7c21072dde
Add kernel-doc for missing function parameters. Remove excess kernel-doc descriptions. Fix expected kernel-doc formatting (use ':' instead of '-' after @funcarg). ../drivers/infiniband/sw/rdmavt/ah.c:138: warning: Excess function parameter 'udata' description in 'rvt_destroy_ah' ../drivers/infiniband/sw/rdmavt/vt.c:698: warning: Function parameter or member 'pkey_table' not described in 'rvt_init_port' ../drivers/infiniband/sw/rdmavt/cq.c:561: warning: Excess function parameter 'rdi' description in 'rvt_driver_cq_init' ../drivers/infiniband/sw/rdmavt/cq.c:575: warning: Excess function parameter 'rdi' description in 'rvt_cq_exit' ../drivers/infiniband/sw/rdmavt/qp.c:2573: warning: Function parameter or member 'qp' not described in 'rvt_add_rnr_timer' ../drivers/infiniband/sw/rdmavt/qp.c:2573: warning: Function parameter or member 'aeth' not described in 'rvt_add_rnr_timer' ../drivers/infiniband/sw/rdmavt/qp.c:2591: warning: Function parameter or member 'qp' not described in 'rvt_stop_rc_timers' ../drivers/infiniband/sw/rdmavt/qp.c:2624: warning: Function parameter or member 'qp' not described in 'rvt_del_timers_sync' ../drivers/infiniband/sw/rdmavt/qp.c:2697: warning: Function parameter or member 'cb' not described in 'rvt_qp_iter_init' ../drivers/infiniband/sw/rdmavt/qp.c:2728: warning: Function parameter or member 'iter' not described in 'rvt_qp_iter_next' ../drivers/infiniband/sw/rdmavt/qp.c:2796: warning: Function parameter or member 'rdi' not described in 'rvt_qp_iter' ../drivers/infiniband/sw/rdmavt/qp.c:2796: warning: Function parameter or member 'v' not described in 'rvt_qp_iter' ../drivers/infiniband/sw/rdmavt/qp.c:2796: warning: Function parameter or member 'cb' not described in 'rvt_qp_iter' Link: https://lore.kernel.org/r/20191010035240.251184229@gmail.com Signed-off-by: Randy Dunlap <rd.dunlab@gmail.com> Reviewed-by: Jason Gunthorpe <jgg@mellanox.com> Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
3255 lines
82 KiB
C
3255 lines
82 KiB
C
/*
|
|
* Copyright(c) 2016 - 2019 Intel Corporation.
|
|
*
|
|
* This file is provided under a dual BSD/GPLv2 license. When using or
|
|
* redistributing this file, you may do so under either license.
|
|
*
|
|
* GPL LICENSE SUMMARY
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of version 2 of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* BSD LICENSE
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* - Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* - Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* - Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#include <linux/hash.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/lockdep.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/slab.h>
|
|
#include <rdma/ib_verbs.h>
|
|
#include <rdma/ib_hdrs.h>
|
|
#include <rdma/opa_addr.h>
|
|
#include <rdma/uverbs_ioctl.h>
|
|
#include "qp.h"
|
|
#include "vt.h"
|
|
#include "trace.h"
|
|
|
|
#define RVT_RWQ_COUNT_THRESHOLD 16
|
|
|
|
static void rvt_rc_timeout(struct timer_list *t);
|
|
|
|
/*
|
|
* Convert the AETH RNR timeout code into the number of microseconds.
|
|
*/
|
|
static const u32 ib_rvt_rnr_table[32] = {
|
|
655360, /* 00: 655.36 */
|
|
10, /* 01: .01 */
|
|
20, /* 02 .02 */
|
|
30, /* 03: .03 */
|
|
40, /* 04: .04 */
|
|
60, /* 05: .06 */
|
|
80, /* 06: .08 */
|
|
120, /* 07: .12 */
|
|
160, /* 08: .16 */
|
|
240, /* 09: .24 */
|
|
320, /* 0A: .32 */
|
|
480, /* 0B: .48 */
|
|
640, /* 0C: .64 */
|
|
960, /* 0D: .96 */
|
|
1280, /* 0E: 1.28 */
|
|
1920, /* 0F: 1.92 */
|
|
2560, /* 10: 2.56 */
|
|
3840, /* 11: 3.84 */
|
|
5120, /* 12: 5.12 */
|
|
7680, /* 13: 7.68 */
|
|
10240, /* 14: 10.24 */
|
|
15360, /* 15: 15.36 */
|
|
20480, /* 16: 20.48 */
|
|
30720, /* 17: 30.72 */
|
|
40960, /* 18: 40.96 */
|
|
61440, /* 19: 61.44 */
|
|
81920, /* 1A: 81.92 */
|
|
122880, /* 1B: 122.88 */
|
|
163840, /* 1C: 163.84 */
|
|
245760, /* 1D: 245.76 */
|
|
327680, /* 1E: 327.68 */
|
|
491520 /* 1F: 491.52 */
|
|
};
|
|
|
|
/*
|
|
* Note that it is OK to post send work requests in the SQE and ERR
|
|
* states; rvt_do_send() will process them and generate error
|
|
* completions as per IB 1.2 C10-96.
|
|
*/
|
|
const int ib_rvt_state_ops[IB_QPS_ERR + 1] = {
|
|
[IB_QPS_RESET] = 0,
|
|
[IB_QPS_INIT] = RVT_POST_RECV_OK,
|
|
[IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK,
|
|
[IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
|
|
RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK |
|
|
RVT_PROCESS_NEXT_SEND_OK,
|
|
[IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
|
|
RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK,
|
|
[IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
|
|
RVT_POST_SEND_OK | RVT_FLUSH_SEND,
|
|
[IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV |
|
|
RVT_POST_SEND_OK | RVT_FLUSH_SEND,
|
|
};
|
|
EXPORT_SYMBOL(ib_rvt_state_ops);
|
|
|
|
/* platform specific: return the last level cache (llc) size, in KiB */
|
|
static int rvt_wss_llc_size(void)
|
|
{
|
|
/* assume that the boot CPU value is universal for all CPUs */
|
|
return boot_cpu_data.x86_cache_size;
|
|
}
|
|
|
|
/* platform specific: cacheless copy */
|
|
static void cacheless_memcpy(void *dst, void *src, size_t n)
|
|
{
|
|
/*
|
|
* Use the only available X64 cacheless copy. Add a __user cast
|
|
* to quiet sparse. The src agument is already in the kernel so
|
|
* there are no security issues. The extra fault recovery machinery
|
|
* is not invoked.
|
|
*/
|
|
__copy_user_nocache(dst, (void __user *)src, n, 0);
|
|
}
|
|
|
|
void rvt_wss_exit(struct rvt_dev_info *rdi)
|
|
{
|
|
struct rvt_wss *wss = rdi->wss;
|
|
|
|
if (!wss)
|
|
return;
|
|
|
|
/* coded to handle partially initialized and repeat callers */
|
|
kfree(wss->entries);
|
|
wss->entries = NULL;
|
|
kfree(rdi->wss);
|
|
rdi->wss = NULL;
|
|
}
|
|
|
|
/**
|
|
* rvt_wss_init - Init wss data structures
|
|
*
|
|
* Return: 0 on success
|
|
*/
|
|
int rvt_wss_init(struct rvt_dev_info *rdi)
|
|
{
|
|
unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
|
|
unsigned int wss_threshold = rdi->dparms.wss_threshold;
|
|
unsigned int wss_clean_period = rdi->dparms.wss_clean_period;
|
|
long llc_size;
|
|
long llc_bits;
|
|
long table_size;
|
|
long table_bits;
|
|
struct rvt_wss *wss;
|
|
int node = rdi->dparms.node;
|
|
|
|
if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) {
|
|
rdi->wss = NULL;
|
|
return 0;
|
|
}
|
|
|
|
rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node);
|
|
if (!rdi->wss)
|
|
return -ENOMEM;
|
|
wss = rdi->wss;
|
|
|
|
/* check for a valid percent range - default to 80 if none or invalid */
|
|
if (wss_threshold < 1 || wss_threshold > 100)
|
|
wss_threshold = 80;
|
|
|
|
/* reject a wildly large period */
|
|
if (wss_clean_period > 1000000)
|
|
wss_clean_period = 256;
|
|
|
|
/* reject a zero period */
|
|
if (wss_clean_period == 0)
|
|
wss_clean_period = 1;
|
|
|
|
/*
|
|
* Calculate the table size - the next power of 2 larger than the
|
|
* LLC size. LLC size is in KiB.
|
|
*/
|
|
llc_size = rvt_wss_llc_size() * 1024;
|
|
table_size = roundup_pow_of_two(llc_size);
|
|
|
|
/* one bit per page in rounded up table */
|
|
llc_bits = llc_size / PAGE_SIZE;
|
|
table_bits = table_size / PAGE_SIZE;
|
|
wss->pages_mask = table_bits - 1;
|
|
wss->num_entries = table_bits / BITS_PER_LONG;
|
|
|
|
wss->threshold = (llc_bits * wss_threshold) / 100;
|
|
if (wss->threshold == 0)
|
|
wss->threshold = 1;
|
|
|
|
wss->clean_period = wss_clean_period;
|
|
atomic_set(&wss->clean_counter, wss_clean_period);
|
|
|
|
wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries),
|
|
GFP_KERNEL, node);
|
|
if (!wss->entries) {
|
|
rvt_wss_exit(rdi);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Advance the clean counter. When the clean period has expired,
|
|
* clean an entry.
|
|
*
|
|
* This is implemented in atomics to avoid locking. Because multiple
|
|
* variables are involved, it can be racy which can lead to slightly
|
|
* inaccurate information. Since this is only a heuristic, this is
|
|
* OK. Any innaccuracies will clean themselves out as the counter
|
|
* advances. That said, it is unlikely the entry clean operation will
|
|
* race - the next possible racer will not start until the next clean
|
|
* period.
|
|
*
|
|
* The clean counter is implemented as a decrement to zero. When zero
|
|
* is reached an entry is cleaned.
|
|
*/
|
|
static void wss_advance_clean_counter(struct rvt_wss *wss)
|
|
{
|
|
int entry;
|
|
int weight;
|
|
unsigned long bits;
|
|
|
|
/* become the cleaner if we decrement the counter to zero */
|
|
if (atomic_dec_and_test(&wss->clean_counter)) {
|
|
/*
|
|
* Set, not add, the clean period. This avoids an issue
|
|
* where the counter could decrement below the clean period.
|
|
* Doing a set can result in lost decrements, slowing the
|
|
* clean advance. Since this a heuristic, this possible
|
|
* slowdown is OK.
|
|
*
|
|
* An alternative is to loop, advancing the counter by a
|
|
* clean period until the result is > 0. However, this could
|
|
* lead to several threads keeping another in the clean loop.
|
|
* This could be mitigated by limiting the number of times
|
|
* we stay in the loop.
|
|
*/
|
|
atomic_set(&wss->clean_counter, wss->clean_period);
|
|
|
|
/*
|
|
* Uniquely grab the entry to clean and move to next.
|
|
* The current entry is always the lower bits of
|
|
* wss.clean_entry. The table size, wss.num_entries,
|
|
* is always a power-of-2.
|
|
*/
|
|
entry = (atomic_inc_return(&wss->clean_entry) - 1)
|
|
& (wss->num_entries - 1);
|
|
|
|
/* clear the entry and count the bits */
|
|
bits = xchg(&wss->entries[entry], 0);
|
|
weight = hweight64((u64)bits);
|
|
/* only adjust the contended total count if needed */
|
|
if (weight)
|
|
atomic_sub(weight, &wss->total_count);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Insert the given address into the working set array.
|
|
*/
|
|
static void wss_insert(struct rvt_wss *wss, void *address)
|
|
{
|
|
u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask;
|
|
u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
|
|
u32 nr = page & (BITS_PER_LONG - 1);
|
|
|
|
if (!test_and_set_bit(nr, &wss->entries[entry]))
|
|
atomic_inc(&wss->total_count);
|
|
|
|
wss_advance_clean_counter(wss);
|
|
}
|
|
|
|
/*
|
|
* Is the working set larger than the threshold?
|
|
*/
|
|
static inline bool wss_exceeds_threshold(struct rvt_wss *wss)
|
|
{
|
|
return atomic_read(&wss->total_count) >= wss->threshold;
|
|
}
|
|
|
|
static void get_map_page(struct rvt_qpn_table *qpt,
|
|
struct rvt_qpn_map *map)
|
|
{
|
|
unsigned long page = get_zeroed_page(GFP_KERNEL);
|
|
|
|
/*
|
|
* Free the page if someone raced with us installing it.
|
|
*/
|
|
|
|
spin_lock(&qpt->lock);
|
|
if (map->page)
|
|
free_page(page);
|
|
else
|
|
map->page = (void *)page;
|
|
spin_unlock(&qpt->lock);
|
|
}
|
|
|
|
/**
|
|
* init_qpn_table - initialize the QP number table for a device
|
|
* @qpt: the QPN table
|
|
*/
|
|
static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt)
|
|
{
|
|
u32 offset, i;
|
|
struct rvt_qpn_map *map;
|
|
int ret = 0;
|
|
|
|
if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start))
|
|
return -EINVAL;
|
|
|
|
spin_lock_init(&qpt->lock);
|
|
|
|
qpt->last = rdi->dparms.qpn_start;
|
|
qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift;
|
|
|
|
/*
|
|
* Drivers may want some QPs beyond what we need for verbs let them use
|
|
* our qpn table. No need for two. Lets go ahead and mark the bitmaps
|
|
* for those. The reserved range must be *after* the range which verbs
|
|
* will pick from.
|
|
*/
|
|
|
|
/* Figure out number of bit maps needed before reserved range */
|
|
qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE;
|
|
|
|
/* This should always be zero */
|
|
offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK;
|
|
|
|
/* Starting with the first reserved bit map */
|
|
map = &qpt->map[qpt->nmaps];
|
|
|
|
rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
|
|
rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end);
|
|
for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) {
|
|
if (!map->page) {
|
|
get_map_page(qpt, map);
|
|
if (!map->page) {
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
}
|
|
set_bit(offset, map->page);
|
|
offset++;
|
|
if (offset == RVT_BITS_PER_PAGE) {
|
|
/* next page */
|
|
qpt->nmaps++;
|
|
map++;
|
|
offset = 0;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* free_qpn_table - free the QP number table for a device
|
|
* @qpt: the QPN table
|
|
*/
|
|
static void free_qpn_table(struct rvt_qpn_table *qpt)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
|
|
free_page((unsigned long)qpt->map[i].page);
|
|
}
|
|
|
|
/**
|
|
* rvt_driver_qp_init - Init driver qp resources
|
|
* @rdi: rvt dev strucutre
|
|
*
|
|
* Return: 0 on success
|
|
*/
|
|
int rvt_driver_qp_init(struct rvt_dev_info *rdi)
|
|
{
|
|
int i;
|
|
int ret = -ENOMEM;
|
|
|
|
if (!rdi->dparms.qp_table_size)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* If driver is not doing any QP allocation then make sure it is
|
|
* providing the necessary QP functions.
