793473c28a
Rename pr_efi to efi_info and pr_efi_err to efi_err to make it more obvious that they are part of the EFI stub and not generic printk infra. Suggested-by: Joe Perches <joe@perches.com> Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu> Link: https://lore.kernel.org/r/20200430182843.2510180-4-nivedita@alum.mit.edu Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
372 lines
9.7 KiB
C
372 lines
9.7 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* FDT related Helper functions used by the EFI stub on multiple
|
|
* architectures. This should be #included by the EFI stub
|
|
* implementation files.
|
|
*
|
|
* Copyright 2013 Linaro Limited; author Roy Franz
|
|
*/
|
|
|
|
#include <linux/efi.h>
|
|
#include <linux/libfdt.h>
|
|
#include <asm/efi.h>
|
|
|
|
#include "efistub.h"
|
|
|
|
#define EFI_DT_ADDR_CELLS_DEFAULT 2
|
|
#define EFI_DT_SIZE_CELLS_DEFAULT 2
|
|
|
|
static void fdt_update_cell_size(void *fdt)
|
|
{
|
|
int offset;
|
|
|
|
offset = fdt_path_offset(fdt, "/");
|
|
/* Set the #address-cells and #size-cells values for an empty tree */
|
|
|
|
fdt_setprop_u32(fdt, offset, "#address-cells", EFI_DT_ADDR_CELLS_DEFAULT);
|
|
fdt_setprop_u32(fdt, offset, "#size-cells", EFI_DT_SIZE_CELLS_DEFAULT);
|
|
}
|
|
|
|
static efi_status_t update_fdt(void *orig_fdt, unsigned long orig_fdt_size,
|
|
void *fdt, int new_fdt_size, char *cmdline_ptr,
|
|
u64 initrd_addr, u64 initrd_size)
|
|
{
|
|
int node, num_rsv;
|
|
int status;
|
|
u32 fdt_val32;
|
|
u64 fdt_val64;
|
|
|
|
/* Do some checks on provided FDT, if it exists: */
|
|
if (orig_fdt) {
|
|
if (fdt_check_header(orig_fdt)) {
|
|
efi_err("Device Tree header not valid!\n");
|
|
return EFI_LOAD_ERROR;
|
|
}
|
|
/*
|
|
* We don't get the size of the FDT if we get if from a
|
|
* configuration table:
|
|
*/
|
|
if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
|
|
efi_err("Truncated device tree! foo!\n");
|
|
return EFI_LOAD_ERROR;
|
|
}
|
|
}
|
|
|
|
if (orig_fdt) {
|
|
status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
|
|
} else {
|
|
status = fdt_create_empty_tree(fdt, new_fdt_size);
|
|
if (status == 0) {
|
|
/*
|
|
* Any failure from the following function is
|
|
* non-critical:
|
|
*/
|
|
fdt_update_cell_size(fdt);
|
|
}
|
|
}
|
|
|
|
if (status != 0)
|
|
goto fdt_set_fail;
|
|
|
|
/*
|
|
* Delete all memory reserve map entries. When booting via UEFI,
|
|
* kernel will use the UEFI memory map to find reserved regions.
