linux/kernel/bpf/hashtab.c
Song Liu d35381aa73 bpf: Fix unnecessary -EBUSY from htab_lock_bucket
htab_lock_bucket uses the following logic to avoid recursion:

1. preempt_disable();
2. check percpu counter htab->map_locked[hash] for recursion;
   2.1. if map_lock[hash] is already taken, return -BUSY;
3. raw_spin_lock_irqsave();

However, if an IRQ hits between 2 and 3, BPF programs attached to the IRQ
logic will not able to access the same hash of the hashtab and get -EBUSY.

This -EBUSY is not really necessary. Fix it by disabling IRQ before
checking map_locked:

1. preempt_disable();
2. local_irq_save();
3. check percpu counter htab->map_locked[hash] for recursion;
   3.1. if map_lock[hash] is already taken, return -BUSY;
4. raw_spin_lock().

Similarly, use raw_spin_unlock() and local_irq_restore() in
htab_unlock_bucket().

Fixes: 20b6cc34ea74 ("bpf: Avoid hashtab deadlock with map_locked")
Suggested-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Song Liu <song@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/7a9576222aa40b1c84ad3a9ba3e64011d1a04d41.camel@linux.ibm.com
Link: https://lore.kernel.org/bpf/20231012055741.3375999-1-song@kernel.org
2023-10-24 14:25:55 +02:00

2602 lines
68 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
* Copyright (c) 2016 Facebook
*/
#include <linux/bpf.h>
#include <linux/btf.h>
#include <linux/jhash.h>
#include <linux/filter.h>
#include <linux/rculist_nulls.h>
#include <linux/random.h>
#include <uapi/linux/btf.h>
#include <linux/rcupdate_trace.h>
#include <linux/btf_ids.h>
#include "percpu_freelist.h"
#include "bpf_lru_list.h"
#include "map_in_map.h"
#include <linux/bpf_mem_alloc.h>
#define HTAB_CREATE_FLAG_MASK \
(BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \
BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED)
#define BATCH_OPS(_name) \
.map_lookup_batch = \
_name##_map_lookup_batch, \
.map_lookup_and_delete_batch = \
_name##_map_lookup_and_delete_batch, \
.map_update_batch = \
generic_map_update_batch, \
.map_delete_batch = \
generic_map_delete_batch
/*
* The bucket lock has two protection scopes:
*
* 1) Serializing concurrent operations from BPF programs on different
* CPUs
*
* 2) Serializing concurrent operations from BPF programs and sys_bpf()
*
* BPF programs can execute in any context including perf, kprobes and
* tracing. As there are almost no limits where perf, kprobes and tracing
* can be invoked from the lock operations need to be protected against
* deadlocks. Deadlocks can be caused by recursion and by an invocation in
* the lock held section when functions which acquire this lock are invoked
* from sys_bpf(). BPF recursion is prevented by incrementing the per CPU
* variable bpf_prog_active, which prevents BPF programs attached to perf
* events, kprobes and tracing to be invoked before the prior invocation
* from one of these contexts completed. sys_bpf() uses the same mechanism
* by pinning the task to the current CPU and incrementing the recursion
* protection across the map operation.
*
* This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain
* operations like memory allocations (even with GFP_ATOMIC) from atomic
* contexts. This is required because even with GFP_ATOMIC the memory
* allocator calls into code paths which acquire locks with long held lock
* sections. To ensure the deterministic behaviour these locks are regular
* spinlocks, which are converted to 'sleepable' spinlocks on RT. The only
* true atomic contexts on an RT kernel are the low level hardware
* handling, scheduling, low level interrupt handling, NMIs etc. None of
* these contexts should ever do memory allocations.
*
* As regular device interrupt handlers and soft interrupts are forced into
* thread context, the existing code which does
* spin_lock*(); alloc(GFP_ATOMIC); spin_unlock*();
* just works.
*
* In theory the BPF locks could be converted to regular spinlocks as well,
* but the bucket locks and percpu_freelist locks can be taken from
* arbitrary contexts (perf, kprobes, tracepoints) which are required to be
* atomic contexts even on RT. Before the introduction of bpf_mem_alloc,
* it is only safe to use raw spinlock for preallocated hash map on a RT kernel,
* because there is no memory allocation within the lock held sections. However
* after hash map was fully converted to use bpf_mem_alloc, there will be
* non-synchronous memory allocation for non-preallocated hash map, so it is
* safe to always use raw spinlock for bucket lock.
*/
struct bucket {
struct hlist_nulls_head head;
raw_spinlock_t raw_lock;
};
#define HASHTAB_MAP_LOCK_COUNT 8
#define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1)
struct bpf_htab {
struct bpf_map map;
struct bpf_mem_alloc ma;
struct bpf_mem_alloc pcpu_ma;
struct bucket *buckets;
void *elems;
union {
struct pcpu_freelist freelist;
struct bpf_lru lru;
};
struct htab_elem *__percpu *extra_elems;
/* number of elements in non-preallocated hashtable are kept
* in either pcount or count
*/
struct percpu_counter pcount;
atomic_t count;
bool use_percpu_counter;
u32 n_buckets; /* number of hash buckets */
u32 elem_size; /* size of each element in bytes */
u32 hashrnd;
struct lock_class_key lockdep_key;
int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT];
};
/* each htab element is struct htab_elem + key + value */
struct htab_elem {
union {
struct hlist_nulls_node hash_node;
struct {
void *padding;
union {
struct pcpu_freelist_node fnode;
struct htab_elem *batch_flink;
};
};
};
union {
/* pointer to per-cpu pointer */
void *ptr_to_pptr;
struct bpf_lru_node lru_node;
};
u32 hash;
char key[] __aligned(8);
};
static inline bool htab_is_prealloc(const struct bpf_htab *htab)
{
return !(htab->map.map_flags & BPF_F_NO_PREALLOC);
}
static void htab_init_buckets(struct bpf_htab *htab)
{
unsigned int i;
for (i = 0; i < htab->n_buckets; i++) {
INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i);
raw_spin_lock_init(&htab->buckets[i].raw_lock);
lockdep_set_class(&htab->buckets[i].raw_lock,
&htab->lockdep_key);
cond_resched();
}
}
static inline int htab_lock_bucket(const struct bpf_htab *htab,
struct bucket *b, u32 hash,
unsigned long *pflags)
{
unsigned long flags;
hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1);
preempt_disable();
local_irq_save(flags);
if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) {
__this_cpu_dec(*(htab->map_locked[hash]));
local_irq_restore(flags);
preempt_enable();
return -EBUSY;
}
raw_spin_lock(&b->raw_lock);
*pflags = flags;
return 0;
}
static inline void htab_unlock_bucket(const struct bpf_htab *htab,
struct bucket *b, u32 hash,
unsigned long flags)
{
hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1);
raw_spin_unlock(&b->raw_lock);
__this_cpu_dec(*(htab->map_locked[hash]));
local_irq_restore(flags);
preempt_enable();
}
static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node);
static bool htab_is_lru(const struct bpf_htab *htab)
{
return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH ||
htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
}
static bool htab_is_percpu(const struct bpf_htab *htab)
{
return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH ||
htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
}
static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
void __percpu *pptr)
{
*(void __percpu **)(l->key + key_size) = pptr;
}
static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
{
return *(void __percpu **)(l->key + key_size);
}
static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l)
{
return *(void **)(l->key + roundup(map->key_size, 8));
}
static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i)
{
return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size);
}
static bool htab_has_extra_elems(struct bpf_htab *htab)
{
return !htab_is_percpu(htab) && !htab_is_lru(htab);
}
static void htab_free_prealloced_timers(struct bpf_htab *htab)
{
u32 num_entries = htab->map.max_entries;
int i;
if (!btf_record_has_field(htab->map.record, BPF_TIMER))
return;
if (htab_has_extra_elems(htab))
num_entries += num_possible_cpus();
for (i = 0; i < num_entries; i++) {
struct htab_elem *elem;
elem = get_htab_elem(htab, i);
bpf_obj_free_timer(htab->map.record, elem->key + round_up(htab->map.key_size, 8));
cond_resched();
}
}
static void htab_free_prealloced_fields(struct bpf_htab *htab)
{
u32 num_entries = htab->map.max_entries;
int i;
if (IS_ERR_OR_NULL(htab->map.record))
return;
if (htab_has_extra_elems(htab))
num_entries += num_possible_cpus();
for (i = 0; i < num_entries; i++) {
struct htab_elem *elem;
elem = get_htab_elem(htab, i);
if (htab_is_percpu(htab)) {
void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size);
int cpu;
for_each_possible_cpu(cpu) {
bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu));
cond_resched();
}
} else {
bpf_obj_free_fields(htab->map.record, elem->key + round_up(htab->map.key_size, 8));
cond_resched();
}
cond_resched();
}
}
static void htab_free_elems(struct bpf_htab *htab)
{
int i;
if (!htab_is_percpu(htab))
goto free_elems;
for (i = 0; i < htab->map.max_entries; i++) {
void __percpu *pptr;
pptr = htab_elem_get_ptr(get_htab_elem(htab, i),
htab->map.key_size);
free_percpu(pptr);
cond_resched();
}
free_elems:
bpf_map_area_free(htab->elems);
}
/* The LRU list has a lock (lru_lock). Each htab bucket has a lock
* (bucket_lock). If both locks need to be acquired together, the lock
* order is always lru_lock -> bucket_lock and this only happens in
* bpf_lru_list.c logic. For example, certain code path of
* bpf_lru_pop_free(), which is called by function prealloc_lru_pop(),
* will acquire lru_lock first followed by acquiring bucket_lock.