|
|
*/
|
|
if (!rdi->driver_f.free_all_qps ||
|
|
!rdi->driver_f.qp_priv_alloc ||
|
|
!rdi->driver_f.qp_priv_free ||
|
|
!rdi->driver_f.notify_qp_reset ||
|
|
!rdi->driver_f.notify_restart_rc)
|
|
return -EINVAL;
|
|
|
|
/* allocate parent object */
|
|
rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL,
|
|
rdi->dparms.node);
|
|
if (!rdi->qp_dev)
|
|
return -ENOMEM;
|
|
|
|
/* allocate hash table */
|
|
rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size;
|
|
rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size);
|
|
rdi->qp_dev->qp_table =
|
|
kmalloc_array_node(rdi->qp_dev->qp_table_size,
|
|
sizeof(*rdi->qp_dev->qp_table),
|
|
GFP_KERNEL, rdi->dparms.node);
|
|
if (!rdi->qp_dev->qp_table)
|
|
goto no_qp_table;
|
|
|
|
for (i = 0; i < rdi->qp_dev->qp_table_size; i++)
|
|
RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL);
|
|
|
|
spin_lock_init(&rdi->qp_dev->qpt_lock);
|
|
|
|
/* initialize qpn map */
|
|
if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table))
|
|
goto fail_table;
|
|
|
|
spin_lock_init(&rdi->n_qps_lock);
|
|
|
|
return 0;
|
|
|
|
fail_table:
|
|
kfree(rdi->qp_dev->qp_table);
|
|
free_qpn_table(&rdi->qp_dev->qpn_table);
|
|
|
|
no_qp_table:
|
|
kfree(rdi->qp_dev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* free_all_qps - check for QPs still in use
|
|
* @rdi: rvt device info structure
|
|
*
|
|
* There should not be any QPs still in use.
|
|
* Free memory for table.
|
|
*/
|
|
static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi)
|
|
{
|
|
unsigned long flags;
|
|
struct rvt_qp *qp;
|
|
unsigned n, qp_inuse = 0;
|
|
spinlock_t *ql; /* work around too long line below */
|
|
|
|
if (rdi->driver_f.free_all_qps)
|
|
qp_inuse = rdi->driver_f.free_all_qps(rdi);
|
|
|
|
qp_inuse += rvt_mcast_tree_empty(rdi);
|
|
|
|
if (!rdi->qp_dev)
|
|
return qp_inuse;
|
|
|
|
ql = &rdi->qp_dev->qpt_lock;
|
|
spin_lock_irqsave(ql, flags);
|
|
for (n = 0; n < rdi->qp_dev->qp_table_size; n++) {
|
|
qp = rcu_dereference_protected(rdi->qp_dev->qp_table[n],
|
|
lockdep_is_held(ql));
|
|
RCU_INIT_POINTER(rdi->qp_dev->qp_table[n], NULL);
|
|
|
|
for (; qp; qp = rcu_dereference_protected(qp->next,
|
|
lockdep_is_held(ql)))
|
|
qp_inuse++;
|
|
}
|
|
spin_unlock_irqrestore(ql, flags);
|
|
synchronize_rcu();
|
|
return qp_inuse;
|
|
}
|
|
|
|
/**
|
|
* rvt_qp_exit - clean up qps on device exit
|
|
* @rdi: rvt dev structure
|
|
*
|
|
* Check for qp leaks and free resources.
|
|
*/
|
|
void rvt_qp_exit(struct rvt_dev_info *rdi)
|
|
{
|
|
u32 qps_inuse = rvt_free_all_qps(rdi);
|
|
|
|
if (qps_inuse)
|
|
rvt_pr_err(rdi, "QP memory leak! %u still in use\n",
|
|
qps_inuse);
|
|
if (!rdi->qp_dev)
|
|
return;
|
|
|
|
kfree(rdi->qp_dev->qp_table);
|
|
free_qpn_table(&rdi->qp_dev->qpn_table);
|
|
kfree(rdi->qp_dev);
|
|
}
|
|
|
|
static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
|
|
struct rvt_qpn_map *map, unsigned off)
|
|
{
|
|
return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
|
|
}
|
|
|
|
/**
|
|
* alloc_qpn - Allocate the next available qpn or zero/one for QP type
|
|
* IB_QPT_SMI/IB_QPT_GSI
|
|
* @rdi: rvt device info structure
|
|
* @qpt: queue pair number table pointer
|
|
* @port_num: IB port number, 1 based, comes from core
|
|
*
|
|
* Return: The queue pair number
|
|
*/
|
|
static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt,
|
|
enum ib_qp_type type, u8 port_num)
|
|
{
|
|
u32 i, offset, max_scan, qpn;
|
|
struct rvt_qpn_map *map;
|
|
u32 ret;
|
|
|
|
if (rdi->driver_f.alloc_qpn)
|
|
return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num);
|
|
|
|
if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
|
|
unsigned n;
|
|
|
|
ret = type == IB_QPT_GSI;
|
|
n = 1 << (ret + 2 * (port_num - 1));
|
|
spin_lock(&qpt->lock);
|
|
if (qpt->flags & n)
|
|
ret = -EINVAL;
|
|
else
|
|
qpt->flags |= n;
|
|
spin_unlock(&qpt->lock);
|
|
goto bail;
|
|
}
|
|
|
|
qpn = qpt->last + qpt->incr;
|
|
if (qpn >= RVT_QPN_MAX)
|
|
qpn = qpt->incr | ((qpt->last & 1) ^ 1);
|
|
/* offset carries bit 0 */
|
|
offset = qpn & RVT_BITS_PER_PAGE_MASK;
|
|
map = &qpt->map[qpn / RVT_BITS_PER_PAGE];
|
|
max_scan = qpt->nmaps - !offset;
|
|
for (i = 0;;) {
|
|
if (unlikely(!map->page)) {
|
|
get_map_page(qpt, map);
|
|
if (unlikely(!map->page))
|
|
break;
|
|
}
|
|
do {
|
|
if (!test_and_set_bit(offset, map->page)) {
|
|
qpt->last = qpn;
|
|
ret = qpn;
|
|
goto bail;
|
|
}
|
|
offset += qpt->incr;
|
|
/*
|
|
* This qpn might be bogus if offset >= BITS_PER_PAGE.
|
|
* That is OK. It gets re-assigned below
|
|
*/
|
|
qpn = mk_qpn(qpt, map, offset);
|
|
} while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX);
|
|
/*
|
|
* In order to keep the number of pages allocated to a
|
|
* minimum, we scan the all existing pages before increasing
|
|
* the size of the bitmap table.
|
|
*/
|
|
if (++i > max_scan) {
|
|
if (qpt->nmaps == RVT_QPNMAP_ENTRIES)
|
|
break;
|
|
map = &qpt->map[qpt->nmaps++];
|
|
/* start at incr with current bit 0 */
|
|
offset = qpt->incr | (offset & 1);
|
|
} else if (map < &qpt->map[qpt->nmaps]) {
|
|
++map;
|
|
/* start at incr with current bit 0 */
|
|
offset = qpt->incr | (offset & 1);
|
|
} else {
|
|
map = &qpt->map[0];
|
|
/* wrap to first map page, invert bit 0 */
|
|
offset = qpt->incr | ((offset & 1) ^ 1);
|
|
}
|
|
/* there can be no set bits in low-order QoS bits */
|
|
WARN_ON(rdi->dparms.qos_shift > 1 &&
|
|
offset & ((BIT(rdi->dparms.qos_shift - 1) - 1) << 1));
|
|
qpn = mk_qpn(qpt, map, offset);
|
|
}
|
|
|
|
ret = -ENOMEM;
|
|
|
|
bail:
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* rvt_clear_mr_refs - Drop help mr refs
|
|
* @qp: rvt qp data structure
|
|
* @clr_sends: If shoudl clear send side or not
|
|
*/
|
|
static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends)
|
|
{
|
|
unsigned n;
|
|
struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
|
|
|
|
if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags))
|
|
rvt_put_ss(&qp->s_rdma_read_sge);
|
|
|
|
rvt_put_ss(&qp->r_sge);
|
|
|
|
if (clr_sends) {
|
|
while (qp->s_last != qp->s_head) {
|
|
struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last);
|
|
|
|
rvt_put_qp_swqe(qp, wqe);
|
|
if (++qp->s_last >= qp->s_size)
|
|
qp->s_last = 0;
|
|
smp_wmb(); /* see qp_set_savail */
|
|
}
|
|
if (qp->s_rdma_mr) {
|
|
rvt_put_mr(qp->s_rdma_mr);
|
|
qp->s_rdma_mr = NULL;
|
|
}
|
|
}
|
|
|
|
for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) {
|
|
struct rvt_ack_entry *e = &qp->s_ack_queue[n];
|
|
|
|
if (e->rdma_sge.mr) {
|
|
rvt_put_mr(e->rdma_sge.mr);
|
|
e->rdma_sge.mr = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* rvt_swqe_has_lkey - return true if lkey is used by swqe
|
|
* @wqe - the send wqe
|
|
* @lkey - the lkey
|
|
*
|
|
* Test the swqe for using lkey
|
|
*/
|
|
static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < wqe->wr.num_sge; i++) {
|
|
struct rvt_sge *sge = &wqe->sg_list[i];
|
|
|
|
if (rvt_mr_has_lkey(sge->mr, lkey))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* rvt_qp_sends_has_lkey - return true is qp sends use lkey
|
|
* @qp - the rvt_qp
|
|
* @lkey - the lkey
|
|
*/
|
|
static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey)
|
|
{
|
|
u32 s_last = qp->s_last;
|
|
|
|
while (s_last != qp->s_head) {
|
|
struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last);
|
|
|
|
if (rvt_swqe_has_lkey(wqe, lkey))
|
|
return true;
|
|
|
|
if (++s_last >= qp->s_size)
|
|
s_last = 0;
|
|
}
|
|
if (qp->s_rdma_mr)
|
|
if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* rvt_qp_acks_has_lkey - return true if acks have lkey
|
|
* @qp - the qp
|
|
* @lkey - the lkey
|
|
*/
|
|
static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey)
|
|
{
|
|
int i;
|
|
struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
|
|
|
|
for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) {
|
|
struct rvt_ack_entry *e = &qp->s_ack_queue[i];
|
|
|
|
if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* rvt_qp_mr_clean - clean up remote ops for lkey
|
|
* @qp - the qp
|
|
* @lkey - the lkey that is being de-registered
|
|
*
|
|
* This routine checks if the lkey is being used by
|
|
* the qp.
|
|
*
|
|
* If so, the qp is put into an error state to elminate
|
|
* any references from the qp.
|
|
*/
|
|
void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey)
|
|
{
|
|
bool lastwqe = false;
|
|
|
|
if (qp->ibqp.qp_type == IB_QPT_SMI ||
|
|
qp->ibqp.qp_type == IB_QPT_GSI)
|
|
/* avoid special QPs */
|
|
return;
|
|
spin_lock_irq(&qp->r_lock);
|
|
spin_lock(&qp->s_hlock);
|
|
spin_lock(&qp->s_lock);
|
|
|
|
if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
|
|
goto check_lwqe;
|
|
|
|
if (rvt_ss_has_lkey(&qp->r_sge, lkey) ||
|
|
rvt_qp_sends_has_lkey(qp, lkey) ||
|
|
rvt_qp_acks_has_lkey(qp, lkey))
|
|
lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR);
|
|
check_lwqe:
|
|
spin_unlock(&qp->s_lock);
|
|
spin_unlock(&qp->s_hlock);
|
|
spin_unlock_irq(&qp->r_lock);
|
|
if (lastwqe) {
|
|
struct ib_event ev;
|
|
|
|
ev.device = qp->ibqp.device;
|
|
ev.element.qp = &qp->ibqp;
|
|
ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
|
|
qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* rvt_remove_qp - remove qp form table
|
|
* @rdi: rvt dev struct
|
|
* @qp: qp to remove
|
|
*
|
|
* Remove the QP from the table so it can't be found asynchronously by
|
|
* the receive routine.
|
|
*/
|
|
static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
|
|
{
|
|
struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
|
|
u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
|
|
unsigned long flags;
|
|
int removed = 1;
|
|
|
|
spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
|
|
|
|
if (rcu_dereference_protected(rvp->qp[0],
|
|
lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
|
|
RCU_INIT_POINTER(rvp->qp[0], NULL);
|
|
} else if (rcu_dereference_protected(rvp->qp[1],
|
|
lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
|
|
RCU_INIT_POINTER(rvp->qp[1], NULL);
|
|
} else {
|
|
struct rvt_qp *q;
|
|
struct rvt_qp __rcu **qpp;
|
|
|
|
removed = 0;
|
|
qpp = &rdi->qp_dev->qp_table[n];
|
|
for (; (q = rcu_dereference_protected(*qpp,
|
|
lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL;
|
|
qpp = &q->next) {
|
|
if (q == qp) {
|
|
RCU_INIT_POINTER(*qpp,
|
|
rcu_dereference_protected(qp->next,
|
|
lockdep_is_held(&rdi->qp_dev->qpt_lock)));
|
|
removed = 1;
|
|
trace_rvt_qpremove(qp, n);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
|
|
if (removed) {
|
|
synchronize_rcu();
|
|
rvt_put_qp(qp);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* rvt_alloc_rq - allocate memory for user or kernel buffer
|
|
* @rq: receive queue data structure
|
|
* @size: number of request queue entries
|
|
* @node: The NUMA node
|
|
* @udata: True if user data is available or not false
|
|
*
|
|
* Return: If memory allocation failed, return -ENONEM
|
|
* This function is used by both shared receive
|
|
* queues and non-shared receive queues to allocate
|
|
* memory.
