_TERMINATE;
}
static int __init cros_ec_lpc_init(void)
{
int ret;
acpi_status status;
const struct dmi_system_id *dmi_match;
status = acpi_get_devices(ACPI_DRV_NAME, cros_ec_lpc_parse_device,
&cros_ec_lpc_acpi_device_found, NULL);
if (ACPI_FAILURE(status))
pr_warn(DRV_NAME ": Looking for %s failed\n", ACPI_DRV_NAME);
dmi_match = dmi_first_match(cros_ec_lpc_dmi_table);
if (!cros_ec_lpc_acpi_device_found && !dmi_match) {
pr_err(DRV_NAME ": unsupported system.\n");
return -ENODEV;
}
/* Register the driver */
ret = platform_driver_register(&cros_ec_lpc_driver);
if (ret) {
pr_err(DRV_NAME ": can't register driver: %d\n", ret);
return ret;
}
if (!cros_ec_lpc_acpi_device_found) {
/* Pass the DMI match's driver data down to the platform device */
platform_set_drvdata(&cros_ec_lpc_device, dmi_match->driver_data);
/* Register the device, and it'll get hooked up automatically */
ret = platform_device_register(&cros_ec_lpc_device);
if (ret) {
pr_err(DRV_NAME ": can't register device: %d\n", ret);
platform_driver_unregister(&cros_ec_lpc_driver);
}
}
return ret;
}
static void __exit cros_ec_lpc_exit(void)
{
if (!cros_ec_lpc_acpi_device_found)
platform_device_unregister(&cros_ec_lpc_device);
platform_driver_unregister(&cros_ec_lpc_driver);
}
module_init(cros_ec_lpc_init);
module_exit(cros_ec_lpc_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("ChromeOS EC LPC driver");