*
* In hashtab.c, to avoid deadlock, lock acquisition of
* bucket_lock followed by lru_lock is not allowed. In such cases,
* bucket_lock needs to be released first before acquiring lru_lock.
*/
static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key,
u32 hash)
{
struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash);
struct htab_elem *l;
if (node) {
bpf_map_inc_elem_count(&htab->map);
l = container_of(node, struct htab_elem, lru_node);
memcpy(l->key, key, htab->map.key_size);
return l;
}
return NULL;
}
static int prealloc_init(struct bpf_htab *htab)
{
u32 num_entries = htab->map.max_entries;
int err = -ENOMEM, i;
if (htab_has_extra_elems(htab))
num_entries += num_possible_cpus();
htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries,
htab->map.numa_node);
if (!htab->elems)
return -ENOMEM;
if (!htab_is_percpu(htab))
goto skip_percpu_elems;
for (i = 0; i < num_entries; i++) {
u32 size = round_up(htab->map.value_size, 8);
void __percpu *pptr;
pptr = bpf_map_alloc_percpu(&htab->map, size, 8,
GFP_USER | __GFP_NOWARN);
if (!pptr)
goto free_elems;
htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size,
pptr);
cond_resched();
}
skip_percpu_elems:
if (htab_is_lru(htab))
err = bpf_lru_init(&htab->lru,
htab->map.map_flags & BPF_F_NO_COMMON_LRU,
offsetof(struct htab_elem, hash) -
offsetof(struct htab_elem, lru_node),
htab_lru_map_delete_node,
htab);
else
err = pcpu_freelist_init(&htab->freelist);
if (err)
goto free_elems;
if (htab_is_lru(htab))
bpf_lru_populate(&htab->lru, htab->elems,
offsetof(struct htab_elem, lru_node),
htab->elem_size, num_entries);
else
pcpu_freelist_populate(&htab->freelist,
htab->elems + offsetof(struct htab_elem, fnode),
htab->elem_size, num_entries);
return 0;
free_elems:
htab_free_elems(htab);
return err;
}
static void prealloc_destroy(struct bpf_htab *htab)
{
htab_free_elems(htab);
if (htab_is_lru(htab))
bpf_lru_destroy(&htab->lru);
else
pcpu_freelist_destroy(&htab->freelist);
}
static int alloc_extra_elems(struct bpf_htab *htab)
{
struct htab_elem *__percpu *pptr, *l_new;
struct pcpu_freelist_node *l;
int cpu;
pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8,
GFP_USER | __GFP_NOWARN);
if (!pptr)
return -ENOMEM;
for_each_possible_cpu(cpu) {
l = pcpu_freelist_pop(&htab->freelist);
/* pop will succeed, since prealloc_init()
* preallocated extra num_possible_cpus elements
*/
l_new = container_of(l, struct htab_elem, fnode);
*per_cpu_ptr(pptr, cpu) = l_new;
}
htab->extra_elems = pptr;
return 0;
}
/* Called from syscall */
static int htab_map_alloc_check(union bpf_attr *attr)
{
bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
/* percpu_lru means each cpu has its own LRU list.
* it is different from BPF_MAP_TYPE_PERCPU_HASH where
* the map's value itself is percpu. percpu_lru has
* nothing to do with the map's value.
*/
bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED);
int numa_node = bpf_map_attr_numa_node(attr);
BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) !=
offsetof(struct htab_elem, hash_node.pprev));
if (zero_seed && !capable(CAP_SYS_ADMIN))
/* Guard against local DoS, and discourage production use. */
return -EPERM;
if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK ||
!bpf_map_flags_access_ok(attr->map_flags))
return -EINVAL;
if (!lru && percpu_lru)
return -EINVAL;
if (lru && !prealloc)
return -ENOTSUPP;
if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru))
return -EINVAL;
/* check sanity of attributes.
* value_size == 0 may be allowed in the future to use map as a set
*/
if (attr->max_entries == 0 || attr->key_size == 0 ||
attr->value_size == 0)
return -EINVAL;
if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE -
sizeof(struct htab_elem))
/* if key_size + value_size is bigger, the user space won't be
* able to access the elements via bpf syscall. This check
* also makes sure that the elem_size doesn't overflow and it's
* kmalloc-able later in htab_map_update_elem()
*/
return -E2BIG;
return 0;
}
static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
{
bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
/* percpu_lru means each cpu has its own LRU list.
* it is different from BPF_MAP_TYPE_PERCPU_HASH where
* the map's value itself is percpu. percpu_lru has
* nothing to do with the map's value.
*/
bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
struct bpf_htab *htab;
int err, i;
htab = bpf_map_area_alloc(sizeof(*htab), NUMA_NO_NODE);
if (!htab)
return ERR_PTR(-ENOMEM);
lockdep_register_key(&htab->lockdep_key);
bpf_map_init_from_attr(&htab->map, attr);
if (percpu_lru) {
/* ensure each CPU's lru list has >=1 elements.
* since we are at it, make each lru list has the same
* number of elements.
*/
htab->map.max_entries = roundup(attr->max_entries,
num_possible_cpus());
if (htab->map.max_entries < attr->max_entries)
htab->map.max_entries = rounddown(attr->max_entries,
num_possible_cpus());
}
/* hash table size must be power of 2 */
htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
htab->elem_size = sizeof(struct htab_elem) +
round_up(htab->map.key_size, 8);
if (percpu)
htab->elem_size += sizeof(void *);
else
htab->elem_size += round_up(htab->map.value_size, 8);
err = -E2BIG;
/* prevent zero size kmalloc and check for u32 overflow */
if (htab->n_buckets == 0 ||
htab->n_buckets > U32_MAX / sizeof(struct bucket))
goto free_htab;
err = bpf_map_init_elem_count(&htab->map);
if (err)
goto free_htab;
err = -ENOMEM;
htab->buckets = bpf_map_area_alloc(htab->n_buckets *
sizeof(struct bucket),
htab->map.numa_node);
if (!htab->buckets)
goto free_elem_count;
for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) {
htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map,
sizeof(int),
sizeof(int),
GFP_USER);
if (!htab->map_locked[i])
goto free_map_locked;
}
if (htab->map.map_flags & BPF_F_ZERO_SEED)
htab->hashrnd = 0;
else
htab->hashrnd = get_random_u32();
htab_init_buckets(htab);
/* compute_batch_value() computes batch value as num_online_cpus() * 2
* and __percpu_counter_compare() needs
* htab->max_entries - cur_number_of_elems to be more than batch * num_online_cpus()
* for percpu_counter to be faster than atomic_t. In practice the average bpf
* hash map size is 10k, which means that a system with 64 cpus will fill
* hashmap to 20% of 10k before percpu_counter becomes ineffective. Therefore
* define our own batch count as 32 then 10k hash map can be filled up to 80%:
* 10k - 8k > 32 _batch_ * 64 _cpus_
* and __percpu_counter_compare() will still be fast. At that point hash map
* collisions will dominate its performance anyway. Assume that hash map filled
* to 50+% isn't going to be O(1) and use the following formula to choose
* between percpu_counter and atomic_t.
*/
#define PERCPU_COUNTER_BATCH 32
if (attr->max_entries / 2 > num_online_cpus() * PERCPU_COUNTER_BATCH)
htab->use_percpu_counter = true;
if (htab->use_percpu_counter) {
err = percpu_counter_init(&htab->pcount, 0, GFP_KERNEL);
if (err)
goto free_map_locked;
}
if (prealloc) {
err = prealloc_init(htab);
if (err)
goto free_map_locked;
if (!percpu && !lru) {
/* lru itself can remove the least used element, so
* there is no need for an extra elem during map_update.