|
|
*/
|
|
int rvt_alloc_rq(struct rvt_rq *rq, u32 size, int node,
|
|
struct ib_udata *udata)
|
|
{
|
|
if (udata) {
|
|
rq->wq = vmalloc_user(sizeof(struct rvt_rwq) + size);
|
|
if (!rq->wq)
|
|
goto bail;
|
|
/* need kwq with no buffers */
|
|
rq->kwq = kzalloc_node(sizeof(*rq->kwq), GFP_KERNEL, node);
|
|
if (!rq->kwq)
|
|
goto bail;
|
|
rq->kwq->curr_wq = rq->wq->wq;
|
|
} else {
|
|
/* need kwq with buffers */
|
|
rq->kwq =
|
|
vzalloc_node(sizeof(struct rvt_krwq) + size, node);
|
|
if (!rq->kwq)
|
|
goto bail;
|
|
rq->kwq->curr_wq = rq->kwq->wq;
|
|
}
|
|
|
|
spin_lock_init(&rq->kwq->p_lock);
|
|
spin_lock_init(&rq->kwq->c_lock);
|
|
return 0;
|
|
bail:
|
|
rvt_free_rq(rq);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* rvt_init_qp - initialize the QP state to the reset state
|
|
* @qp: the QP to init or reinit
|
|
* @type: the QP type
|
|
*
|
|
* This function is called from both rvt_create_qp() and
|
|
* rvt_reset_qp(). The difference is that the reset
|
|
* patch the necessary locks to protect against concurent
|
|
* access.
|
|
*/
|
|
static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
|
|
enum ib_qp_type type)
|
|
{
|
|
qp->remote_qpn = 0;
|
|
qp->qkey = 0;
|
|
qp->qp_access_flags = 0;
|
|
qp->s_flags &= RVT_S_SIGNAL_REQ_WR;
|
|
qp->s_hdrwords = 0;
|
|
qp->s_wqe = NULL;
|
|
qp->s_draining = 0;
|
|
qp->s_next_psn = 0;
|
|
qp->s_last_psn = 0;
|
|
qp->s_sending_psn = 0;
|
|
qp->s_sending_hpsn = 0;
|
|
qp->s_psn = 0;
|
|
qp->r_psn = 0;
|
|
qp->r_msn = 0;
|
|
if (type == IB_QPT_RC) {
|
|
qp->s_state = IB_OPCODE_RC_SEND_LAST;
|
|
qp->r_state = IB_OPCODE_RC_SEND_LAST;
|
|
} else {
|
|
qp->s_state = IB_OPCODE_UC_SEND_LAST;
|
|
qp->r_state = IB_OPCODE_UC_SEND_LAST;
|
|
}
|
|
qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
|
|
qp->r_nak_state = 0;
|
|
qp->r_aflags = 0;
|
|
qp->r_flags = 0;
|
|
qp->s_head = 0;
|
|
qp->s_tail = 0;
|
|
qp->s_cur = 0;
|
|
qp->s_acked = 0;
|
|
qp->s_last = 0;
|
|
qp->s_ssn = 1;
|
|
qp->s_lsn = 0;
|
|
qp->s_mig_state = IB_MIG_MIGRATED;
|
|
qp->r_head_ack_queue = 0;
|
|
qp->s_tail_ack_queue = 0;
|
|
qp->s_acked_ack_queue = 0;
|
|
qp->s_num_rd_atomic = 0;
|
|
if (qp->r_rq.kwq)
|
|
qp->r_rq.kwq->count = qp->r_rq.size;
|
|
qp->r_sge.num_sge = 0;
|
|
atomic_set(&qp->s_reserved_used, 0);
|
|
}
|
|
|
|
/**
|
|
* rvt_reset_qp - initialize the QP state to the reset state
|
|
* @qp: the QP to reset
|
|
* @type: the QP type
|
|
*
|
|
* r_lock, s_hlock, and s_lock are required to be held by the caller
|
|
*/
|
|
static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
|
|
enum ib_qp_type type)
|
|
__must_hold(&qp->s_lock)
|
|
__must_hold(&qp->s_hlock)
|
|
__must_hold(&qp->r_lock)
|
|
{
|
|
lockdep_assert_held(&qp->r_lock);
|
|
lockdep_assert_held(&qp->s_hlock);
|
|
lockdep_assert_held(&qp->s_lock);
|
|
if (qp->state != IB_QPS_RESET) {
|
|
qp->state = IB_QPS_RESET;
|
|
|
|
/* Let drivers flush their waitlist */
|
|
rdi->driver_f.flush_qp_waiters(qp);
|
|
rvt_stop_rc_timers(qp);
|
|
qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT);
|
|
spin_unlock(&qp->s_lock);
|
|
spin_unlock(&qp->s_hlock);
|
|
spin_unlock_irq(&qp->r_lock);
|
|
|
|
/* Stop the send queue and the retry timer */
|
|
rdi->driver_f.stop_send_queue(qp);
|
|
rvt_del_timers_sync(qp);
|
|
/* Wait for things to stop */
|
|
rdi->driver_f.quiesce_qp(qp);
|
|
|
|
/* take qp out the hash and wait for it to be unused */
|
|
rvt_remove_qp(rdi, qp);
|
|
|
|
/* grab the lock b/c it was locked at call time */
|
|
spin_lock_irq(&qp->r_lock);
|
|
spin_lock(&qp->s_hlock);
|
|
spin_lock(&qp->s_lock);
|
|
|
|
rvt_clear_mr_refs(qp, 1);
|
|
/*
|
|
* Let the driver do any tear down or re-init it needs to for
|
|
* a qp that has been reset
|
|
*/
|
|
rdi->driver_f.notify_qp_reset(qp);
|
|
}
|
|
rvt_init_qp(rdi, qp, type);
|
|
lockdep_assert_held(&qp->r_lock);
|
|
lockdep_assert_held(&qp->s_hlock);
|
|
lockdep_assert_held(&qp->s_lock);
|
|
}
|
|
|
|
/** rvt_free_qpn - Free a qpn from the bit map
|
|
* @qpt: QP table
|
|
* @qpn: queue pair number to free
|
|
*/
|
|
static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
|
|
{
|
|
struct rvt_qpn_map *map;
|
|
|
|
map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE;
|
|
if (map->page)
|
|
clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
|
|
}
|
|
|
|
/**
|
|
* get_allowed_ops - Given a QP type return the appropriate allowed OP
|
|
* @type: valid, supported, QP type
|
|
*/
|
|
static u8 get_allowed_ops(enum ib_qp_type type)
|
|
{
|
|
return type == IB_QPT_RC ? IB_OPCODE_RC : type == IB_QPT_UC ?
|
|
IB_OPCODE_UC : IB_OPCODE_UD;
|
|
}
|
|
|
|
/**
|
|
* free_ud_wq_attr - Clean up AH attribute cache for UD QPs
|
|
* @qp: Valid QP with allowed_ops set
|
|
*
|
|
* The rvt_swqe data structure being used is a union, so this is
|
|
* only valid for UD QPs.
|
|
*/
|
|
static void free_ud_wq_attr(struct rvt_qp *qp)
|
|
{
|
|
struct rvt_swqe *wqe;
|
|
int i;
|
|
|
|
for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
|
|
wqe = rvt_get_swqe_ptr(qp, i);
|
|
kfree(wqe->ud_wr.attr);
|
|
wqe->ud_wr.attr = NULL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* alloc_ud_wq_attr - AH attribute cache for UD QPs
|
|
* @qp: Valid QP with allowed_ops set
|
|
* @node: Numa node for allocation
|
|
*
|
|
* The rvt_swqe data structure being used is a union, so this is
|
|
* only valid for UD QPs.
|
|
*/
|
|
static int alloc_ud_wq_attr(struct rvt_qp *qp, int node)
|
|
{
|
|
struct rvt_swqe *wqe;
|
|
int i;
|
|
|
|
for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
|
|
wqe = rvt_get_swqe_ptr(qp, i);
|
|
wqe->ud_wr.attr = kzalloc_node(sizeof(*wqe->ud_wr.attr),
|
|
GFP_KERNEL, node);
|
|
if (!wqe->ud_wr.attr) {
|
|
free_ud_wq_attr(qp);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rvt_create_qp - create a queue pair for a device
|
|
* @ibpd: the protection domain who's device we create the queue pair for
|
|
* @init_attr: the attributes of the queue pair
|
|
* @udata: user data for libibverbs.so
|
|
*
|
|
* Queue pair creation is mostly an rvt issue. However, drivers have their own
|
|
* unique idea of what queue pair numbers mean. For instance there is a reserved
|
|
* range for PSM.
|
|
*
|
|
* Return: the queue pair on success, otherwise returns an errno.
|
|
*
|
|
* Called by the ib_create_qp() core verbs function.
|
|
*/
|
|
struct ib_qp *rvt_create_qp(struct ib_pd *ibpd,
|
|
struct ib_qp_init_attr *init_attr,
|
|
struct ib_udata *udata)
|
|
{
|
|
struct rvt_qp *qp;
|
|
int err;
|
|
struct rvt_swqe *swq = NULL;
|
|
size_t sz;
|
|
size_t sg_list_sz;
|
|
struct ib_qp *ret = ERR_PTR(-ENOMEM);
|
|
struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device);
|
|
void *priv = NULL;
|
|
size_t sqsize;
|
|
|
|
if (!rdi)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge ||
|
|
init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr ||
|
|
init_attr->create_flags)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
/* Check receive queue parameters if no SRQ is specified. */
|
|
if (!init_attr->srq) {
|
|
if (init_attr->cap.max_recv_sge >
|
|
rdi->dparms.props.max_recv_sge ||
|
|
init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
if (init_attr->cap.max_send_sge +
|
|
init_attr->cap.max_send_wr +
|
|
init_attr->cap.max_recv_sge +
|
|
init_attr->cap.max_recv_wr == 0)
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
sqsize =
|
|
init_attr->cap.max_send_wr + 1 +
|
|
rdi->dparms.reserved_operations;
|
|
switch (init_attr->qp_type) {
|
|
case IB_QPT_SMI:
|
|
case IB_QPT_GSI:
|
|
if (init_attr->port_num == 0 ||
|
|
init_attr->port_num > ibpd->device->phys_port_cnt)
|
|
return ERR_PTR(-EINVAL);
|
|
/* fall through */
|
|
case IB_QPT_UC:
|
|
case IB_QPT_RC:
|
|
case IB_QPT_UD:
|
|
sz = struct_size(swq, sg_list, init_attr->cap.max_send_sge);
|
|
swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node);
|
|
if (!swq)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
sz = sizeof(*qp);
|
|
sg_list_sz = 0;
|
|
if (init_attr->srq) {
|
|
struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq);
|
|
|
|
if (srq->rq.max_sge > 1)
|
|
sg_list_sz = sizeof(*qp->r_sg_list) *
|
|
(srq->rq.max_sge - 1);
|
|
} else if (init_attr->cap.max_recv_sge > 1)
|
|
sg_list_sz = sizeof(*qp->r_sg_list) *
|
|
(init_attr->cap.max_recv_sge - 1);
|
|
qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL,
|
|
rdi->dparms.node);
|
|
if (!qp)
|
|
goto bail_swq;
|
|
qp->allowed_ops = get_allowed_ops(init_attr->qp_type);
|
|
|
|
RCU_INIT_POINTER(qp->next, NULL);
|
|
if (init_attr->qp_type == IB_QPT_RC) {
|
|
qp->s_ack_queue =
|
|
kcalloc_node(rvt_max_atomic(rdi),
|
|
sizeof(*qp->s_ack_queue),
|
|
GFP_KERNEL,
|
|
rdi->dparms.node);
|
|
if (!qp->s_ack_queue)
|
|
goto bail_qp;
|
|
}
|
|
/* initialize timers needed for rc qp */
|
|
timer_setup(&qp->s_timer, rvt_rc_timeout, 0);
|
|
hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC,
|
|
HRTIMER_MODE_REL);
|
|
qp->s_rnr_timer.function = rvt_rc_rnr_retry;
|
|
|
|
/*
|
|
* Driver needs to set up it's private QP structure and do any
|
|
* initialization that is needed.
|
|
*/
|
|
priv = rdi->driver_f.qp_priv_alloc(rdi, qp);
|
|
if (IS_ERR(priv)) {
|
|
ret = priv;
|
|
goto bail_qp;
|
|
}
|
|
qp->priv = priv;
|
|
qp->timeout_jiffies =
|
|
usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
|
|
1000UL);
|
|
if (init_attr->srq) {
|
|
sz = 0;
|
|
} else {
|
|
qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
|
|
qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
|
|
sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
|
|
sizeof(struct rvt_rwqe);
|
|
err = rvt_alloc_rq(&qp->r_rq, qp->r_rq.size * sz,
|
|
rdi->dparms.node, udata);
|
|
if (err) {
|
|
ret = ERR_PTR(err);
|
|
goto bail_driver_priv;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ib_create_qp() will initialize qp->ibqp
|
|
* except for qp->ibqp.qp_num.
|
|
*/
|
|
spin_lock_init(&qp->r_lock);
|
|
spin_lock_init(&qp->s_hlock);
|
|
spin_lock_init(&qp->s_lock);
|
|
atomic_set(&qp->refcount, 0);
|
|
atomic_set(&qp->local_ops_pending, 0);
|
|
init_waitqueue_head(&qp->wait);
|
|
INIT_LIST_HEAD(&qp->rspwait);
|
|
qp->state = IB_QPS_RESET;
|
|
qp->s_wq = swq;
|
|
qp->s_size = sqsize;
|
|
qp->s_avail = init_attr->cap.max_send_wr;
|
|
qp->s_max_sge = init_attr->cap.max_send_sge;
|
|
if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
|
|
qp->s_flags = RVT_S_SIGNAL_REQ_WR;
|
|
err = alloc_ud_wq_attr(qp, rdi->dparms.node);
|
|
if (err) {
|
|
ret = (ERR_PTR(err));
|
|
goto bail_driver_priv;
|
|
}
|
|
|
|
err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table,
|
|
init_attr->qp_type,
|
|
init_attr->port_num);
|
|
if (err < 0) {
|
|
ret = ERR_PTR(err);
|
|
goto bail_rq_wq;
|
|
}
|
|
qp->ibqp.qp_num = err;
|
|
qp->port_num = init_attr->port_num;
|
|
rvt_init_qp(rdi, qp, init_attr->qp_type);
|
|
if (rdi->driver_f.qp_priv_init) {
|
|
err = rdi->driver_f.qp_priv_init(rdi, qp, init_attr);
|
|
if (err) {
|
|
ret = ERR_PTR(err);
|
|
goto bail_rq_wq;
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
/* Don't support raw QPs */
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
init_attr->cap.max_inline_data = 0;
|
|
|
|
/*
|
|
* Return the address of the RWQ as the offset to mmap.
|
|
* See rvt_mmap() for details.