*/
err = alloc_extra_elems(htab);
if (err)
goto free_prealloc;
}
} else {
err = bpf_mem_alloc_init(&htab->ma, htab->elem_size, false);
if (err)
goto free_map_locked;
if (percpu) {
err = bpf_mem_alloc_init(&htab->pcpu_ma,
round_up(htab->map.value_size, 8), true);
if (err)
goto free_map_locked;
}
}
return &htab->map;
free_prealloc:
prealloc_destroy(htab);
free_map_locked:
if (htab->use_percpu_counter)
percpu_counter_destroy(&htab->pcount);
for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
free_percpu(htab->map_locked[i]);
bpf_map_area_free(htab->buckets);
bpf_mem_alloc_destroy(&htab->pcpu_ma);
bpf_mem_alloc_destroy(&htab->ma);
free_elem_count:
bpf_map_free_elem_count(&htab->map);
free_htab:
lockdep_unregister_key(&htab->lockdep_key);
bpf_map_area_free(htab);
return ERR_PTR(err);
}
static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd)
{
if (likely(key_len % 4 == 0))
return jhash2(key, key_len / 4, hashrnd);
return jhash(key, key_len, hashrnd);
}
static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
{
return &htab->buckets[hash & (htab->n_buckets - 1)];
}
static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash)
{
return &__select_bucket(htab, hash)->head;
}
/* this lookup function can only be called with bucket lock taken */
static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash,
void *key, u32 key_size)
{
struct hlist_nulls_node *n;
struct htab_elem *l;
hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
if (l->hash == hash && !memcmp(&l->key, key, key_size))
return l;
return NULL;
}
/* can be called without bucket lock. it will repeat the loop in
* the unlikely event when elements moved from one bucket into another
* while link list is being walked
*/
static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head,
u32 hash, void *key,
u32 key_size, u32 n_buckets)
{
struct hlist_nulls_node *n;
struct htab_elem *l;
again:
hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
if (l->hash == hash && !memcmp(&l->key, key, key_size))
return l;
if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1))))
goto again;
return NULL;
}
/* Called from syscall or from eBPF program directly, so
* arguments have to match bpf_map_lookup_elem() exactly.
* The return value is adjusted by BPF instructions
* in htab_map_gen_lookup().
*/
static void *__htab_map_lookup_elem(struct bpf_map *map, void *key)
{
struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
struct hlist_nulls_head *head;
struct htab_elem *l;
u32 hash, key_size;
WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
!rcu_read_lock_bh_held());
key_size = map->key_size;
hash = htab_map_hash(key, key_size, htab->hashrnd);
head = select_bucket(htab, hash);
l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
return l;
}
static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
{
struct htab_elem *l = __htab_map_lookup_elem(map, key);
if (l)
return l->key + round_up(map->key_size, 8);
return NULL;
}
/* inline bpf_map_lookup_elem() call.
* Instead of:
* bpf_prog
* bpf_map_lookup_elem
* map->ops->map_lookup_elem
* htab_map_lookup_elem
* __htab_map_lookup_elem
* do:
* bpf_prog
* __htab_map_lookup_elem
*/
static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
{
struct bpf_insn *insn = insn_buf;
const int ret = BPF_REG_0;
BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
(void *(*)(struct bpf_map *map, void *key))NULL));
*insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
offsetof(struct htab_elem, key) +
round_up(map->key_size, 8));
return insn - insn_buf;
}
static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map,
void *key, const bool mark)
{
struct htab_elem *l = __htab_map_lookup_elem(map, key);
if (l) {
if (mark)
bpf_lru_node_set_ref(&l->lru_node);
return l->key + round_up(map->key_size, 8);
}
return NULL;
}
static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key)
{
return __htab_lru_map_lookup_elem(map, key, true);
}
static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key)
{
return __htab_lru_map_lookup_elem(map, key, false);
}
static int htab_lru_map_gen_lookup(struct bpf_map *map,
struct bpf_insn *insn_buf)
{
struct bpf_insn *insn = insn_buf;
const int ret = BPF_REG_0;
const int ref_reg = BPF_REG_1;
BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
(void *(*)(struct bpf_map *map, void *key))NULL));
*insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4);
*insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret,
offsetof(struct htab_elem, lru_node) +
offsetof(struct bpf_lru_node, ref));
*insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1);
*insn++ = BPF_ST_MEM(BPF_B, ret,
offsetof(struct htab_elem, lru_node) +
offsetof(struct bpf_lru_node, ref),
1);
*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
offsetof(struct htab_elem, key) +
round_up(map->key_size, 8));
return insn - insn_buf;
}
static void check_and_free_fields(struct bpf_htab *htab,
struct htab_elem *elem)
{
if (htab_is_percpu(htab)) {
void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size);
int cpu;
for_each_possible_cpu(cpu)
bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu));
} else {
void *map_value = elem->key + round_up(htab->map.key_size, 8);
bpf_obj_free_fields(htab->map.record, map_value);
}
}
/* It is called from the bpf_lru_list when the LRU needs to delete
* older elements from the htab.
*/
static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node)
{
struct bpf_htab *htab = arg;
struct htab_elem *l = NULL, *tgt_l;
struct hlist_nulls_head *head;
struct hlist_nulls_node *n;
unsigned long flags;
struct bucket *b;
int ret;
tgt_l = container_of(node, struct htab_elem, lru_node);
b = __select_bucket(htab, tgt_l->hash);
head = &b->head;
ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags);
if (ret)
return false;
hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
if (l == tgt_l) {
hlist_nulls_del_rcu(&l->hash_node);
check_and_free_fields(htab, l);
bpf_map_dec_elem_count(&htab->map);
break;
}
htab_unlock_bucket(htab, b, tgt_l->hash, flags);
return l == tgt_l;
}
/* Called from syscall */
static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
{
struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
struct hlist_nulls_head *head;
struct htab_elem *l, *next_l;
u32 hash, key_size;
int i = 0;
WARN_ON_ONCE(!rcu_read_lock_held());
key_size = map->key_size;
if (!key)
goto find_first_elem;
hash = htab_map_hash(key, key_size, htab->hashrnd);
head = select_bucket(htab, hash);
/* lookup the key */
l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
if (!l)
goto find_first_elem;
/* key was found, get next key in the same bucket */
next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)),
struct htab_elem, hash_node);
if (next_l) {
/* if next elem in this hash list is non-zero, just return it */
memcpy(next_key, next_l->key, key_size);
return 0;
}
/* no more elements in this hash list, go to the next bucket */
i = hash & (htab->n_buckets - 1);
i++;
find_first_elem:
/* iterate over buckets */
for (; i < htab->n_buckets; i++) {
head = select_bucket(htab, i);
/* pick first element in the bucket */
next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)),
struct htab_elem, hash_node);
if (next_l) {
/* if it's not empty, just return it */
memcpy(next_key, next_l->key, key_size);
return 0;
}
}
/* iterated over all buckets and all elements */
return -ENOENT;
}
static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
{
check_and_free_fields(htab, l);
if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
bpf_mem_cache_free(&htab->pcpu_ma, l->ptr_to_pptr);
bpf_mem_cache_free(&htab->ma, l);
}
static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l)
{
struct bpf_map *map = &htab->map;
void *ptr;
if (map->ops->map_fd_put_ptr) {
ptr = fd_htab_map_get_ptr(map, l);
map->ops->map_fd_put_ptr(ptr);
}
}
static bool is_map_full(struct bpf_htab *htab)
{
if (htab->use_percpu_counter)
return __percpu_counter_compare(&htab->pcount, htab->map.max_entries,
PERCPU_COUNTER_BATCH) >= 0;
return atomic_read(&htab->count) >= htab->map.max_entries;
}
static void inc_elem_count(struct bpf_htab *htab)
{
bpf_map_inc_elem_count(&htab->map);
if (htab->use_percpu_counter)
percpu_counter_add_batch(&htab->pcount, 1, PERCPU_COUNTER_BATCH);
else
atomic_inc(&htab->count);
}
static void dec_elem_count(struct bpf_htab *htab)
{
bpf_map_dec_elem_count(&htab->map);
if (htab->use_percpu_counter)
percpu_counter_add_batch(&htab->pcount, -1, PERCPU_COUNTER_BATCH);
else
atomic_dec(&htab->count);
}
static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
{
htab_put_fd_value(htab, l);
if (htab_is_prealloc(htab)) {
bpf_map_dec_elem_count(&htab->map);
check_and_free_fields(htab, l);
__pcpu_freelist_push(&htab->freelist, &l->fnode);
} else {
dec_elem_count(htab);
htab_elem_free(htab, l);
}
}
static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr,
void *value, bool onallcpus)
{
if (!onallcpus) {
/* copy true value_size bytes */
copy_map_value(&htab->map, this_cpu_ptr(pptr), value);
} else {
u32 size = round_up(htab->map.value_size, 8);
int off = 0, cpu;
for_each_possible_cpu(cpu) {
copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value + off);
off += size;
}
}
}
static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr,
void *value, bool onallcpus)
{
/* When not setting the initial value on all cpus, zero-fill element
* values for other cpus. Otherwise, bpf program has no way to ensure
* known initial values for cpus other than current one
* (onallcpus=false always when coming from bpf prog).
*/
if (!onallcpus) {
int current_cpu = raw_smp_processor_id();
int cpu;
for_each_possible_cpu(cpu) {
if (cpu == current_cpu)
copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value);
else /* Since elem is preallocated, we cannot touch special fields */
zero_map_value(&htab->map, per_cpu_ptr(pptr, cpu));
}
} else {
pcpu_copy_value(htab, pptr, value, onallcpus);
}
}
static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab)
{
return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS &&
BITS_PER_LONG == 64;
}
static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
void *value, u32 key_size, u32 hash,
bool percpu, bool onallcpus,
struct htab_elem *old_elem)
{
u32 size = htab->map.value_size;
bool prealloc = htab_is_prealloc(htab);
struct htab_elem *l_new, **pl_new;
void __percpu *pptr;
if (prealloc) {
if (old_elem) {
/* if we're updating the existing element,
* use per-cpu extra elems to avoid freelist_pop/push
*/
pl_new = this_cpu_ptr(htab->extra_elems);
l_new = *pl_new;
htab_put_fd_value(htab, old_elem);
*pl_new = old_elem;
} else {
struct pcpu_freelist_node *l;
l = __pcpu_freelist_pop(&htab->freelist);
if (!l)
return ERR_PTR(-E2BIG);
l_new = container_of(l, struct htab_elem, fnode);
bpf_map_inc_elem_count(&htab->map);
}
} else {
if (is_map_full(htab))
if (!old_elem)
/* when map is full and update() is replacing
* old element, it's ok to allocate, since
* old element will be freed immediately.
* Otherwise return an error
*/
return ERR_PTR(-E2BIG);
inc_elem_count(htab);
l_new = bpf_mem_cache_alloc(&htab->ma);
if (!l_new) {
l_new = ERR_PTR(-ENOMEM);
goto dec_count;
}
}
memcpy(l_new->key, key, key_size);
if (percpu) {
if (prealloc) {
pptr = htab_elem_get_ptr(l_new, key_size);
} else {
/* alloc_percpu zero-fills */
pptr = bpf_mem_cache_alloc(&htab->pcpu_ma);
if (!pptr) {
bpf_mem_cache_free(&htab->ma, l_new);
l_new = ERR_PTR(-ENOMEM);
goto dec_count;
}
l_new->ptr_to_pptr = pptr;
pptr = *(void **)pptr;
}
pcpu_init_value(htab, pptr, value, onallcpus);
if (!prealloc)
htab_elem_set_ptr(l_new, key_size, pptr);
} else if (fd_htab_map_needs_adjust(htab)) {
size = round_up(size, 8);
memcpy(l_new->key + round_up(key_size, 8), value, size);
} else {
copy_map_value(&htab->map,
l_new->key + round_up(key_size, 8),
value);
}
l_new->hash = hash;
return l_new;
dec_count:
dec_elem_count(htab);
return l_new;
}
static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
u64 map_flags)
{
if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
/* elem already exists */
return -EEXIST;
if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
/* elem doesn't exist, cannot update it */
return -ENOENT;
return 0;
}
/* Called from syscall or from eBPF program */
static long htab_map_update_elem(struct bpf_map *map, void *key, void *value,
u64 map_flags)
{
struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
struct htab_elem *l_new = NULL, *l_old;
struct hlist_nulls_head *head;
unsigned long flags;
struct bucket *b;
u32 key_size, hash;
int ret;
if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
/* unknown flags */
return -EINVAL;
WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
!rcu_read_lock_bh_held());
key_size = map->key_size;
hash = htab_map_hash(key, key_size, htab->hashrnd);
b = __select_bucket(htab, hash);
head = &b->head;
if (unlikely(map_flags & BPF_F_LOCK)) {
if (unlikely(!btf_record_has_field(map->record, BPF_SPIN_LOCK)))
return -EINVAL;
/* find an element without taking the bucket lock */
l_old = lookup_nulls_elem_raw(head, hash, key, key_size,
htab->n_buckets);
ret = check_flags(htab, l_old, map_flags);
if (ret)
return ret;
if (l_old) {
/* grab the element lock and update value in place */
copy_map_value_locked(map,
l_old->key + round_up(key_size, 8),
value, false);
return 0;
}
/* fall through, grab the bucket lock and lookup again.
* 99.9% chance that the element won't be found,
* but second lookup under lock has to be done.
*/
}
ret = htab_lock_bucket(htab, b, hash, &flags);
if (ret)
return ret;
l_old = lookup_elem_raw(head, hash, key, key_size);
ret = check_flags(htab, l_old, map_flags);
if (ret)
goto err;
if (unlikely(l_old && (map_flags & BPF_F_LOCK))) {
/* first lookup without the bucket lock didn't find the element,
* but second lookup with the bucket lock found it.
* This case is highly unlikely, but has to be dealt with:
* grab the element lock in addition to the bucket lock
* and update element in place
*/
copy_map_value_locked(map,
l_old->key + round_up(key_size, 8),
value, false);
ret = 0;
goto err;
}
l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false,
l_old);
if (IS_ERR(l_new)) {
/* all pre-allocated elements are in use or memory exhausted */
ret = PTR_ERR(l_new);
goto err;
}
/* add new element to the head of the list, so that
* concurrent search will find it before old elem
*/
hlist_nulls_add_head_rcu(&l_new->hash_node, head);
if (l_old) {
hlist_nulls_del_rcu(&l_old->hash_node);
if (!htab_is_prealloc(htab))
free_htab_elem(htab, l_old);
else
check_and_free_fields(htab, l_old);
}
ret = 0;
err:
htab_unlock_bucket(htab, b, hash, flags);
return ret;
}
static void htab_lru_push_free(struct bpf_htab *htab, struct htab_elem *elem)
{
check_and_free_fields(htab, elem);
bpf_map_dec_elem_count(&htab->map);
bpf_lru_push_free(&htab->lru, &elem->lru_node);
}
static long htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value,
u64 map_flags)
{
struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
struct htab_elem *l_new, *l_old = NULL;
struct hlist_nulls_head *head;
unsigned long flags;
struct bucket *b;
u32 key_size, hash;
int ret;
if (unlikely(map_flags > BPF_EXIST))
/* unknown flags */
return -EINVAL;
WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
!rcu_read_lock_bh_held());
key_size = map->key_size;
hash = htab_map_hash(key, key_size, htab->hashrnd);
b = __select_bucket(htab, hash);
head = &b->head;
/* For LRU, we need to alloc before taking bucket's
* spinlock because getting free nodes from LRU may need
* to remove older elements from htab and this removal
* operation will need a bucket lock.