|
|
*/
|
|
if (udata && udata->outlen >= sizeof(__u64)) {
|
|
if (!qp->r_rq.wq) {
|
|
__u64 offset = 0;
|
|
|
|
err = ib_copy_to_udata(udata, &offset,
|
|
sizeof(offset));
|
|
if (err) {
|
|
ret = ERR_PTR(err);
|
|
goto bail_qpn;
|
|
}
|
|
} else {
|
|
u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz;
|
|
|
|
qp->ip = rvt_create_mmap_info(rdi, s, udata,
|
|
qp->r_rq.wq);
|
|
if (!qp->ip) {
|
|
ret = ERR_PTR(-ENOMEM);
|
|
goto bail_qpn;
|
|
}
|
|
|
|
err = ib_copy_to_udata(udata, &qp->ip->offset,
|
|
sizeof(qp->ip->offset));
|
|
if (err) {
|
|
ret = ERR_PTR(err);
|
|
goto bail_ip;
|
|
}
|
|
}
|
|
qp->pid = current->pid;
|
|
}
|
|
|
|
spin_lock(&rdi->n_qps_lock);
|
|
if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) {
|
|
spin_unlock(&rdi->n_qps_lock);
|
|
ret = ERR_PTR(-ENOMEM);
|
|
goto bail_ip;
|
|
}
|
|
|
|
rdi->n_qps_allocated++;
|
|
/*
|
|
* Maintain a busy_jiffies variable that will be added to the timeout
|
|
* period in mod_retry_timer and add_retry_timer. This busy jiffies
|
|
* is scaled by the number of rc qps created for the device to reduce
|
|
* the number of timeouts occurring when there is a large number of
|
|
* qps. busy_jiffies is incremented every rc qp scaling interval.
|
|
* The scaling interval is selected based on extensive performance
|
|
* evaluation of targeted workloads.
|
|
*/
|
|
if (init_attr->qp_type == IB_QPT_RC) {
|
|
rdi->n_rc_qps++;
|
|
rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
|
|
}
|
|
spin_unlock(&rdi->n_qps_lock);
|
|
|
|
if (qp->ip) {
|
|
spin_lock_irq(&rdi->pending_lock);
|
|
list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps);
|
|
spin_unlock_irq(&rdi->pending_lock);
|
|
}
|
|
|
|
ret = &qp->ibqp;
|
|
|
|
return ret;
|
|
|
|
bail_ip:
|
|
if (qp->ip)
|
|
kref_put(&qp->ip->ref, rvt_release_mmap_info);
|
|
|
|
bail_qpn:
|
|
rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
|
|
|
|
bail_rq_wq:
|
|
rvt_free_rq(&qp->r_rq);
|
|
free_ud_wq_attr(qp);
|
|
|
|
bail_driver_priv:
|
|
rdi->driver_f.qp_priv_free(rdi, qp);
|
|
|
|
bail_qp:
|
|
kfree(qp->s_ack_queue);
|
|
kfree(qp);
|
|
|
|
bail_swq:
|
|
vfree(swq);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* rvt_error_qp - put a QP into the error state
|
|
* @qp: the QP to put into the error state
|
|
* @err: the receive completion error to signal if a RWQE is active
|
|
*
|
|
* Flushes both send and receive work queues.
|
|
*
|
|
* Return: true if last WQE event should be generated.
|
|
* The QP r_lock and s_lock should be held and interrupts disabled.
|
|
* If we are already in error state, just return.
|
|
*/
|
|
int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err)
|
|
{
|
|
struct ib_wc wc;
|
|
int ret = 0;
|
|
struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
|
|
|
|
lockdep_assert_held(&qp->r_lock);
|
|
lockdep_assert_held(&qp->s_lock);
|
|
if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
|
|
goto bail;
|
|
|
|
qp->state = IB_QPS_ERR;
|
|
|
|
if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
|
|
qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
|
|
del_timer(&qp->s_timer);
|
|
}
|
|
|
|
if (qp->s_flags & RVT_S_ANY_WAIT_SEND)
|
|
qp->s_flags &= ~RVT_S_ANY_WAIT_SEND;
|
|
|
|
rdi->driver_f.notify_error_qp(qp);
|
|
|
|
/* Schedule the sending tasklet to drain the send work queue. */
|
|
if (READ_ONCE(qp->s_last) != qp->s_head)
|
|
rdi->driver_f.schedule_send(qp);
|
|
|
|
rvt_clear_mr_refs(qp, 0);
|
|
|
|
memset(&wc, 0, sizeof(wc));
|
|
wc.qp = &qp->ibqp;
|
|
wc.opcode = IB_WC_RECV;
|
|
|
|
if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) {
|
|
wc.wr_id = qp->r_wr_id;
|
|
wc.status = err;
|
|
rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
|
|
}
|
|
wc.status = IB_WC_WR_FLUSH_ERR;
|
|
|
|
if (qp->r_rq.kwq) {
|
|
u32 head;
|
|
u32 tail;
|
|
struct rvt_rwq *wq = NULL;
|
|
struct rvt_krwq *kwq = NULL;
|
|
|
|
spin_lock(&qp->r_rq.kwq->c_lock);
|
|
/* qp->ip used to validate if there is a user buffer mmaped */
|
|
if (qp->ip) {
|
|
wq = qp->r_rq.wq;
|
|
head = RDMA_READ_UAPI_ATOMIC(wq->head);
|
|
tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
|
|
} else {
|
|
kwq = qp->r_rq.kwq;
|
|
head = kwq->head;
|
|
tail = kwq->tail;
|
|
}
|
|
/* sanity check pointers before trusting them */
|
|
if (head >= qp->r_rq.size)
|
|
head = 0;
|
|
if (tail >= qp->r_rq.size)
|
|
tail = 0;
|
|
while (tail != head) {
|
|
wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
|
|
if (++tail >= qp->r_rq.size)
|
|
tail = 0;
|
|
rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
|
|
}
|
|
if (qp->ip)
|
|
RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
|
|
else
|
|
kwq->tail = tail;
|
|
spin_unlock(&qp->r_rq.kwq->c_lock);
|
|
} else if (qp->ibqp.event_handler) {
|
|
ret = 1;
|
|
}
|
|
|
|
bail:
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(rvt_error_qp);
|
|
|
|
/*
|
|
* Put the QP into the hash table.
|
|
* The hash table holds a reference to the QP.
|
|
*/
|
|
static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
|
|
{
|
|
struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
|
|
unsigned long flags;
|
|
|
|
rvt_get_qp(qp);
|
|
spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
|
|
|
|
if (qp->ibqp.qp_num <= 1) {
|
|
rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp);
|
|
} else {
|
|
u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
|
|
|
|
qp->next = rdi->qp_dev->qp_table[n];
|
|
rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp);
|
|
trace_rvt_qpinsert(qp, n);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
|
|
}
|
|
|
|
/**
|
|
* rvt_modify_qp - modify the attributes of a queue pair
|
|
* @ibqp: the queue pair who's attributes we're modifying
|
|
* @attr: the new attributes
|
|
* @attr_mask: the mask of attributes to modify
|
|
* @udata: user data for libibverbs.so
|
|
*
|
|
* Return: 0 on success, otherwise returns an errno.
|
|
*/
|
|
int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
|
|
int attr_mask, struct ib_udata *udata)
|
|
{
|
|
struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
|
|
struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
|
|
enum ib_qp_state cur_state, new_state;
|
|
struct ib_event ev;
|
|
int lastwqe = 0;
|
|
int mig = 0;
|
|
int pmtu = 0; /* for gcc warning only */
|
|
int opa_ah;
|
|
|
|
spin_lock_irq(&qp->r_lock);
|
|
spin_lock(&qp->s_hlock);
|
|
spin_lock(&qp->s_lock);
|
|
|
|
cur_state = attr_mask & IB_QP_CUR_STATE ?
|
|
attr->cur_qp_state : qp->state;
|
|
new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
|
|
opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num);
|
|
|
|
if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
|
|
attr_mask))
|
|
goto inval;
|
|
|
|
if (rdi->driver_f.check_modify_qp &&
|
|
rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata))
|
|
goto inval;
|
|
|
|
if (attr_mask & IB_QP_AV) {
|
|
if (opa_ah) {
|
|
if (rdma_ah_get_dlid(&attr->ah_attr) >=
|
|
opa_get_mcast_base(OPA_MCAST_NR))
|
|
goto inval;
|
|
} else {
|
|
if (rdma_ah_get_dlid(&attr->ah_attr) >=
|
|
be16_to_cpu(IB_MULTICAST_LID_BASE))
|
|
goto inval;
|
|
}
|
|
|
|
if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr))
|
|
goto inval;
|
|
}
|
|
|
|
if (attr_mask & IB_QP_ALT_PATH) {
|
|
if (opa_ah) {
|
|
if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
|
|
opa_get_mcast_base(OPA_MCAST_NR))
|
|
goto inval;
|
|
} else {
|
|
if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
|
|
be16_to_cpu(IB_MULTICAST_LID_BASE))
|
|
goto inval;
|
|
}
|
|
|
|
if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
|
|
goto inval;
|
|
if (attr->alt_pkey_index >= rvt_get_npkeys(rdi))
|
|
goto inval;
|
|
}
|
|
|
|
if (attr_mask & IB_QP_PKEY_INDEX)
|
|
if (attr->pkey_index >= rvt_get_npkeys(rdi))
|
|
goto inval;
|
|
|
|
if (attr_mask & IB_QP_MIN_RNR_TIMER)
|
|
if (attr->min_rnr_timer > 31)
|
|
goto inval;
|
|
|
|
if (attr_mask & IB_QP_PORT)
|
|
if (qp->ibqp.qp_type == IB_QPT_SMI ||
|
|
qp->ibqp.qp_type == IB_QPT_GSI ||
|
|
attr->port_num == 0 ||
|
|
attr->port_num > ibqp->device->phys_port_cnt)
|
|
goto inval;
|
|
|
|
if (attr_mask & IB_QP_DEST_QPN)
|
|
if (attr->dest_qp_num > RVT_QPN_MASK)
|
|
goto inval;
|
|
|
|
if (attr_mask & IB_QP_RETRY_CNT)
|
|
if (attr->retry_cnt > 7)
|
|
goto inval;
|
|
|
|
if (attr_mask & IB_QP_RNR_RETRY)
|
|
if (attr->rnr_retry > 7)
|
|
goto inval;
|
|
|
|
/*
|
|
* Don't allow invalid path_mtu values. OK to set greater
|
|
* than the active mtu (or even the max_cap, if we have tuned
|
|
* that to a small mtu. We'll set qp->path_mtu
|
|
* to the lesser of requested attribute mtu and active,
|
|
* for packetizing messages.
|
|
* Note that the QP port has to be set in INIT and MTU in RTR.
|
|
*/
|
|
if (attr_mask & IB_QP_PATH_MTU) {
|
|
pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr);
|
|
if (pmtu < 0)
|
|
goto inval;
|
|
}
|
|
|
|
if (attr_mask & IB_QP_PATH_MIG_STATE) {
|
|
if (attr->path_mig_state == IB_MIG_REARM) {
|
|
if (qp->s_mig_state == IB_MIG_ARMED)
|
|
goto inval;
|
|
if (new_state != IB_QPS_RTS)
|
|
goto inval;
|
|
} else if (attr->path_mig_state == IB_MIG_MIGRATED) {
|
|
if (qp->s_mig_state == IB_MIG_REARM)
|
|
goto inval;
|
|
if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
|
|
goto inval;
|
|
if (qp->s_mig_state == IB_MIG_ARMED)
|
|
mig = 1;
|
|
} else {
|
|
goto inval;
|
|
}
|
|
}
|
|
|
|
if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
|
|
if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic)
|
|
goto inval;
|
|
|
|
switch (new_state) {
|
|
case IB_QPS_RESET:
|
|
if (qp->state != IB_QPS_RESET)
|
|
rvt_reset_qp(rdi, qp, ibqp->qp_type);
|
|
break;
|
|
|
|
case IB_QPS_RTR:
|
|
/* Allow event to re-trigger if QP set to RTR more than once */
|
|
qp->r_flags &= ~RVT_R_COMM_EST;
|
|
qp->state = new_state;
|
|
break;
|
|
|
|
case IB_QPS_SQD:
|
|
qp->s_draining = qp->s_last != qp->s_cur;
|
|
qp->state = new_state;
|
|
break;
|
|
|
|
case IB_QPS_SQE:
|
|
if (qp->ibqp.qp_type == IB_QPT_RC)
|
|
goto inval;
|
|
qp->state = new_state;
|
|
break;
|
|
|
|
case IB_QPS_ERR:
|
|
lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
|
|
break;
|
|
|
|
default:
|
|
qp->state = new_state;
|
|
break;
|
|
}
|
|
|
|
if (attr_mask & IB_QP_PKEY_INDEX)
|
|
qp->s_pkey_index = attr->pkey_index;
|
|
|
|
if (attr_mask & IB_QP_PORT)
|
|
qp->port_num = attr->port_num;
|
|
|
|
if (attr_mask & IB_QP_DEST_QPN)
|
|
qp->remote_qpn = attr->dest_qp_num;
|
|
|
|
if (attr_mask & IB_QP_SQ_PSN) {
|
|
qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask;
|
|
qp->s_psn = qp->s_next_psn;
|
|
qp->s_sending_psn = qp->s_next_psn;
|
|
qp->s_last_psn = qp->s_next_psn - 1;
|
|
qp->s_sending_hpsn = qp->s_last_psn;
|
|
}
|
|
|
|
if (attr_mask & IB_QP_RQ_PSN)
|
|
qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask;
|
|
|
|
if (attr_mask & IB_QP_ACCESS_FLAGS)
|
|
qp->qp_access_flags = attr->qp_access_flags;
|
|
|
|
if (attr_mask & IB_QP_AV) {
|
|
rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr);
|
|
qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr);
|
|
qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
|
|
}
|
|
|
|
if (attr_mask & IB_QP_ALT_PATH) {
|
|
rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr);
|
|
qp->s_alt_pkey_index = attr->alt_pkey_index;
|
|
}
|
|
|
|
if (attr_mask & IB_QP_PATH_MIG_STATE) {
|
|
qp->s_mig_state = attr->path_mig_state;
|
|
if (mig) {
|
|
qp->remote_ah_attr = qp->alt_ah_attr;
|
|
qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
|
|
qp->s_pkey_index = qp->s_alt_pkey_index;
|
|
}
|
|
}
|
|
|
|
if (attr_mask & IB_QP_PATH_MTU) {
|
|
qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu);
|
|
qp->log_pmtu = ilog2(qp->pmtu);
|
|
}
|
|
|
|
if (attr_mask & IB_QP_RETRY_CNT) {
|
|
qp->s_retry_cnt = attr->retry_cnt;
|
|
qp->s_retry = attr->retry_cnt;
|
|
}
|
|
|
|
if (attr_mask & IB_QP_RNR_RETRY) {
|
|
qp->s_rnr_retry_cnt = attr->rnr_retry;
|
|
qp->s_rnr_retry = attr->rnr_retry;
|
|
}
|
|
|
|
if (attr_mask & IB_QP_MIN_RNR_TIMER)
|
|
qp->r_min_rnr_timer = attr->min_rnr_timer;
|
|
|
|
if (attr_mask & IB_QP_TIMEOUT) {
|
|
qp->timeout = attr->timeout;
|
|
qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout);
|
|
}
|
|
|
|
if (attr_mask & IB_QP_QKEY)
|
|
qp->qkey = attr->qkey;
|
|
|
|
if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
|
|
qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
|
|
|
|
if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
|
|
qp->s_max_rd_atomic = attr->max_rd_atomic;
|
|
|
|
if (rdi->driver_f.modify_qp)
|
|
rdi->driver_f.modify_qp(qp, attr, attr_mask, udata);
|
|
|
|
spin_unlock(&qp->s_lock);
|
|
spin_unlock(&qp->s_hlock);
|
|
spin_unlock_irq(&qp->r_lock);
|
|
|
|
if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
|
|
rvt_insert_qp(rdi, qp);
|
|
|
|
if (lastwqe) {
|
|
ev.device = qp->ibqp.device;
|
|
ev.element.qp = &qp->ibqp;
|
|
ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
|
|
qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
|
|
}
|
|
if (mig) {
|
|
ev.device = qp->ibqp.device;
|
|
ev.element.qp = &qp->ibqp;
|
|
ev.event = IB_EVENT_PATH_MIG;
|
|
qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
|
|
}
|
|
return 0;
|
|
|
|
inval:
|
|
spin_unlock(&qp->s_lock);
|
|
spin_unlock(&qp->s_hlock);
|
|
spin_unlock_irq(&qp->r_lock);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* rvt_destroy_qp - destroy a queue pair
|
|
* @ibqp: the queue pair to destroy
|
|
*
|
|
* Note that this can be called while the QP is actively sending or
|
|
* receiving!
|
|
*
|
|
* Return: 0 on success.
|
|
*/
|
|
int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata)
|
|
{
|
|
struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
|
|
struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
|
|
|
|
spin_lock_irq(&qp->r_lock);
|
|
spin_lock(&qp->s_hlock);
|
|
spin_lock(&qp->s_lock);
|
|
rvt_reset_qp(rdi, qp, ibqp->qp_type);
|
|
spin_unlock(&qp->s_lock);
|
|
spin_unlock(&qp->s_hlock);
|
|
spin_unlock_irq(&qp->r_lock);
|
|
|
|
wait_event(qp->wait, !atomic_read(&qp->refcount));
|
|
/* qpn is now available for use again */
|
|
rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
|
|
|
|
spin_lock(&rdi->n_qps_lock);
|
|
rdi->n_qps_allocated--;
|
|
if (qp->ibqp.qp_type == IB_QPT_RC) {
|
|
rdi->n_rc_qps--;
|
|
rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
|
|
}
|
|
spin_unlock(&rdi->n_qps_lock);
|
|
|
|
if (qp->ip)
|
|
kref_put(&qp->ip->ref, rvt_release_mmap_info);
|
|
kvfree(qp->r_rq.kwq);
|
|
rdi->driver_f.qp_priv_free(rdi, qp);
|
|
kfree(qp->s_ack_queue);
|
|
rdma_destroy_ah_attr(&qp->remote_ah_attr);
|
|
rdma_destroy_ah_attr(&qp->alt_ah_attr);
|
|
free_ud_wq_attr(qp);
|
|
vfree(qp->s_wq);
|
|
kfree(qp);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rvt_query_qp - query an ipbq
|
|
* @ibqp: IB qp to query
|
|
* @attr: attr struct to fill in
|
|
* @attr_mask: attr mask ignored
|
|
* @init_attr: struct to fill in
|
|
*
|
|
* Return: always 0
|
|
*/
|
|
int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
|
|
int attr_mask, struct ib_qp_init_attr *init_attr)
|
|
{
|
|
struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
|
|
struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
|
|
|
|
attr->qp_state = qp->state;
|
|
attr->cur_qp_state = attr->qp_state;
|
|
attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu);
|
|
attr->path_mig_state = qp->s_mig_state;
|
|
attr->qkey = qp->qkey;
|
|
attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask;
|
|
attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask;
|
|
attr->dest_qp_num = qp->remote_qpn;
|
|
attr->qp_access_flags = qp->qp_access_flags;
|
|
attr->cap.max_send_wr = qp->s_size - 1 -
|
|
rdi->dparms.reserved_operations;
|
|
attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
|
|
attr->cap.max_send_sge = qp->s_max_sge;
|
|
attr->cap.max_recv_sge = qp->r_rq.max_sge;
|
|
attr->cap.max_inline_data = 0;
|
|
attr->ah_attr = qp->remote_ah_attr;
|
|
attr->alt_ah_attr = qp->alt_ah_attr;
|
|
attr->pkey_index = qp->s_pkey_index;
|
|
attr->alt_pkey_index = qp->s_alt_pkey_index;
|
|
attr->en_sqd_async_notify = 0;
|
|
attr->sq_draining = qp->s_draining;
|
|
attr->max_rd_atomic = qp->s_max_rd_atomic;
|
|
attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
|
|
attr->min_rnr_timer = qp->r_min_rnr_timer;
|
|
attr->port_num = qp->port_num;
|
|
attr->timeout = qp->timeout;
|
|
attr->retry_cnt = qp->s_retry_cnt;
|
|
attr->rnr_retry = qp->s_rnr_retry_cnt;
|
|
attr->alt_port_num =
|
|
rdma_ah_get_port_num(&qp->alt_ah_attr);
|
|
attr->alt_timeout = qp->alt_timeout;
|
|
|
|
init_attr->event_handler = qp->ibqp.event_handler;
|
|
init_attr->qp_context = qp->ibqp.qp_context;
|
|
init_attr->send_cq = qp->ibqp.send_cq;
|
|
init_attr->recv_cq = qp->ibqp.recv_cq;
|
|
init_attr->srq = qp->ibqp.srq;
|
|
init_attr->cap = attr->cap;
|
|
if (qp->s_flags & RVT_S_SIGNAL_REQ_WR)
|
|
init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
|
|
else
|
|
init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
|
|
init_attr->qp_type = qp->ibqp.qp_type;
|
|
init_attr->port_num = qp->port_num;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rvt_post_receive - post a receive on a QP
|
|
* @ibqp: the QP to post the receive on
|
|
* @wr: the WR to post
|
|
* @bad_wr: the first bad WR is put here
|
|
*
|
|
* This may be called from interrupt context.
|
|
*
|
|
* Return: 0 on success otherwise errno
|
|
*/
|
|
int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr,
|
|
const struct ib_recv_wr **bad_wr)
|
|
{
|
|
struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
|
|
struct rvt_krwq *wq = qp->r_rq.kwq;
|
|
unsigned long flags;
|
|
int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) &&
|
|
!qp->ibqp.srq;
|
|
|
|
/* Check that state is OK to post receive. */
|
|
if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) {
|
|
*bad_wr = wr;
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (; wr; wr = wr->next) {
|
|
struct rvt_rwqe *wqe;
|
|
u32 next;
|
|
int i;
|
|
|
|
if ((unsigned)wr->num_sge > qp->r_rq.max_sge) {
|
|
*bad_wr = wr;
|
|
return -EINVAL;
|
|
}
|
|
|
|
spin_lock_irqsave(&qp->r_rq.kwq->p_lock, flags);
|
|
next = wq->head + 1;
|
|
if (next >= qp->r_rq.size)
|
|
next = 0;
|
|
if (next == READ_ONCE(wq->tail)) {
|
|
spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
|
|
*bad_wr = wr;
|
|
return -ENOMEM;
|
|
}
|
|
if (unlikely(qp_err_flush)) {
|
|
struct ib_wc wc;
|
|
|
|
memset(&wc, 0, sizeof(wc));
|
|
wc.qp = &qp->ibqp;
|
|
wc.opcode = IB_WC_RECV;
|
|
wc.wr_id = wr->wr_id;
|
|
wc.status = IB_WC_WR_FLUSH_ERR;
|
|
rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
|
|
} else {
|
|
wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head);
|
|
wqe->wr_id = wr->wr_id;
|
|
wqe->num_sge = wr->num_sge;
|
|
for (i = 0; i < wr->num_sge; i++) {
|
|
wqe->sg_list[i].addr = wr->sg_list[i].addr;
|
|
wqe->sg_list[i].length = wr->sg_list[i].length;
|
|
wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
|
|
}
|
|
/*
|
|
* Make sure queue entry is written
|
|
* before the head index.
|
|
*/
|
|
smp_store_release(&wq->head, next);
|
|
}
|
|
spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rvt_qp_valid_operation - validate post send wr request
|
|
* @qp - the qp
|
|
* @post-parms - the post send table for the driver
|
|
* @wr - the work request
|
|
*
|
|
* The routine validates the operation based on the
|
|
* validation table an returns the length of the operation
|
|
* which can extend beyond the ib_send_bw. Operation
|
|
* dependent flags key atomic operation validation.
|
|
*
|
|
* There is an exception for UD qps that validates the pd and
|
|
* overrides the length to include the additional UD specific
|
|
* length.
|
|
*
|
|
* Returns a negative error or the length of the work request
|
|
* for building the swqe.
|
|
*/
|
|
static inline int rvt_qp_valid_operation(
|
|
struct rvt_qp *qp,
|
|
const struct rvt_operation_params *post_parms,
|
|
const struct ib_send_wr *wr)
|
|
{
|
|
int len;
|
|
|
|
if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length)
|
|
return -EINVAL;
|
|
if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type)))
|
|
return -EINVAL;
|
|
if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) &&
|
|
ibpd_to_rvtpd(qp->ibqp.pd)->user)
|
|
return -EINVAL;
|
|
if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE &&
|
|
(wr->num_sge == 0 ||
|
|
wr->sg_list[0].length < sizeof(u64) ||
|
|
wr->sg_list[0].addr & (sizeof(u64) - 1)))
|
|
return -EINVAL;
|
|
if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC &&
|
|
!qp->s_max_rd_atomic)
|
|
return -EINVAL;
|
|
len = post_parms[wr->opcode].length;
|
|
/* UD specific */
|
|
if (qp->ibqp.qp_type != IB_QPT_UC &&
|
|
qp->ibqp.qp_type != IB_QPT_RC) {
|
|
if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
|
|
return -EINVAL;
|
|
len = sizeof(struct ib_ud_wr);
|
|
}
|
|
return len;
|
|
}
|
|
|
|
/**
|
|
* rvt_qp_is_avail - determine queue capacity
|
|
* @qp: the qp
|
|
* @rdi: the rdmavt device
|
|
* @reserved_op: is reserved operation
|
|
*
|
|
* This assumes the s_hlock is held but the s_last
|
|
* qp variable is uncontrolled.
|
|
*
|
|
* For non reserved operations, the qp->s_avail
|
|
* may be changed.
|
|
*
|
|
* The return value is zero or a -ENOMEM.
|
|
*/
|
|
static inline int rvt_qp_is_avail(
|
|
struct rvt_qp *qp,
|
|
struct rvt_dev_info *rdi,
|
|
bool reserved_op)
|
|
{
|
|
u32 slast;
|
|
u32 avail;
|
|
u32 reserved_used;
|
|
|
|
/* see rvt_qp_wqe_unreserve() */
|
|
smp_mb__before_atomic();
|
|
if (unlikely(reserved_op)) {
|
|
/* see rvt_qp_wqe_unreserve() */
|
|
reserved_used = atomic_read(&qp->s_reserved_used);
|
|
if (reserved_used >= rdi->dparms.reserved_operations)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
/* non-reserved operations */
|
|
if (likely(qp->s_avail))
|
|
return 0;
|
|
/* See rvt_qp_complete_swqe() */
|
|
slast = smp_load_acquire(&qp->s_last);
|
|
if (qp->s_head >= slast)
|
|
avail = qp->s_size - (qp->s_head - slast);
|
|
else
|
|
avail = slast - qp->s_head;
|
|
|
|
reserved_used = atomic_read(&qp->s_reserved_used);
|
|
avail = avail - 1 -
|
|
(rdi->dparms.reserved_operations - reserved_used);
|
|
/* insure we don't assign a negative s_avail */
|
|
if ((s32)avail <= 0)
|
|
return -ENOMEM;
|
|
qp->s_avail = avail;
|
|
if (WARN_ON(qp->s_avail >
|
|
(qp->s_size - 1 - rdi->dparms.reserved_operations)))
|
|
rvt_pr_err(rdi,
|
|
"More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
|
|
qp->ibqp.qp_num, qp->s_size, qp->s_avail,
|
|
qp->s_head, qp->s_tail, qp->s_cur,
|
|
qp->s_acked, qp->s_last);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rvt_post_one_wr - post one RC, UC, or UD send work request
|
|
* @qp: the QP to post on
|
|
* @wr: the work request to send
|
|
*/
|
|
static int rvt_post_one_wr(struct rvt_qp *qp,
|
|
const struct ib_send_wr *wr,
|
|
bool *call_send)
|
|
{
|
|
struct rvt_swqe *wqe;
|
|
u32 next;
|
|
int i;
|
|
int j;
|
|
int acc;
|
|
struct rvt_lkey_table *rkt;
|
|
struct rvt_pd *pd;
|
|
struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
|
|
u8 log_pmtu;
|
|
int ret;
|
|
size_t cplen;
|
|
bool reserved_op;
|
|
int local_ops_delayed = 0;
|
|
|
|
BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE));
|
|
|
|
/* IB spec says that num_sge == 0 is OK. */
|
|
if (unlikely(wr->num_sge > qp->s_max_sge))
|
|
return -EINVAL;
|
|
|
|
ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr);
|
|
if (ret < 0)
|
|
return ret;
|
|
cplen = ret;
|
|
|
|
/*
|
|
* Local operations include fast register and local invalidate.
|
|
* Fast register needs to be processed immediately because the
|
|
* registered lkey may be used by following work requests and the
|
|
* lkey needs to be valid at the time those requests are posted.
|
|
* Local invalidate can be processed immediately if fencing is
|
|
* not required and no previous local invalidate ops are pending.
|
|
* Signaled local operations that have been processed immediately
|
|
* need to have requests with "completion only" flags set posted
|
|
* to the send queue in order to generate completions.