*/
l_new = prealloc_lru_pop(htab, key, hash);
if (!l_new)
return -ENOMEM;
copy_map_value(&htab->map,
l_new->key + round_up(map->key_size, 8), value);
ret = htab_lock_bucket(htab, b, hash, &flags);
if (ret)
goto err_lock_bucket;
l_old = lookup_elem_raw(head, hash, key, key_size);
ret = check_flags(htab, l_old, map_flags);
if (ret)
goto err;
/* add new element to the head of the list, so that
* concurrent search will find it before old elem
*/
hlist_nulls_add_head_rcu(&l_new->hash_node, head);
if (l_old) {
bpf_lru_node_set_ref(&l_new->lru_node);
hlist_nulls_del_rcu(&l_old->hash_node);
}
ret = 0;
err:
htab_unlock_bucket(htab, b, hash, flags);
err_lock_bucket:
if (ret)
htab_lru_push_free(htab, l_new);
else if (l_old)
htab_lru_push_free(htab, l_old);
return ret;
}
static long __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
void *value, u64 map_flags,
bool onallcpus)
{
struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
struct htab_elem *l_new = NULL, *l_old;
struct hlist_nulls_head *head;
unsigned long flags;
struct bucket *b;
u32 key_size, hash;
int ret;
if (unlikely(map_flags > BPF_EXIST))
/* unknown flags */
return -EINVAL;
WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
!rcu_read_lock_bh_held());
key_size = map->key_size;
hash = htab_map_hash(key, key_size, htab->hashrnd);
b = __select_bucket(htab, hash);
head = &b->head;
ret = htab_lock_bucket(htab, b, hash, &flags);
if (ret)
return ret;
l_old = lookup_elem_raw(head, hash, key, key_size);
ret = check_flags(htab, l_old, map_flags);
if (ret)
goto err;
if (l_old) {
/* per-cpu hash map can update value in-place */
pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
value, onallcpus);
} else {
l_new = alloc_htab_elem(htab, key, value, key_size,
hash, true, onallcpus, NULL);
if (IS_ERR(l_new)) {
ret = PTR_ERR(l_new);
goto err;
}
hlist_nulls_add_head_rcu(&l_new->hash_node, head);
}
ret = 0;
err:
htab_unlock_bucket(htab, b, hash, flags);
return ret;
}
static long __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
void *value, u64 map_flags,
bool onallcpus)
{
struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
struct htab_elem *l_new = NULL, *l_old;
struct hlist_nulls_head *head;
unsigned long flags;
struct bucket *b;
u32 key_size, hash;
int ret;
if (unlikely(map_flags > BPF_EXIST))
/* unknown flags */
return -EINVAL;
WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
!rcu_read_lock_bh_held());
key_size = map->key_size;
hash = htab_map_hash(key, key_size, htab->hashrnd);
b = __select_bucket(htab, hash);
head = &b->head;
/* For LRU, we need to alloc before taking bucket's
* spinlock because LRU's elem alloc may need
* to remove older elem from htab and this removal
* operation will need a bucket lock.
*/
if (map_flags != BPF_EXIST) {
l_new = prealloc_lru_pop(htab, key, hash);
if (!l_new)
return -ENOMEM;
}
ret = htab_lock_bucket(htab, b, hash, &flags);
if (ret)
goto err_lock_bucket;
l_old = lookup_elem_raw(head, hash, key, key_size);
ret = check_flags(htab, l_old, map_flags);
if (ret)
goto err;
if (l_old) {
bpf_lru_node_set_ref(&l_old->lru_node);
/* per-cpu hash map can update value in-place */
pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
value, onallcpus);
} else {
pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size),
value, onallcpus);
hlist_nulls_add_head_rcu(&l_new->hash_node, head);
l_new = NULL;
}
ret = 0;
err:
htab_unlock_bucket(htab, b, hash, flags);
err_lock_bucket:
if (l_new) {
bpf_map_dec_elem_count(&htab->map);
bpf_lru_push_free(&htab->lru, &l_new->lru_node);
}
return ret;
}
static long htab_percpu_map_update_elem(struct bpf_map *map, void *key,
void *value, u64 map_flags)
{
return __htab_percpu_map_update_elem(map, key, value, map_flags, false);
}
static long htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
void *value, u64 map_flags)
{
return __htab_lru_percpu_map_update_elem(map, key, value, map_flags,
false);
}
/* Called from syscall or from eBPF program */
static long htab_map_delete_elem(struct bpf_map *map, void *key)
{
struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
struct hlist_nulls_head *head;
struct bucket *b;
struct htab_elem *l;
unsigned long flags;
u32 hash, key_size;
int ret;
WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
!rcu_read_lock_bh_held());
key_size = map->key_size;
hash = htab_map_hash(key, key_size, htab->hashrnd);
b = __select_bucket(htab, hash);
head = &b->head;
ret = htab_lock_bucket(htab, b, hash, &flags);
if (ret)
return ret;
l = lookup_elem_raw(head, hash, key, key_size);
if (l) {
hlist_nulls_del_rcu(&l->hash_node);
free_htab_elem(htab, l);
} else {
ret = -ENOENT;
}
htab_unlock_bucket(htab, b, hash, flags);
return ret;
}
static long htab_lru_map_delete_elem(struct bpf_map *map, void *key)
{
struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
struct hlist_nulls_head *head;
struct bucket *b;
struct htab_elem *l;
unsigned long flags;
u32 hash, key_size;
int ret;
WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
!rcu_read_lock_bh_held());
key_size = map->key_size;
hash = htab_map_hash(key, key_size, htab->hashrnd);
b = __select_bucket(htab, hash);
head = &b->head;
ret = htab_lock_bucket(htab, b, hash, &flags);
if (ret)
return ret;
l = lookup_elem_raw(head, hash, key, key_size);
if (l)
hlist_nulls_del_rcu(&l->hash_node);
else
ret = -ENOENT;
htab_unlock_bucket(htab, b, hash, flags);
if (l)
htab_lru_push_free(htab, l);
return ret;
}
static void delete_all_elements(struct bpf_htab *htab)
{
int i;
/* It's called from a worker thread, so disable migration here,
* since bpf_mem_cache_free() relies on that.
*/
migrate_disable();
for (i = 0; i < htab->n_buckets; i++) {
struct hlist_nulls_head *head = select_bucket(htab, i);
struct hlist_nulls_node *n;
struct htab_elem *l;
hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
hlist_nulls_del_rcu(&l->hash_node);
htab_elem_free(htab, l);
}
}
migrate_enable();
}
static void htab_free_malloced_timers(struct bpf_htab *htab)
{
int i;
rcu_read_lock();
for (i = 0; i < htab->n_buckets; i++) {
struct hlist_nulls_head *head = select_bucket(htab, i);
struct hlist_nulls_node *n;
struct htab_elem *l;
hlist_nulls_for_each_entry(l, n, head, hash_node) {
/* We only free timer on uref dropping to zero */
bpf_obj_free_timer(htab->map.record, l->key + round_up(htab->map.key_size, 8));
}
cond_resched_rcu();
}
rcu_read_unlock();
}
static void htab_map_free_timers(struct bpf_map *map)
{
struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
/* We only free timer on uref dropping to zero */
if (!btf_record_has_field(htab->map.record, BPF_TIMER))
return;
if (!htab_is_prealloc(htab))
htab_free_malloced_timers(htab);
else
htab_free_prealloced_timers(htab);
}
/* Called when map->refcnt goes to zero, either from workqueue or from syscall */
static void htab_map_free(struct bpf_map *map)
{
struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
int i;
/* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback.
* bpf_free_used_maps() is called after bpf prog is no longer executing.
* There is no need to synchronize_rcu() here to protect map elements.
*/
/* htab no longer uses call_rcu() directly. bpf_mem_alloc does it
* underneath and is reponsible for waiting for callbacks to finish
* during bpf_mem_alloc_destroy().