|
|
*/
|
|
if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) {
|
|
switch (wr->opcode) {
|
|
case IB_WR_REG_MR:
|
|
ret = rvt_fast_reg_mr(qp,
|
|
reg_wr(wr)->mr,
|
|
reg_wr(wr)->key,
|
|
reg_wr(wr)->access);
|
|
if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
|
|
return ret;
|
|
break;
|
|
case IB_WR_LOCAL_INV:
|
|
if ((wr->send_flags & IB_SEND_FENCE) ||
|
|
atomic_read(&qp->local_ops_pending)) {
|
|
local_ops_delayed = 1;
|
|
} else {
|
|
ret = rvt_invalidate_rkey(
|
|
qp, wr->ex.invalidate_rkey);
|
|
if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
|
|
return ret;
|
|
}
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
reserved_op = rdi->post_parms[wr->opcode].flags &
|
|
RVT_OPERATION_USE_RESERVE;
|
|
/* check for avail */
|
|
ret = rvt_qp_is_avail(qp, rdi, reserved_op);
|
|
if (ret)
|
|
return ret;
|
|
next = qp->s_head + 1;
|
|
if (next >= qp->s_size)
|
|
next = 0;
|
|
|
|
rkt = &rdi->lkey_table;
|
|
pd = ibpd_to_rvtpd(qp->ibqp.pd);
|
|
wqe = rvt_get_swqe_ptr(qp, qp->s_head);
|
|
|
|
/* cplen has length from above */
|
|
memcpy(&wqe->wr, wr, cplen);
|
|
|
|
wqe->length = 0;
|
|
j = 0;
|
|
if (wr->num_sge) {
|
|
struct rvt_sge *last_sge = NULL;
|
|
|
|
acc = wr->opcode >= IB_WR_RDMA_READ ?
|
|
IB_ACCESS_LOCAL_WRITE : 0;
|
|
for (i = 0; i < wr->num_sge; i++) {
|
|
u32 length = wr->sg_list[i].length;
|
|
|
|
if (length == 0)
|
|
continue;
|
|
ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge,
|
|
&wr->sg_list[i], acc);
|
|
if (unlikely(ret < 0))
|
|
goto bail_inval_free;
|
|
wqe->length += length;
|
|
if (ret)
|
|
last_sge = &wqe->sg_list[j];
|
|
j += ret;
|
|
}
|
|
wqe->wr.num_sge = j;
|
|
}
|
|
|
|
/*
|
|
* Calculate and set SWQE PSN values prior to handing it off
|
|
* to the driver's check routine. This give the driver the
|
|
* opportunity to adjust PSN values based on internal checks.
|
|
*/
|
|
log_pmtu = qp->log_pmtu;
|
|
if (qp->allowed_ops == IB_OPCODE_UD) {
|
|
struct rvt_ah *ah = rvt_get_swqe_ah(wqe);
|
|
|
|
log_pmtu = ah->log_pmtu;
|
|
rdma_copy_ah_attr(wqe->ud_wr.attr, &ah->attr);
|
|
}
|
|
|
|
if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) {
|
|
if (local_ops_delayed)
|
|
atomic_inc(&qp->local_ops_pending);
|
|
else
|
|
wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY;
|
|
wqe->ssn = 0;
|
|
wqe->psn = 0;
|
|
wqe->lpsn = 0;
|
|
} else {
|
|
wqe->ssn = qp->s_ssn++;
|
|
wqe->psn = qp->s_next_psn;
|
|
wqe->lpsn = wqe->psn +
|
|
(wqe->length ?
|
|
((wqe->length - 1) >> log_pmtu) :
|
|
0);
|
|
}
|
|
|
|
/* general part of wqe valid - allow for driver checks */
|
|
if (rdi->driver_f.setup_wqe) {
|
|
ret = rdi->driver_f.setup_wqe(qp, wqe, call_send);
|
|
if (ret < 0)
|
|
goto bail_inval_free_ref;
|
|
}
|
|
|
|
if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL))
|
|
qp->s_next_psn = wqe->lpsn + 1;
|
|
|
|
if (unlikely(reserved_op)) {
|
|
wqe->wr.send_flags |= RVT_SEND_RESERVE_USED;
|
|
rvt_qp_wqe_reserve(qp, wqe);
|
|
} else {
|
|
wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED;
|
|
qp->s_avail--;
|
|
}
|
|
trace_rvt_post_one_wr(qp, wqe, wr->num_sge);
|
|
smp_wmb(); /* see request builders */
|
|
qp->s_head = next;
|
|
|
|
return 0;
|
|
|
|
bail_inval_free_ref:
|
|
if (qp->allowed_ops == IB_OPCODE_UD)
|
|
rdma_destroy_ah_attr(wqe->ud_wr.attr);
|
|
bail_inval_free:
|
|
/* release mr holds */
|
|
while (j) {
|
|
struct rvt_sge *sge = &wqe->sg_list[--j];
|
|
|
|
rvt_put_mr(sge->mr);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* rvt_post_send - post a send on a QP
|
|
* @ibqp: the QP to post the send on
|
|
* @wr: the list of work requests to post
|
|
* @bad_wr: the first bad WR is put here
|
|
*
|
|
* This may be called from interrupt context.
|
|
*
|
|
* Return: 0 on success else errno
|
|
*/
|
|
int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,
|
|
const struct ib_send_wr **bad_wr)
|
|
{
|
|
struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
|
|
struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
|
|
unsigned long flags = 0;
|
|
bool call_send;
|
|
unsigned nreq = 0;
|
|
int err = 0;
|
|
|
|
spin_lock_irqsave(&qp->s_hlock, flags);
|
|
|
|
/*
|
|
* Ensure QP state is such that we can send. If not bail out early,
|
|
* there is no need to do this every time we post a send.
|
|
*/
|
|
if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) {
|
|
spin_unlock_irqrestore(&qp->s_hlock, flags);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* If the send queue is empty, and we only have a single WR then just go
|
|
* ahead and kick the send engine into gear. Otherwise we will always
|
|
* just schedule the send to happen later.
|
|
*/
|
|
call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next;
|
|
|
|
for (; wr; wr = wr->next) {
|
|
err = rvt_post_one_wr(qp, wr, &call_send);
|
|
if (unlikely(err)) {
|
|
*bad_wr = wr;
|
|
goto bail;
|
|
}
|
|
nreq++;
|
|
}
|
|
bail:
|
|
spin_unlock_irqrestore(&qp->s_hlock, flags);
|
|
if (nreq) {
|
|
/*
|
|
* Only call do_send if there is exactly one packet, and the
|
|
* driver said it was ok.
|
|
*/
|
|
if (nreq == 1 && call_send)
|
|
rdi->driver_f.do_send(qp);
|
|
else
|
|
rdi->driver_f.schedule_send_no_lock(qp);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* rvt_post_srq_receive - post a receive on a shared receive queue
|
|
* @ibsrq: the SRQ to post the receive on
|
|
* @wr: the list of work requests to post
|
|
* @bad_wr: A pointer to the first WR to cause a problem is put here
|
|
*
|
|
* This may be called from interrupt context.
|
|
*
|
|
* Return: 0 on success else errno
|
|
*/
|
|
int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr,
|
|
const struct ib_recv_wr **bad_wr)
|
|
{
|
|
struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq);
|
|
struct rvt_krwq *wq;
|
|
unsigned long flags;
|
|
|
|
for (; wr; wr = wr->next) {
|
|
struct rvt_rwqe *wqe;
|
|
u32 next;
|
|
int i;
|
|
|
|
if ((unsigned)wr->num_sge > srq->rq.max_sge) {
|
|
*bad_wr = wr;
|
|
return -EINVAL;
|
|
}
|
|
|
|
spin_lock_irqsave(&srq->rq.kwq->p_lock, flags);
|
|
wq = srq->rq.kwq;
|
|
next = wq->head + 1;
|
|
if (next >= srq->rq.size)
|
|
next = 0;
|
|
if (next == READ_ONCE(wq->tail)) {
|
|
spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
|
|
*bad_wr = wr;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head);
|
|
wqe->wr_id = wr->wr_id;
|
|
wqe->num_sge = wr->num_sge;
|
|
for (i = 0; i < wr->num_sge; i++) {
|
|
wqe->sg_list[i].addr = wr->sg_list[i].addr;
|
|
wqe->sg_list[i].length = wr->sg_list[i].length;
|
|
wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
|
|
}
|
|
/* Make sure queue entry is written before the head index. */
|
|
smp_store_release(&wq->head, next);
|
|
spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* rvt used the internal kernel struct as part of its ABI, for now make sure
|
|
* the kernel struct does not change layout. FIXME: rvt should never cast the
|
|
* user struct to a kernel struct.
|
|
*/
|
|
static struct ib_sge *rvt_cast_sge(struct rvt_wqe_sge *sge)
|
|
{
|
|
BUILD_BUG_ON(offsetof(struct ib_sge, addr) !=
|
|
offsetof(struct rvt_wqe_sge, addr));
|
|
BUILD_BUG_ON(offsetof(struct ib_sge, length) !=
|
|
offsetof(struct rvt_wqe_sge, length));
|
|
BUILD_BUG_ON(offsetof(struct ib_sge, lkey) !=
|
|
offsetof(struct rvt_wqe_sge, lkey));
|
|
return (struct ib_sge *)sge;
|
|
}
|
|
|
|
/*
|
|
* Validate a RWQE and fill in the SGE state.
|
|
* Return 1 if OK.
|
|
*/
|
|
static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe)
|
|
{
|
|
int i, j, ret;
|
|
struct ib_wc wc;
|
|
struct rvt_lkey_table *rkt;
|
|
struct rvt_pd *pd;
|
|
struct rvt_sge_state *ss;
|
|
struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
|
|
|
|
rkt = &rdi->lkey_table;
|
|
pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd);
|
|
ss = &qp->r_sge;
|
|
ss->sg_list = qp->r_sg_list;
|
|
qp->r_len = 0;
|
|
for (i = j = 0; i < wqe->num_sge; i++) {
|
|
if (wqe->sg_list[i].length == 0)
|
|
continue;
|
|
/* Check LKEY */
|
|
ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge,
|
|
NULL, rvt_cast_sge(&wqe->sg_list[i]),
|
|
IB_ACCESS_LOCAL_WRITE);
|
|
if (unlikely(ret <= 0))
|
|
goto bad_lkey;
|
|
qp->r_len += wqe->sg_list[i].length;
|
|
j++;
|
|
}
|
|
ss->num_sge = j;
|
|
ss->total_len = qp->r_len;
|
|
return 1;
|
|
|
|
bad_lkey:
|
|
while (j) {
|
|
struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge;
|
|
|
|
rvt_put_mr(sge->mr);
|
|
}
|
|
ss->num_sge = 0;
|
|
memset(&wc, 0, sizeof(wc));
|
|
wc.wr_id = wqe->wr_id;
|
|
wc.status = IB_WC_LOC_PROT_ERR;
|
|
wc.opcode = IB_WC_RECV;
|
|
wc.qp = &qp->ibqp;
|
|
/* Signal solicited completion event. */
|
|
rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* get_count - count numbers of request work queue entries
|
|
* in circular buffer
|
|
* @rq: data structure for request queue entry
|
|
* @tail: tail indices of the circular buffer
|
|
* @head: head indices of the circular buffer
|
|
*
|
|
* Return - total number of entries in the circular buffer
|
|
*/
|
|
static u32 get_count(struct rvt_rq *rq, u32 tail, u32 head)
|
|
{
|
|
u32 count;
|
|
|
|
count = head;
|
|
|
|
if (count >= rq->size)
|
|
count = 0;
|
|
if (count < tail)
|
|
count += rq->size - tail;
|
|
else
|
|
count -= tail;
|
|
|
|
return count;
|
|
}
|
|
|
|
/**
|
|
* get_rvt_head - get head indices of the circular buffer
|
|
* @rq: data structure for request queue entry
|
|
* @ip: the QP
|
|
*
|
|
* Return - head index value
|
|
*/
|
|
static inline u32 get_rvt_head(struct rvt_rq *rq, void *ip)
|
|
{
|
|
u32 head;
|
|
|
|
if (ip)
|
|
head = RDMA_READ_UAPI_ATOMIC(rq->wq->head);
|
|
else
|
|
head = rq->kwq->head;
|
|
|
|
return head;
|
|
}
|
|
|
|
/**
|
|
* rvt_get_rwqe - copy the next RWQE into the QP's RWQE
|
|
* @qp: the QP
|
|
* @wr_id_only: update qp->r_wr_id only, not qp->r_sge
|
|
*
|
|
* Return -1 if there is a local error, 0 if no RWQE is available,
|
|
* otherwise return 1.
|
|
*
|
|
* Can be called from interrupt level.
|
|
*/
|
|
int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only)
|
|
{
|
|
unsigned long flags;
|
|
struct rvt_rq *rq;
|
|
struct rvt_krwq *kwq = NULL;
|
|
struct rvt_rwq *wq;
|
|
struct rvt_srq *srq;
|
|
struct rvt_rwqe *wqe;
|
|
void (*handler)(struct ib_event *, void *);
|
|
u32 tail;
|
|
u32 head;
|
|
int ret;
|
|
void *ip = NULL;
|
|
|
|
if (qp->ibqp.srq) {
|
|
srq = ibsrq_to_rvtsrq(qp->ibqp.srq);
|
|
handler = srq->ibsrq.event_handler;
|
|
rq = &srq->rq;
|
|
ip = srq->ip;
|
|
} else {
|
|
srq = NULL;
|
|
handler = NULL;
|
|
rq = &qp->r_rq;
|
|
ip = qp->ip;
|
|
}
|
|
|
|
spin_lock_irqsave(&rq->kwq->c_lock, flags);
|
|
if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
|
|
ret = 0;
|
|
goto unlock;
|
|
}
|
|
kwq = rq->kwq;
|
|
if (ip) {
|
|
wq = rq->wq;
|
|
tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
|
|
} else {
|
|
tail = kwq->tail;
|
|
}
|
|
|
|
/* Validate tail before using it since it is user writable. */
|
|
if (tail >= rq->size)
|
|
tail = 0;
|
|
|
|
if (kwq->count < RVT_RWQ_COUNT_THRESHOLD) {
|
|
head = get_rvt_head(rq, ip);
|
|
kwq->count = get_count(rq, tail, head);
|
|
}
|
|
if (unlikely(kwq->count == 0)) {
|
|
ret = 0;
|
|
goto unlock;
|
|
}
|
|
/* Make sure entry is read after the count is read. */
|
|
smp_rmb();
|
|
wqe = rvt_get_rwqe_ptr(rq, tail);
|
|
/*
|
|
* Even though we update the tail index in memory, the verbs
|
|
* consumer is not supposed to post more entries until a
|
|
* completion is generated.