*/
if (!htab_is_prealloc(htab)) {
delete_all_elements(htab);
} else {
htab_free_prealloced_fields(htab);
prealloc_destroy(htab);
}
bpf_map_free_elem_count(map);
free_percpu(htab->extra_elems);
bpf_map_area_free(htab->buckets);
bpf_mem_alloc_destroy(&htab->pcpu_ma);
bpf_mem_alloc_destroy(&htab->ma);
if (htab->use_percpu_counter)
percpu_counter_destroy(&htab->pcount);
for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
free_percpu(htab->map_locked[i]);
lockdep_unregister_key(&htab->lockdep_key);
bpf_map_area_free(htab);
}
static void htab_map_seq_show_elem(struct bpf_map *map, void *key,
struct seq_file *m)
{
void *value;
rcu_read_lock();
value = htab_map_lookup_elem(map, key);
if (!value) {
rcu_read_unlock();
return;
}
btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
seq_puts(m, ": ");
btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
seq_puts(m, "\n");
rcu_read_unlock();
}
static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
void *value, bool is_lru_map,
bool is_percpu, u64 flags)
{
struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
struct hlist_nulls_head *head;
unsigned long bflags;
struct htab_elem *l;
u32 hash, key_size;
struct bucket *b;
int ret;
key_size = map->key_size;
hash = htab_map_hash(key, key_size, htab->hashrnd);
b = __select_bucket(htab, hash);
head = &b->head;
ret = htab_lock_bucket(htab, b, hash, &bflags);
if (ret)
return ret;
l = lookup_elem_raw(head, hash, key, key_size);
if (!l) {
ret = -ENOENT;
} else {
if (is_percpu) {
u32 roundup_value_size = round_up(map->value_size, 8);
void __percpu *pptr;
int off = 0, cpu;
pptr = htab_elem_get_ptr(l, key_size);
for_each_possible_cpu(cpu) {
copy_map_value_long(&htab->map, value + off, per_cpu_ptr(pptr, cpu));
check_and_init_map_value(&htab->map, value + off);
off += roundup_value_size;
}
} else {
u32 roundup_key_size = round_up(map->key_size, 8);
if (flags & BPF_F_LOCK)
copy_map_value_locked(map, value, l->key +
roundup_key_size,
true);
else
copy_map_value(map, value, l->key +
roundup_key_size);
/* Zeroing special fields in the temp buffer */
check_and_init_map_value(map, value);
}
hlist_nulls_del_rcu(&l->hash_node);
if (!is_lru_map)
free_htab_elem(htab, l);
}
htab_unlock_bucket(htab, b, hash, bflags);
if (is_lru_map && l)
htab_lru_push_free(htab, l);
return ret;
}
static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
void *value, u64 flags)
{
return __htab_map_lookup_and_delete_elem(map, key, value, false, false,
flags);
}
static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
void *key, void *value,
u64 flags)
{
return __htab_map_lookup_and_delete_elem(map, key, value, false, true,
flags);
}
static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
void *value, u64 flags)
{
return __htab_map_lookup_and_delete_elem(map, key, value, true, false,
flags);
}
static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
void *key, void *value,
u64 flags)
{
return __htab_map_lookup_and_delete_elem(map, key, value, true, true,
flags);
}
static int
__htab_map_lookup_and_delete_batch(struct bpf_map *map,
const union bpf_attr *attr,
union bpf_attr __user *uattr,
bool do_delete, bool is_lru_map,
bool is_percpu)
{
struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
u32 bucket_cnt, total, key_size, value_size, roundup_key_size;
void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val;
void __user *uvalues = u64_to_user_ptr(attr->batch.values);
void __user *ukeys = u64_to_user_ptr(attr->batch.keys);
void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch);
u32 batch, max_count, size, bucket_size, map_id;
struct htab_elem *node_to_free = NULL;
u64 elem_map_flags, map_flags;
struct hlist_nulls_head *head;
struct hlist_nulls_node *n;
unsigned long flags = 0;
bool locked = false;
struct htab_elem *l;
struct bucket *b;
int ret = 0;
elem_map_flags = attr->batch.elem_flags;
if ((elem_map_flags & ~BPF_F_LOCK) ||
((elem_map_flags & BPF_F_LOCK) && !btf_record_has_field(map->record, BPF_SPIN_LOCK)))
return -EINVAL;
map_flags = attr->batch.flags;
if (map_flags)
return -EINVAL;
max_count = attr->batch.count;
if (!max_count)
return 0;
if (put_user(0, &uattr->batch.count))
return -EFAULT;
batch = 0;
if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch)))
return -EFAULT;
if (batch >= htab->n_buckets)
return -ENOENT;
key_size = htab->map.key_size;
roundup_key_size = round_up(htab->map.key_size, 8);
value_size = htab->map.value_size;
size = round_up(value_size, 8);
if (is_percpu)
value_size = size * num_possible_cpus();
total = 0;
/* while experimenting with hash tables with sizes ranging from 10 to
* 1000, it was observed that a bucket can have up to 5 entries.
*/
bucket_size = 5;
alloc:
/* We cannot do copy_from_user or copy_to_user inside
* the rcu_read_lock. Allocate enough space here.
*/
keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN);
values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN);
if (!keys || !values) {
ret = -ENOMEM;
goto after_loop;
}
again:
bpf_disable_instrumentation();
rcu_read_lock();
again_nocopy:
dst_key = keys;
dst_val = values;
b = &htab->buckets[batch];
head = &b->head;
/* do not grab the lock unless need it (bucket_cnt > 0). */
if (locked) {
ret = htab_lock_bucket(htab, b, batch, &flags);
if (ret) {
rcu_read_unlock();
bpf_enable_instrumentation();
goto after_loop;
}
}
bucket_cnt = 0;
hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
bucket_cnt++;
if (bucket_cnt && !locked) {
locked = true;
goto again_nocopy;
}
if (bucket_cnt > (max_count - total)) {
if (total == 0)
ret = -ENOSPC;
/* Note that since bucket_cnt > 0 here, it is implicit
* that the locked was grabbed, so release it.
*/
htab_unlock_bucket(htab, b, batch, flags);
rcu_read_unlock();
bpf_enable_instrumentation();
goto after_loop;
}
if (bucket_cnt > bucket_size) {
bucket_size = bucket_cnt;
/* Note that since bucket_cnt > 0 here, it is implicit
* that the locked was grabbed, so release it.
*/
htab_unlock_bucket(htab, b, batch, flags);
rcu_read_unlock();
bpf_enable_instrumentation();
kvfree(keys);
kvfree(values);
goto alloc;
}
/* Next block is only safe to run if you have grabbed the lock */
if (!locked)
goto next_batch;
hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
memcpy(dst_key, l->key, key_size);
if (is_percpu) {
int off = 0, cpu;
void __percpu *pptr;
pptr = htab_elem_get_ptr(l, map->key_size);
for_each_possible_cpu(cpu) {
copy_map_value_long(&htab->map, dst_val + off, per_cpu_ptr(pptr, cpu));
check_and_init_map_value(&htab->map, dst_val + off);
off += size;
}
} else {
value = l->key + roundup_key_size;
if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) {
struct bpf_map **inner_map = value;
/* Actual value is the id of the inner map */
map_id = map->ops->map_fd_sys_lookup_elem(*inner_map);
value = &map_id;
}
if (elem_map_flags & BPF_F_LOCK)
copy_map_value_locked(map, dst_val, value,
true);
else
copy_map_value(map, dst_val, value);
/* Zeroing special fields in the temp buffer */
check_and_init_map_value(map, dst_val);
}
if (do_delete) {
hlist_nulls_del_rcu(&l->hash_node);
/* bpf_lru_push_free() will acquire lru_lock, which
* may cause deadlock. See comments in function
* prealloc_lru_pop(). Let us do bpf_lru_push_free()
* after releasing the bucket lock.
*/
if (is_lru_map) {
l->batch_flink = node_to_free;
node_to_free = l;
} else {
free_htab_elem(htab, l);
}
}
dst_key += key_size;
dst_val += value_size;
}
htab_unlock_bucket(htab, b, batch, flags);
locked = false;
while (node_to_free) {
l = node_to_free;
node_to_free = node_to_free->batch_flink;
htab_lru_push_free(htab, l);
}
next_batch:
/* If we are not copying data, we can go to next bucket and avoid
* unlocking the rcu.
*/
if (!bucket_cnt && (batch + 1 < htab->n_buckets)) {
batch++;
goto again_nocopy;
}
rcu_read_unlock();
bpf_enable_instrumentation();
if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys,
key_size * bucket_cnt) ||
copy_to_user(uvalues + total * value_size, values,
value_size * bucket_cnt))) {
ret = -EFAULT;
goto after_loop;
}
total += bucket_cnt;
batch++;
if (batch >= htab->n_buckets) {
ret = -ENOENT;
goto after_loop;
}
goto again;
after_loop:
if (ret == -EFAULT)
goto out;
/* copy # of entries and next batch */
ubatch = u64_to_user_ptr(attr->batch.out_batch);
if (copy_to_user(ubatch, &batch, sizeof(batch)) ||
put_user(total, &uattr->batch.count))
ret = -EFAULT;
out:
kvfree(keys);
kvfree(values);
return ret;
}
static int
htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
union bpf_attr __user *uattr)
{
return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
false, true);
}
static int
htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
const union bpf_attr *attr,
union bpf_attr __user *uattr)
{
return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
false, true);
}
static int
htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
union bpf_attr __user *uattr)
{
return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
false, false);
}
static int
htab_map_lookup_and_delete_batch(struct bpf_map *map,
const union bpf_attr *attr,
union bpf_attr __user *uattr)
{
return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
false, false);
}
static int
htab_lru_percpu_map_lookup_batch(struct bpf_map *map,
const union bpf_attr *attr,
union bpf_attr __user *uattr)
{
return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
true, true);
}
static int
htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
const union bpf_attr *attr,
union bpf_attr __user *uattr)
{
return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
true, true);
}
static int
htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
union bpf_attr __user *uattr)
{
return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
true, false);
}
static int
htab_lru_map_lookup_and_delete_batch(struct bpf_map *map,
const union bpf_attr *attr,
union bpf_attr __user *uattr)
{
return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
true, false);
}
struct bpf_iter_seq_hash_map_info {
struct bpf_map *map;
struct bpf_htab *htab;
void *percpu_value_buf; // non-zero means percpu hash
u32 bucket_id;
u32 skip_elems;
};
static struct htab_elem *
bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info,
struct htab_elem *prev_elem)
{
const struct bpf_htab *htab = info->htab;
u32 skip_elems = info->skip_elems;
u32 bucket_id = info->bucket_id;
struct hlist_nulls_head *head;
struct hlist_nulls_node *n;
struct htab_elem *elem;
struct bucket *b;
u32 i, count;
if (bucket_id >= htab->n_buckets)
return NULL;
/* try to find next elem in the same bucket */
if (prev_elem) {
/* no update/deletion on this bucket, prev_elem should be still valid
* and we won't skip elements.