|
|
*/
|
|
if (++tail >= rq->size)
|
|
tail = 0;
|
|
if (ip)
|
|
RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
|
|
else
|
|
kwq->tail = tail;
|
|
if (!wr_id_only && !init_sge(qp, wqe)) {
|
|
ret = -1;
|
|
goto unlock;
|
|
}
|
|
qp->r_wr_id = wqe->wr_id;
|
|
|
|
kwq->count--;
|
|
ret = 1;
|
|
set_bit(RVT_R_WRID_VALID, &qp->r_aflags);
|
|
if (handler) {
|
|
/*
|
|
* Validate head pointer value and compute
|
|
* the number of remaining WQEs.
|
|
*/
|
|
if (kwq->count < srq->limit) {
|
|
kwq->count = get_count(rq, tail, get_rvt_head(rq, ip));
|
|
if (kwq->count < srq->limit) {
|
|
struct ib_event ev;
|
|
|
|
srq->limit = 0;
|
|
spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
|
|
ev.device = qp->ibqp.device;
|
|
ev.element.srq = qp->ibqp.srq;
|
|
ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
|
|
handler(&ev, srq->ibsrq.srq_context);
|
|
goto bail;
|
|
}
|
|
}
|
|
}
|
|
unlock:
|
|
spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
|
|
bail:
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(rvt_get_rwqe);
|
|
|
|
/**
|
|
* qp_comm_est - handle trap with QP established
|
|
* @qp: the QP
|
|
*/
|
|
void rvt_comm_est(struct rvt_qp *qp)
|
|
{
|
|
qp->r_flags |= RVT_R_COMM_EST;
|
|
if (qp->ibqp.event_handler) {
|
|
struct ib_event ev;
|
|
|
|
ev.device = qp->ibqp.device;
|
|
ev.element.qp = &qp->ibqp;
|
|
ev.event = IB_EVENT_COMM_EST;
|
|
qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(rvt_comm_est);
|
|
|
|
void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
|
|
{
|
|
unsigned long flags;
|
|
int lastwqe;
|
|
|
|
spin_lock_irqsave(&qp->s_lock, flags);
|
|
lastwqe = rvt_error_qp(qp, err);
|
|
spin_unlock_irqrestore(&qp->s_lock, flags);
|
|
|
|
if (lastwqe) {
|
|
struct ib_event ev;
|
|
|
|
ev.device = qp->ibqp.device;
|
|
ev.element.qp = &qp->ibqp;
|
|
ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
|
|
qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(rvt_rc_error);
|
|
|
|
/*
|
|
* rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
|
|
* @index - the index
|
|
* return usec from an index into ib_rvt_rnr_table
|
|
*/
|
|
unsigned long rvt_rnr_tbl_to_usec(u32 index)
|
|
{
|
|
return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)];
|
|
}
|
|
EXPORT_SYMBOL(rvt_rnr_tbl_to_usec);
|
|
|
|
static inline unsigned long rvt_aeth_to_usec(u32 aeth)
|
|
{
|
|
return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) &
|
|
IB_AETH_CREDIT_MASK];
|
|
}
|
|
|
|
/*
|
|
* rvt_add_retry_timer_ext - add/start a retry timer
|
|
* @qp - the QP
|
|
* @shift - timeout shift to wait for multiple packets
|
|
* add a retry timer on the QP
|
|
*/
|
|
void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift)
|
|
{
|
|
struct ib_qp *ibqp = &qp->ibqp;
|
|
struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
|
|
|
|
lockdep_assert_held(&qp->s_lock);
|
|
qp->s_flags |= RVT_S_TIMER;
|
|
/* 4.096 usec. * (1 << qp->timeout) */
|
|
qp->s_timer.expires = jiffies + rdi->busy_jiffies +
|
|
(qp->timeout_jiffies << shift);
|
|
add_timer(&qp->s_timer);
|
|
}
|
|
EXPORT_SYMBOL(rvt_add_retry_timer_ext);
|
|
|
|
/**
|
|
* rvt_add_rnr_timer - add/start an rnr timer on the QP
|
|
* @qp: the QP
|
|
* @aeth: aeth of RNR timeout, simulated aeth for loopback
|
|
*/
|
|
void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth)
|
|
{
|
|
u32 to;
|
|
|
|
lockdep_assert_held(&qp->s_lock);
|
|
qp->s_flags |= RVT_S_WAIT_RNR;
|
|
to = rvt_aeth_to_usec(aeth);
|
|
trace_rvt_rnrnak_add(qp, to);
|
|
hrtimer_start(&qp->s_rnr_timer,
|
|
ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED);
|
|
}
|
|
EXPORT_SYMBOL(rvt_add_rnr_timer);
|
|
|
|
/**
|
|
* rvt_stop_rc_timers - stop all timers
|
|
* @qp: the QP
|
|
* stop any pending timers
|
|
*/
|
|
void rvt_stop_rc_timers(struct rvt_qp *qp)
|
|
{
|
|
lockdep_assert_held(&qp->s_lock);
|
|
/* Remove QP from all timers */
|
|
if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
|
|
qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
|
|
del_timer(&qp->s_timer);
|
|
hrtimer_try_to_cancel(&qp->s_rnr_timer);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(rvt_stop_rc_timers);
|
|
|
|
/**
|
|
* rvt_stop_rnr_timer - stop an rnr timer
|
|
* @qp - the QP
|
|
*
|
|
* stop an rnr timer and return if the timer
|
|
* had been pending.
|
|
*/
|
|
static void rvt_stop_rnr_timer(struct rvt_qp *qp)
|
|
{
|
|
lockdep_assert_held(&qp->s_lock);
|
|
/* Remove QP from rnr timer */
|
|
if (qp->s_flags & RVT_S_WAIT_RNR) {
|
|
qp->s_flags &= ~RVT_S_WAIT_RNR;
|
|
trace_rvt_rnrnak_stop(qp, 0);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* rvt_del_timers_sync - wait for any timeout routines to exit
|
|
* @qp: the QP
|
|
*/
|
|
void rvt_del_timers_sync(struct rvt_qp *qp)
|
|
{
|
|
del_timer_sync(&qp->s_timer);
|
|
hrtimer_cancel(&qp->s_rnr_timer);
|
|
}
|
|
EXPORT_SYMBOL(rvt_del_timers_sync);
|
|
|
|
/*
|
|
* This is called from s_timer for missing responses.
|
|
*/
|
|
static void rvt_rc_timeout(struct timer_list *t)
|
|
{
|
|
struct rvt_qp *qp = from_timer(qp, t, s_timer);
|
|
struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&qp->r_lock, flags);
|
|
spin_lock(&qp->s_lock);
|
|
if (qp->s_flags & RVT_S_TIMER) {
|
|
struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
|
|
|
|
qp->s_flags &= ~RVT_S_TIMER;
|
|
rvp->n_rc_timeouts++;
|
|
del_timer(&qp->s_timer);
|
|
trace_rvt_rc_timeout(qp, qp->s_last_psn + 1);
|
|
if (rdi->driver_f.notify_restart_rc)
|
|
rdi->driver_f.notify_restart_rc(qp,
|
|
qp->s_last_psn + 1,
|
|
1);
|
|
rdi->driver_f.schedule_send(qp);
|
|
}
|
|
spin_unlock(&qp->s_lock);
|
|
spin_unlock_irqrestore(&qp->r_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* This is called from s_timer for RNR timeouts.
|
|
*/
|
|
enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t)
|
|
{
|
|
struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer);
|
|
struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&qp->s_lock, flags);
|
|
rvt_stop_rnr_timer(qp);
|
|
trace_rvt_rnrnak_timeout(qp, 0);
|
|
rdi->driver_f.schedule_send(qp);
|
|
spin_unlock_irqrestore(&qp->s_lock, flags);
|
|
return HRTIMER_NORESTART;
|
|
}
|
|
EXPORT_SYMBOL(rvt_rc_rnr_retry);
|
|
|
|
/**
|
|
* rvt_qp_iter_init - initial for QP iteration
|
|
* @rdi: rvt devinfo
|
|
* @v: u64 value
|
|
* @cb: user-defined callback
|
|
*
|
|
* This returns an iterator suitable for iterating QPs
|
|
* in the system.
|
|
*
|
|
* The @cb is a user-defined callback and @v is a 64-bit
|
|
* value passed to and relevant for processing in the
|
|
* @cb. An example use case would be to alter QP processing
|
|
* based on criteria not part of the rvt_qp.
|
|
*
|
|
* Use cases that require memory allocation to succeed
|
|
* must preallocate appropriately.
|
|
*
|
|
* Return: a pointer to an rvt_qp_iter or NULL
|
|
*/
|
|
struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
|
|
u64 v,
|
|
void (*cb)(struct rvt_qp *qp, u64 v))
|
|
{
|
|
struct rvt_qp_iter *i;
|
|
|
|
i = kzalloc(sizeof(*i), GFP_KERNEL);
|
|
if (!i)
|
|
return NULL;
|
|
|
|
i->rdi = rdi;
|
|
/* number of special QPs (SMI/GSI) for device */
|
|
i->specials = rdi->ibdev.phys_port_cnt * 2;
|
|
i->v = v;
|
|
i->cb = cb;
|
|
|
|
return i;
|
|
}
|
|
EXPORT_SYMBOL(rvt_qp_iter_init);
|
|
|
|
/**
|
|
* rvt_qp_iter_next - return the next QP in iter
|
|
* @iter: the iterator
|
|
*
|
|
* Fine grained QP iterator suitable for use
|
|
* with debugfs seq_file mechanisms.
|
|
*
|
|
* Updates iter->qp with the current QP when the return
|
|
* value is 0.
|
|
*
|
|
* Return: 0 - iter->qp is valid 1 - no more QPs
|
|
*/
|
|
int rvt_qp_iter_next(struct rvt_qp_iter *iter)
|
|
__must_hold(RCU)
|
|
{
|
|
int n = iter->n;
|
|
int ret = 1;
|
|
struct rvt_qp *pqp = iter->qp;
|
|
struct rvt_qp *qp;
|
|
struct rvt_dev_info *rdi = iter->rdi;
|
|
|
|
/*
|
|
* The approach is to consider the special qps
|
|
* as additional table entries before the
|
|
* real hash table. Since the qp code sets
|
|
* the qp->next hash link to NULL, this works just fine.
|
|
*
|
|
* iter->specials is 2 * # ports
|
|
*
|
|
* n = 0..iter->specials is the special qp indices
|
|
*
|
|
* n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are
|
|
* the potential hash bucket entries
|
|
*
|
|
*/
|
|
for (; n < rdi->qp_dev->qp_table_size + iter->specials; n++) {
|
|
if (pqp) {
|
|
qp = rcu_dereference(pqp->next);
|
|
} else {
|
|
if (n < iter->specials) {
|
|
struct rvt_ibport *rvp;
|
|
int pidx;
|
|
|
|
pidx = n % rdi->ibdev.phys_port_cnt;
|
|
rvp = rdi->ports[pidx];
|
|
qp = rcu_dereference(rvp->qp[n & 1]);
|
|
} else {
|
|
qp = rcu_dereference(
|
|
rdi->qp_dev->qp_table[
|
|
(n - iter->specials)]);
|
|
}
|
|
}
|
|
pqp = qp;
|
|
if (qp) {
|
|
iter->qp = qp;
|
|
iter->n = n;
|
|
return 0;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(rvt_qp_iter_next);
|
|
|
|
/**
|
|
* rvt_qp_iter - iterate all QPs
|
|
* @rdi: rvt devinfo
|
|
* @v: a 64-bit value
|
|
* @cb: a callback
|
|
*
|
|
* This provides a way for iterating all QPs.
|
|
*
|
|
* The @cb is a user-defined callback and @v is a 64-bit
|
|
* value passed to and relevant for processing in the
|
|
* cb. An example use case would be to alter QP processing
|
|
* based on criteria not part of the rvt_qp.
|
|
*
|
|
* The code has an internal iterator to simplify
|
|
* non seq_file use cases.
|
|
*/
|
|
void rvt_qp_iter(struct rvt_dev_info *rdi,
|
|
u64 v,
|
|
void (*cb)(struct rvt_qp *qp, u64 v))
|
|
{
|
|
int ret;
|
|
struct rvt_qp_iter i = {
|
|
.rdi = rdi,
|
|
.specials = rdi->ibdev.phys_port_cnt * 2,
|
|
.v = v,
|
|
.cb = cb
|
|
};
|
|
|
|
rcu_read_lock();
|
|
do {
|
|
ret = rvt_qp_iter_next(&i);
|
|
if (!ret) {
|
|
rvt_get_qp(i.qp);
|
|
rcu_read_unlock();
|
|
i.cb(i.qp, i.v);
|
|
rcu_read_lock();
|
|
rvt_put_qp(i.qp);
|
|
}
|
|
} while (!ret);
|
|
rcu_read_unlock();
|
|
}
|
|
EXPORT_SYMBOL(rvt_qp_iter);
|
|
|
|
/*
|
|
* This should be called with s_lock held.
|
|
*/
|
|
void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe,
|
|
enum ib_wc_status status)
|
|
{
|
|
u32 old_last, last;
|
|
struct rvt_dev_info *rdi;
|
|
|
|
if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND))
|
|
return;
|
|
rdi = ib_to_rvt(qp->ibqp.device);
|
|
|
|
old_last = qp->s_last;
|
|
trace_rvt_qp_send_completion(qp, wqe, old_last);
|
|
last = rvt_qp_complete_swqe(qp, wqe, rdi->wc_opcode[wqe->wr.opcode],
|
|
status);
|
|
if (qp->s_acked == old_last)
|
|
qp->s_acked = last;
|
|
if (qp->s_cur == old_last)
|
|
qp->s_cur = last;
|
|
if (qp->s_tail == old_last)
|
|
qp->s_tail = last;
|
|
if (qp->state == IB_QPS_SQD && last == qp->s_cur)
|
|
qp->s_draining = 0;
|
|
}
|
|
EXPORT_SYMBOL(rvt_send_complete);
|
|
|
|
/**
|
|
* rvt_copy_sge - copy data to SGE memory
|
|
* @qp: associated QP
|
|
* @ss: the SGE state
|
|
* @data: the data to copy
|
|
* @length: the length of the data
|
|
* @release: boolean to release MR
|
|
* @copy_last: do a separate copy of the last 8 bytes
|
|
*/
|
|
void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss,
|
|
void *data, u32 length,
|
|
bool release, bool copy_last)
|
|
{
|
|
struct rvt_sge *sge = &ss->sge;
|
|
int i;
|
|
bool in_last = false;
|
|
bool cacheless_copy = false;
|
|
struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
|
|
struct rvt_wss *wss = rdi->wss;
|
|
unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
|
|
|
|
if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) {
|
|
cacheless_copy = length >= PAGE_SIZE;
|
|
} else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) {
|
|
if (length >= PAGE_SIZE) {
|
|
/*
|
|
* NOTE: this *assumes*:
|
|
* o The first vaddr is the dest.
|
|
* o If multiple pages, then vaddr is sequential.
|
|
*/
|
|
wss_insert(wss, sge->vaddr);
|
|
if (length >= (2 * PAGE_SIZE))
|
|
wss_insert(wss, (sge->vaddr + PAGE_SIZE));
|
|
|
|
cacheless_copy = wss_exceeds_threshold(wss);
|
|
} else {
|
|
wss_advance_clean_counter(wss);
|
|
}
|
|
}
|
|
|
|
if (copy_last) {
|
|
if (length > 8) {
|
|
length -= 8;
|
|
} else {
|
|
copy_last = false;
|
|
in_last = true;
|
|
}
|
|
}
|
|
|
|
again:
|
|
while (length) {
|
|
u32 len = rvt_get_sge_length(sge, length);
|
|
|
|
WARN_ON_ONCE(len == 0);
|
|
if (unlikely(in_last)) {
|
|
/* enforce byte transfer ordering */
|
|
for (i = 0; i < len; i++)
|
|
((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
|
|
} else if (cacheless_copy) {
|
|
cacheless_memcpy(sge->vaddr, data, len);
|
|
} else {
|
|
memcpy(sge->vaddr, data, len);
|
|
}
|
|
rvt_update_sge(ss, len, release);
|
|
data += len;
|
|
length -= len;
|
|
}
|
|
|
|
if (copy_last) {
|
|
copy_last = false;
|
|
in_last = true;
|
|
length = 8;
|
|
goto again;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(rvt_copy_sge);
|
|
|
|
static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp,
|
|
struct rvt_qp *sqp)
|
|
{
|
|
rvp->n_pkt_drops++;
|
|
/*
|
|
* For RC, the requester would timeout and retry so
|
|
* shortcut the timeouts and just signal too many retries.
|
|
*/
|
|
return sqp->ibqp.qp_type == IB_QPT_RC ?
|
|
IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ruc_loopback - handle UC and RC loopback requests
|
|
* @sqp: the sending QP
|
|
*
|
|
* This is called from rvt_do_send() to forward a WQE addressed to the same HFI
|
|
* Note that although we are single threaded due to the send engine, we still
|
|
* have to protect against post_send(). We don't have to worry about
|
|
* receive interrupts since this is a connected protocol and all packets
|
|
* will pass through here.
|
|
*/
|
|
void rvt_ruc_loopback(struct rvt_qp *sqp)
|
|
{
|
|
struct rvt_ibport *rvp = NULL;
|
|
struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device);
|
|
struct rvt_qp *qp;
|
|
struct rvt_swqe *wqe;
|
|
struct rvt_sge *sge;
|
|
unsigned long flags;
|
|
struct ib_wc wc;
|
|
u64 sdata;
|
|
atomic64_t *maddr;
|
|
enum ib_wc_status send_status;
|
|
bool release;
|
|
int ret;
|
|
bool copy_last = false;
|
|
int local_ops = 0;
|
|
|
|
rcu_read_lock();
|
|
rvp = rdi->ports[sqp->port_num - 1];
|
|
|
|
/*
|
|
* Note that we check the responder QP state after
|
|
* checking the requester's state.
|
|
*/
|
|
|
|
qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp,
|
|
sqp->remote_qpn);
|
|
|
|
spin_lock_irqsave(&sqp->s_lock, flags);
|
|
|
|
/* Return if we are already busy processing a work request. */
|
|
if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) ||
|
|
!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND))
|
|
goto unlock;
|
|
|
|
sqp->s_flags |= RVT_S_BUSY;
|
|
|
|
again:
|
|
if (sqp->s_last == READ_ONCE(sqp->s_head))
|
|
goto clr_busy;
|
|
wqe = rvt_get_swqe_ptr(sqp, sqp->s_last);
|
|
|
|
/* Return if it is not OK to start a new work request. */
|
|
if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) {
|
|
if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND))
|
|
goto clr_busy;
|
|
/* We are in the error state, flush the work request. */
|
|
send_status = IB_WC_WR_FLUSH_ERR;
|
|
goto flush_send;
|
|
}
|
|
|
|
/*
|
|
* We can rely on the entry not changing without the s_lock
|
|
* being held until we update s_last.
|
|
* We increment s_cur to indicate s_last is in progress.
|
|
*/
|
|
if (sqp->s_last == sqp->s_cur) {
|
|
if (++sqp->s_cur >= sqp->s_size)
|
|
sqp->s_cur = 0;
|
|
}
|
|
spin_unlock_irqrestore(&sqp->s_lock, flags);
|
|
|
|
if (!qp) {
|
|
send_status = loopback_qp_drop(rvp, sqp);
|
|
goto serr_no_r_lock;
|
|
}
|
|
spin_lock_irqsave(&qp->r_lock, flags);
|
|
if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) ||
|
|
qp->ibqp.qp_type != sqp->ibqp.qp_type) {
|
|
send_status = loopback_qp_drop(rvp, sqp);
|
|
goto serr;
|
|
}
|
|
|
|
memset(&wc, 0, sizeof(wc));
|
|
send_status = IB_WC_SUCCESS;
|
|
|
|
release = true;
|
|
sqp->s_sge.sge = wqe->sg_list[0];
|
|
sqp->s_sge.sg_list = wqe->sg_list + 1;
|
|
sqp->s_sge.num_sge = wqe->wr.num_sge;
|
|
sqp->s_len = wqe->length;
|
|
switch (wqe->wr.opcode) {
|
|
case IB_WR_REG_MR:
|
|
goto send_comp;
|
|
|
|
case IB_WR_LOCAL_INV:
|
|
if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) {
|
|
if (rvt_invalidate_rkey(sqp,
|
|
wqe->wr.ex.invalidate_rkey))
|
|
send_status = IB_WC_LOC_PROT_ERR;
|
|
local_ops = 1;
|
|
}
|
|
goto send_comp;
|
|
|
|
case IB_WR_SEND_WITH_INV:
|
|
case IB_WR_SEND_WITH_IMM:
|
|
case IB_WR_SEND:
|
|
ret = rvt_get_rwqe(qp, false);
|
|
if (ret < 0)
|
|
goto op_err;
|
|
if (!ret)
|
|
goto rnr_nak;
|
|
if (wqe->length > qp->r_len)
|
|
goto inv_err;
|
|
switch (wqe->wr.opcode) {
|
|
case IB_WR_SEND_WITH_INV:
|
|
if (!rvt_invalidate_rkey(qp,
|
|
wqe->wr.ex.invalidate_rkey)) {
|
|
wc.wc_flags = IB_WC_WITH_INVALIDATE;
|
|
wc.ex.invalidate_rkey =
|
|
wqe->wr.ex.invalidate_rkey;
|
|
}
|
|
break;
|
|
case IB_WR_SEND_WITH_IMM:
|
|
wc.wc_flags = IB_WC_WITH_IMM;
|
|
wc.ex.imm_data = wqe->wr.ex.imm_data;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case IB_WR_RDMA_WRITE_WITH_IMM:
|
|
if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
|
|
goto inv_err;
|
|
wc.wc_flags = IB_WC_WITH_IMM;
|
|
wc.ex.imm_data = wqe->wr.ex.imm_data;
|
|
ret = rvt_get_rwqe(qp, true);
|
|
if (ret < 0)
|
|
goto op_err;
|
|
if (!ret)
|
|
goto rnr_nak;
|
|
/* skip copy_last set and qp_access_flags recheck */
|
|
goto do_write;
|
|
case IB_WR_RDMA_WRITE:
|
|
copy_last = rvt_is_user_qp(qp);
|
|
if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
|
|
goto inv_err;
|
|
do_write:
|
|
if (wqe->length == 0)
|
|
break;
|
|
if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length,
|
|
wqe->rdma_wr.remote_addr,
|
|
wqe->rdma_wr.rkey,
|
|
IB_ACCESS_REMOTE_WRITE)))
|
|
goto acc_err;
|
|
qp->r_sge.sg_list = NULL;
|
|
qp->r_sge.num_sge = 1;
|
|
qp->r_sge.total_len = wqe->length;
|
|
break;
|
|
|
|
case IB_WR_RDMA_READ:
|
|
if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
|
|
goto inv_err;
|
|
if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length,
|
|
wqe->rdma_wr.remote_addr,
|
|
wqe->rdma_wr.rkey,
|
|
IB_ACCESS_REMOTE_READ)))
|
|
goto acc_err;
|
|
release = false;
|
|
sqp->s_sge.sg_list = NULL;
|
|
sqp->s_sge.num_sge = 1;
|
|
qp->r_sge.sge = wqe->sg_list[0];
|
|
qp->r_sge.sg_list = wqe->sg_list + 1;
|
|
qp->r_sge.num_sge = wqe->wr.num_sge;
|
|
qp->r_sge.total_len = wqe->length;
|
|
break;
|
|
|
|
case IB_WR_ATOMIC_CMP_AND_SWP:
|
|
case IB_WR_ATOMIC_FETCH_AND_ADD:
|
|
if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC)))
|
|
goto inv_err;
|
|
if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64),
|
|
wqe->atomic_wr.remote_addr,
|
|
wqe->atomic_wr.rkey,
|
|
IB_ACCESS_REMOTE_ATOMIC)))
|
|
goto acc_err;
|
|
/* Perform atomic OP and save result. */
|
|
maddr = (atomic64_t *)qp->r_sge.sge.vaddr;
|
|
sdata = wqe->atomic_wr.compare_add;
|
|
*(u64 *)sqp->s_sge.sge.vaddr =
|
|
(wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ?
|
|
(u64)atomic64_add_return(sdata, maddr) - sdata :
|
|
(u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr,
|
|
sdata, wqe->atomic_wr.swap);
|
|
rvt_put_mr(qp->r_sge.sge.mr);
|
|
qp->r_sge.num_sge = 0;
|
|
goto send_comp;
|
|
|
|
default:
|
|
send_status = IB_WC_LOC_QP_OP_ERR;
|
|
goto serr;
|
|
}
|
|
|
|
sge = &sqp->s_sge.sge;
|
|
while (sqp->s_len) {
|
|
u32 len = rvt_get_sge_length(sge, sqp->s_len);
|
|
|
|
WARN_ON_ONCE(len == 0);
|
|
rvt_copy_sge(qp, &qp->r_sge, sge->vaddr,
|
|
len, release, copy_last);
|
|
rvt_update_sge(&sqp->s_sge, len, !release);
|
|
sqp->s_len -= len;
|
|
}
|
|
if (release)
|
|
rvt_put_ss(&qp->r_sge);
|
|
|
|
if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags))
|
|
goto send_comp;
|
|
|
|
if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM)
|
|
wc.opcode = IB_WC_RECV_RDMA_WITH_IMM;
|
|
else
|
|
wc.opcode = IB_WC_RECV;
|
|
wc.wr_id = qp->r_wr_id;
|
|
wc.status = IB_WC_SUCCESS;
|
|
wc.byte_len = wqe->length;
|
|
wc.qp = &qp->ibqp;
|
|
wc.src_qp = qp->remote_qpn;
|
|
wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX;
|
|
wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr);
|
|
wc.port_num = 1;
|
|
/* Signal completion event if the solicited bit is set. */
|
|
rvt_recv_cq(qp, &wc, wqe->wr.send_flags & IB_SEND_SOLICITED);
|
|
|
|
send_comp:
|
|
spin_unlock_irqrestore(&qp->r_lock, flags);
|
|
spin_lock_irqsave(&sqp->s_lock, flags);
|
|
rvp->n_loop_pkts++;
|
|
flush_send:
|
|
sqp->s_rnr_retry = sqp->s_rnr_retry_cnt;
|
|
rvt_send_complete(sqp, wqe, send_status);
|
|
if (local_ops) {
|
|
atomic_dec(&sqp->local_ops_pending);
|
|
local_ops = 0;
|
|
}
|
|
goto again;
|
|
|
|
rnr_nak:
|
|
/* Handle RNR NAK */
|
|
if (qp->ibqp.qp_type == IB_QPT_UC)
|
|
goto send_comp;
|
|
rvp->n_rnr_naks++;
|
|
/*
|
|
* Note: we don't need the s_lock held since the BUSY flag
|
|
* makes this single threaded.
|
|
*/
|
|
if (sqp->s_rnr_retry == 0) {
|
|
send_status = IB_WC_RNR_RETRY_EXC_ERR;
|
|
goto serr;
|
|
}
|
|
if (sqp->s_rnr_retry_cnt < 7)
|
|
sqp->s_rnr_retry--;
|
|
spin_unlock_irqrestore(&qp->r_lock, flags);
|
|
spin_lock_irqsave(&sqp->s_lock, flags);
|
|
if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK))
|
|
goto clr_busy;
|
|
rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer <<
|
|
IB_AETH_CREDIT_SHIFT);
|
|
goto clr_busy;
|
|
|
|
op_err:
|
|
send_status = IB_WC_REM_OP_ERR;
|
|
wc.status = IB_WC_LOC_QP_OP_ERR;
|
|
goto err;
|
|
|
|
inv_err:
|
|
send_status =
|
|
sqp->ibqp.qp_type == IB_QPT_RC ?
|
|
IB_WC_REM_INV_REQ_ERR :
|
|
IB_WC_SUCCESS;
|
|
wc.status = IB_WC_LOC_QP_OP_ERR;
|
|
goto err;
|
|
|
|
acc_err:
|
|
send_status = IB_WC_REM_ACCESS_ERR;
|
|
wc.status = IB_WC_LOC_PROT_ERR;
|
|
err:
|
|
/* responder goes to error state */
|
|
rvt_rc_error(qp, wc.status);
|
|
|
|
serr:
|
|
spin_unlock_irqrestore(&qp->r_lock, flags);
|
|
serr_no_r_lock:
|
|
spin_lock_irqsave(&sqp->s_lock, flags);
|
|
rvt_send_complete(sqp, wqe, send_status);
|
|
if (sqp->ibqp.qp_type == IB_QPT_RC) {
|
|
int lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR);
|
|
|
|
sqp->s_flags &= ~RVT_S_BUSY;
|
|
spin_unlock_irqrestore(&sqp->s_lock, flags);
|
|
if (lastwqe) {
|
|
struct ib_event ev;
|
|
|
|
ev.device = sqp->ibqp.device;
|
|
ev.element.qp = &sqp->ibqp;
|
|
ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
|
|
sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context);
|
|
}
|
|
goto done;
|
|
}
|
|
clr_busy:
|
|
sqp->s_flags &= ~RVT_S_BUSY;
|
|
unlock:
|
|
spin_unlock_irqrestore(&sqp->s_lock, flags);
|
|
done:
|
|
rcu_read_unlock();
|
|
}
|
|
EXPORT_SYMBOL(rvt_ruc_loopback);
|