*/
n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node));
elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node);
if (elem)
return elem;
/* not found, unlock and go to the next bucket */
b = &htab->buckets[bucket_id++];
rcu_read_unlock();
skip_elems = 0;
}
for (i = bucket_id; i < htab->n_buckets; i++) {
b = &htab->buckets[i];
rcu_read_lock();
count = 0;
head = &b->head;
hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
if (count >= skip_elems) {
info->bucket_id = i;
info->skip_elems = count;
return elem;
}
count++;
}
rcu_read_unlock();
skip_elems = 0;
}
info->bucket_id = i;
info->skip_elems = 0;
return NULL;
}
static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos)
{
struct bpf_iter_seq_hash_map_info *info = seq->private;
struct htab_elem *elem;
elem = bpf_hash_map_seq_find_next(info, NULL);
if (!elem)
return NULL;
if (*pos == 0)
++*pos;
return elem;
}
static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
struct bpf_iter_seq_hash_map_info *info = seq->private;
++*pos;
++info->skip_elems;
return bpf_hash_map_seq_find_next(info, v);
}
static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem)
{
struct bpf_iter_seq_hash_map_info *info = seq->private;
u32 roundup_key_size, roundup_value_size;
struct bpf_iter__bpf_map_elem ctx = {};
struct bpf_map *map = info->map;
struct bpf_iter_meta meta;
int ret = 0, off = 0, cpu;
struct bpf_prog *prog;
void __percpu *pptr;
meta.seq = seq;
prog = bpf_iter_get_info(&meta, elem == NULL);
if (prog) {
ctx.meta = &meta;
ctx.map = info->map;
if (elem) {
roundup_key_size = round_up(map->key_size, 8);
ctx.key = elem->key;
if (!info->percpu_value_buf) {
ctx.value = elem->key + roundup_key_size;
} else {
roundup_value_size = round_up(map->value_size, 8);
pptr = htab_elem_get_ptr(elem, map->key_size);
for_each_possible_cpu(cpu) {
copy_map_value_long(map, info->percpu_value_buf + off,
per_cpu_ptr(pptr, cpu));
check_and_init_map_value(map, info->percpu_value_buf + off);
off += roundup_value_size;
}
ctx.value = info->percpu_value_buf;
}
}
ret = bpf_iter_run_prog(prog, &ctx);
}
return ret;
}
static int bpf_hash_map_seq_show(struct seq_file *seq, void *v)
{
return __bpf_hash_map_seq_show(seq, v);
}
static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v)
{
if (!v)
(void)__bpf_hash_map_seq_show(seq, NULL);
else
rcu_read_unlock();
}
static int bpf_iter_init_hash_map(void *priv_data,
struct bpf_iter_aux_info *aux)
{
struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
struct bpf_map *map = aux->map;
void *value_buf;
u32 buf_size;
if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
buf_size = round_up(map->value_size, 8) * num_possible_cpus();
value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
if (!value_buf)
return -ENOMEM;
seq_info->percpu_value_buf = value_buf;
}
bpf_map_inc_with_uref(map);
seq_info->map = map;
seq_info->htab = container_of(map, struct bpf_htab, map);
return 0;
}
static void bpf_iter_fini_hash_map(void *priv_data)
{
struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
bpf_map_put_with_uref(seq_info->map);
kfree(seq_info->percpu_value_buf);
}
static const struct seq_operations bpf_hash_map_seq_ops = {
.start = bpf_hash_map_seq_start,
.next = bpf_hash_map_seq_next,
.stop = bpf_hash_map_seq_stop,
.show = bpf_hash_map_seq_show,
};
static const struct bpf_iter_seq_info iter_seq_info = {
.seq_ops = &bpf_hash_map_seq_ops,
.init_seq_private = bpf_iter_init_hash_map,
.fini_seq_private = bpf_iter_fini_hash_map,
.seq_priv_size = sizeof(struct bpf_iter_seq_hash_map_info),
};
static long bpf_for_each_hash_elem(struct bpf_map *map, bpf_callback_t callback_fn,
void *callback_ctx, u64 flags)
{
struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
struct hlist_nulls_head *head;
struct hlist_nulls_node *n;
struct htab_elem *elem;
u32 roundup_key_size;
int i, num_elems = 0;
void __percpu *pptr;
struct bucket *b;
void *key, *val;
bool is_percpu;
u64 ret = 0;
if (flags != 0)
return -EINVAL;
is_percpu = htab_is_percpu(htab);
roundup_key_size = round_up(map->key_size, 8);
/* disable migration so percpu value prepared here will be the
* same as the one seen by the bpf program with bpf_map_lookup_elem().
*/
if (is_percpu)
migrate_disable();
for (i = 0; i < htab->n_buckets; i++) {
b = &htab->buckets[i];
rcu_read_lock();
head = &b->head;
hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
key = elem->key;
if (is_percpu) {
/* current cpu value for percpu map */
pptr = htab_elem_get_ptr(elem, map->key_size);
val = this_cpu_ptr(pptr);
} else {
val = elem->key + roundup_key_size;
}
num_elems++;
ret = callback_fn((u64)(long)map, (u64)(long)key,
(u64)(long)val, (u64)(long)callback_ctx, 0);
/* return value: 0 - continue, 1 - stop and return */
if (ret) {
rcu_read_unlock();
goto out;
}
}
rcu_read_unlock();
}
out:
if (is_percpu)
migrate_enable();
return num_elems;
}
static u64 htab_map_mem_usage(const struct bpf_map *map)
{
struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
u32 value_size = round_up(htab->map.value_size, 8);
bool prealloc = htab_is_prealloc(htab);
bool percpu = htab_is_percpu(htab);
bool lru = htab_is_lru(htab);
u64 num_entries;
u64 usage = sizeof(struct bpf_htab);
usage += sizeof(struct bucket) * htab->n_buckets;
usage += sizeof(int) * num_possible_cpus() * HASHTAB_MAP_LOCK_COUNT;
if (prealloc) {
num_entries = map->max_entries;
if (htab_has_extra_elems(htab))
num_entries += num_possible_cpus();
usage += htab->elem_size * num_entries;
if (percpu)
usage += value_size * num_possible_cpus() * num_entries;
else if (!lru)
usage += sizeof(struct htab_elem *) * num_possible_cpus();
} else {
#define LLIST_NODE_SZ sizeof(struct llist_node)
num_entries = htab->use_percpu_counter ?
percpu_counter_sum(&htab->pcount) :
atomic_read(&htab->count);
usage += (htab->elem_size + LLIST_NODE_SZ) * num_entries;
if (percpu) {
usage += (LLIST_NODE_SZ + sizeof(void *)) * num_entries;
usage += value_size * num_possible_cpus() * num_entries;
}
}
return usage;
}
BTF_ID_LIST_SINGLE(htab_map_btf_ids, struct, bpf_htab)
const struct bpf_map_ops htab_map_ops = {
.map_meta_equal = bpf_map_meta_equal,
.map_alloc_check = htab_map_alloc_check,
.map_alloc = htab_map_alloc,
.map_free = htab_map_free,
.map_get_next_key = htab_map_get_next_key,
.map_release_uref = htab_map_free_timers,
.map_lookup_elem = htab_map_lookup_elem,
.map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem,
.map_update_elem = htab_map_update_elem,
.map_delete_elem = htab_map_delete_elem,
.map_gen_lookup = htab_map_gen_lookup,
.map_seq_show_elem = htab_map_seq_show_elem,
.map_set_for_each_callback_args = map_set_for_each_callback_args,
.map_for_each_callback = bpf_for_each_hash_elem,
.map_mem_usage = htab_map_mem_usage,
BATCH_OPS(htab),
.map_btf_id = &htab_map_btf_ids[0],
.iter_seq_info = &iter_seq_info,
};
const struct bpf_map_ops htab_lru_map_ops = {
.map_meta_equal = bpf_map_meta_equal,
.map_alloc_check = htab_map_alloc_check,
.map_alloc = htab_map_alloc,
.map_free = htab_map_free,
.map_get_next_key = htab_map_get_next_key,
.map_release_uref = htab_map_free_timers,
.map_lookup_elem = htab_lru_map_lookup_elem,
.map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem,
.map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys,
.map_update_elem = htab_lru_map_update_elem,
.map_delete_elem = htab_lru_map_delete_elem,
.map_gen_lookup = htab_lru_map_gen_lookup,
.map_seq_show_elem = htab_map_seq_show_elem,
.map_set_for_each_callback_args = map_set_for_each_callback_args,
.map_for_each_callback = bpf_for_each_hash_elem,
.map_mem_usage = htab_map_mem_usage,
BATCH_OPS(htab_lru),
.map_btf_id = &htab_map_btf_ids[0],
.iter_seq_info = &iter_seq_info,
};
/* Called from eBPF program */
static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
{
struct htab_elem *l = __htab_map_lookup_elem(map, key);
if (l)
return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
else
return NULL;
}
static void *htab_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
{
struct htab_elem *l;
if (cpu >= nr_cpu_ids)
return NULL;
l = __htab_map_lookup_elem(map, key);
if (l)
return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu);
else
return NULL;
}
static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key)
{
struct htab_elem *l = __htab_map_lookup_elem(map, key);
if (l) {
bpf_lru_node_set_ref(&l->lru_node);
return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
}
return NULL;
}
static void *htab_lru_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
{
struct htab_elem *l;
if (cpu >= nr_cpu_ids)
return NULL;
l = __htab_map_lookup_elem(map, key);
if (l) {
bpf_lru_node_set_ref(&l->lru_node);
return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu);
}
return NULL;
}
int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
{
struct htab_elem *l;
void __percpu *pptr;
int ret = -ENOENT;
int cpu, off = 0;
u32 size;
/* per_cpu areas are zero-filled and bpf programs can only
* access 'value_size' of them, so copying rounded areas
* will not leak any kernel data
*/
size = round_up(map->value_size, 8);
rcu_read_lock();
l = __htab_map_lookup_elem(map, key);
if (!l)
goto out;
/* We do not mark LRU map element here in order to not mess up
* eviction heuristics when user space does a map walk.
*/
pptr = htab_elem_get_ptr(l, map->key_size);
for_each_possible_cpu(cpu) {
copy_map_value_long(map, value + off, per_cpu_ptr(pptr, cpu));
check_and_init_map_value(map, value + off);
off += size;
}
ret = 0;
out:
rcu_read_unlock();
return ret;
}
int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
u64 map_flags)
{
struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
int ret;
rcu_read_lock();
if (htab_is_lru(htab))
ret = __htab_lru_percpu_map_update_elem(map, key, value,
map_flags, true);
else
ret = __htab_percpu_map_update_elem(map, key, value, map_flags,
true);
rcu_read_unlock();
return ret;
}
static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key,
struct seq_file *m)
{
struct htab_elem *l;
void __percpu *pptr;
int cpu;
rcu_read_lock();
l = __htab_map_lookup_elem(map, key);
if (!l) {
rcu_read_unlock();
return;
}
btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
seq_puts(m, ": {\n");
pptr = htab_elem_get_ptr(l, map->key_size);
for_each_possible_cpu(cpu) {
seq_printf(m, "\tcpu%d: ", cpu);
btf_type_seq_show(map->btf, map->btf_value_type_id,
per_cpu_ptr(pptr, cpu), m);
seq_puts(m, "\n");
}
seq_puts(m, "}\n");
rcu_read_unlock();
}
const struct bpf_map_ops htab_percpu_map_ops = {
.map_meta_equal = bpf_map_meta_equal,
.map_alloc_check = htab_map_alloc_check,
.map_alloc = htab_map_alloc,
.map_free = htab_map_free,
.map_get_next_key = htab_map_get_next_key,
.map_lookup_elem = htab_percpu_map_lookup_elem,
.map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem,
.map_update_elem = htab_percpu_map_update_elem,
.map_delete_elem = htab_map_delete_elem,
.map_lookup_percpu_elem = htab_percpu_map_lookup_percpu_elem,
.map_seq_show_elem = htab_percpu_map_seq_show_elem,
.map_set_for_each_callback_args = map_set_for_each_callback_args,
.map_for_each_callback = bpf_for_each_hash_elem,
.map_mem_usage = htab_map_mem_usage,
BATCH_OPS(htab_percpu),
.map_btf_id = &htab_map_btf_ids[0],
.iter_seq_info = &iter_seq_info,
};
const struct bpf_map_ops htab_lru_percpu_map_ops = {
.map_meta_equal = bpf_map_meta_equal,
.map_alloc_check = htab_map_alloc_check,
.map_alloc = htab_map_alloc,
.map_free = htab_map_free,
.map_get_next_key = htab_map_get_next_key,
.map_lookup_elem = htab_lru_percpu_map_lookup_elem,
.map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem,
.map_update_elem = htab_lru_percpu_map_update_elem,
.map_delete_elem = htab_lru_map_delete_elem,
.map_lookup_percpu_elem = htab_lru_percpu_map_lookup_percpu_elem,
.map_seq_show_elem = htab_percpu_map_seq_show_elem,
.map_set_for_each_callback_args = map_set_for_each_callback_args,
.map_for_each_callback = bpf_for_each_hash_elem,
.map_mem_usage = htab_map_mem_usage,
BATCH_OPS(htab_lru_percpu),
.map_btf_id = &htab_map_btf_ids[0],
.iter_seq_info = &iter_seq_info,
};
static int fd_htab_map_alloc_check(union bpf_attr *attr)
{
if (attr->value_size != sizeof(u32))
return -EINVAL;
return htab_map_alloc_check(attr);
}
static void fd_htab_map_free(struct bpf_map *map)
{
struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
struct hlist_nulls_node *n;
struct hlist_nulls_head *head;
struct htab_elem *l;
int i;
for (i = 0; i < htab->n_buckets; i++) {
head = select_bucket(htab, i);
hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
void *ptr = fd_htab_map_get_ptr(map, l);
map->ops->map_fd_put_ptr(ptr);
}
}
htab_map_free(map);
}
/* only called from syscall */
int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
{
void **ptr;
int ret = 0;
if (!map->ops->map_fd_sys_lookup_elem)
return -ENOTSUPP;
rcu_read_lock();
ptr = htab_map_lookup_elem(map, key);
if (ptr)
*value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr));
else
ret = -ENOENT;
rcu_read_unlock();
return ret;
}
/* only called from syscall */
int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
void *key, void *value, u64 map_flags)
{
void *ptr;
int ret;
u32 ufd = *(u32 *)value;
ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
if (IS_ERR(ptr))
return PTR_ERR(ptr);
ret = htab_map_update_elem(map, key, &ptr, map_flags);
if (ret)
map->ops->map_fd_put_ptr(ptr);
return ret;
}
static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr)
{
struct bpf_map *map, *inner_map_meta;
inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
if (IS_ERR(inner_map_meta))
return inner_map_meta;
map = htab_map_alloc(attr);
if (IS_ERR(map)) {
bpf_map_meta_free(inner_map_meta);
return map;
}
map->inner_map_meta = inner_map_meta;
return map;
}
static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key)
{
struct bpf_map **inner_map = htab_map_lookup_elem(map, key);
if (!inner_map)
return NULL;
return READ_ONCE(*inner_map);
}
static int htab_of_map_gen_lookup(struct bpf_map *map,
struct bpf_insn *insn_buf)
{
struct bpf_insn *insn = insn_buf;
const int ret = BPF_REG_0;
BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
(void *(*)(struct bpf_map *map, void *key))NULL));
*insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2);
*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
offsetof(struct htab_elem, key) +
round_up(map->key_size, 8));
*insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
return insn - insn_buf;
}
static void htab_of_map_free(struct bpf_map *map)
{
bpf_map_meta_free(map->inner_map_meta);
fd_htab_map_free(map);
}
const struct bpf_map_ops htab_of_maps_map_ops = {
.map_alloc_check = fd_htab_map_alloc_check,
.map_alloc = htab_of_map_alloc,
.map_free = htab_of_map_free,
.map_get_next_key = htab_map_get_next_key,
.map_lookup_elem = htab_of_map_lookup_elem,
.map_delete_elem = htab_map_delete_elem,
.map_fd_get_ptr = bpf_map_fd_get_ptr,
.map_fd_put_ptr = bpf_map_fd_put_ptr,
.map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
.map_gen_lookup = htab_of_map_gen_lookup,
.map_check_btf = map_check_no_btf,
.map_mem_usage = htab_map_mem_usage,
BATCH_OPS(htab),
.map_btf_id = &htab_map_btf_ids[0],
};