|
|
*/
|
|
num_rsv = fdt_num_mem_rsv(fdt);
|
|
while (num_rsv-- > 0)
|
|
fdt_del_mem_rsv(fdt, num_rsv);
|
|
|
|
node = fdt_subnode_offset(fdt, 0, "chosen");
|
|
if (node < 0) {
|
|
node = fdt_add_subnode(fdt, 0, "chosen");
|
|
if (node < 0) {
|
|
/* 'node' is an error code when negative: */
|
|
status = node;
|
|
goto fdt_set_fail;
|
|
}
|
|
}
|
|
|
|
if (cmdline_ptr != NULL && strlen(cmdline_ptr) > 0) {
|
|
status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
|
|
strlen(cmdline_ptr) + 1);
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
}
|
|
|
|
/* Set initrd address/end in device tree, if present */
|
|
if (initrd_size != 0) {
|
|
u64 initrd_image_end;
|
|
u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
|
|
|
|
status = fdt_setprop_var(fdt, node, "linux,initrd-start", initrd_image_start);
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
|
|
initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
|
|
status = fdt_setprop_var(fdt, node, "linux,initrd-end", initrd_image_end);
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
}
|
|
|
|
/* Add FDT entries for EFI runtime services in chosen node. */
|
|
node = fdt_subnode_offset(fdt, 0, "chosen");
|
|
fdt_val64 = cpu_to_fdt64((u64)(unsigned long)efi_system_table);
|
|
|
|
status = fdt_setprop_var(fdt, node, "linux,uefi-system-table", fdt_val64);
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
|
|
fdt_val64 = U64_MAX; /* placeholder */
|
|
|
|
status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-start", fdt_val64);
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
|
|
fdt_val32 = U32_MAX; /* placeholder */
|
|
|
|
status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-size", fdt_val32);
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
|
|
status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-desc-size", fdt_val32);
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
|
|
status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-desc-ver", fdt_val32);
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
|
|
if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
|
|
efi_status_t efi_status;
|
|
|
|
efi_status = efi_get_random_bytes(sizeof(fdt_val64),
|
|
(u8 *)&fdt_val64);
|
|
if (efi_status == EFI_SUCCESS) {
|
|
status = fdt_setprop_var(fdt, node, "kaslr-seed", fdt_val64);
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
} else if (efi_status != EFI_NOT_FOUND) {
|
|
return efi_status;
|
|
}
|
|
}
|
|
|
|
/* Shrink the FDT back to its minimum size: */
|
|
fdt_pack(fdt);
|
|
|
|
return EFI_SUCCESS;
|
|
|
|
fdt_set_fail:
|
|
if (status == -FDT_ERR_NOSPACE)
|
|
return EFI_BUFFER_TOO_SMALL;
|
|
|
|
return EFI_LOAD_ERROR;
|
|
}
|
|
|
|
static efi_status_t update_fdt_memmap(void *fdt, struct efi_boot_memmap *map)
|
|
{
|
|
int node = fdt_path_offset(fdt, "/chosen");
|
|
u64 fdt_val64;
|
|
u32 fdt_val32;
|
|
int err;
|
|
|
|
if (node < 0)
|
|
return EFI_LOAD_ERROR;
|
|
|
|
fdt_val64 = cpu_to_fdt64((unsigned long)*map->map);
|
|
|
|
err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-start", fdt_val64);
|
|
if (err)
|
|
return EFI_LOAD_ERROR;
|
|
|
|
fdt_val32 = cpu_to_fdt32(*map->map_size);
|
|
|
|
err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-size", fdt_val32);
|
|
if (err)
|
|
return EFI_LOAD_ERROR;
|
|
|
|
fdt_val32 = cpu_to_fdt32(*map->desc_size);
|
|
|
|
err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-size", fdt_val32);
|
|
if (err)
|
|
return EFI_LOAD_ERROR;
|
|
|
|
fdt_val32 = cpu_to_fdt32(*map->desc_ver);
|
|
|
|
err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-ver", fdt_val32);
|
|
if (err)
|
|
return EFI_LOAD_ERROR;
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
struct exit_boot_struct {
|
|
efi_memory_desc_t *runtime_map;
|
|
int *runtime_entry_count;
|
|
void *new_fdt_addr;
|
|
};
|
|
|
|
static efi_status_t exit_boot_func(struct efi_boot_memmap *map,
|
|
void *priv)
|
|
{
|
|
struct exit_boot_struct *p = priv;
|
|
/*
|
|
* Update the memory map with virtual addresses. The function will also
|
|
* populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
|
|
* entries so that we can pass it straight to SetVirtualAddressMap()
|
|
*/
|
|
efi_get_virtmap(*map->map, *map->map_size, *map->desc_size,
|
|
p->runtime_map, p->runtime_entry_count);
|
|
|
|
return update_fdt_memmap(p->new_fdt_addr, map);
|
|
}
|
|
|
|
#ifndef MAX_FDT_SIZE
|
|
# define MAX_FDT_SIZE SZ_2M
|
|
#endif
|
|
|
|
/*
|
|
* Allocate memory for a new FDT, then add EFI, commandline, and
|
|
* initrd related fields to the FDT. This routine increases the
|
|
* FDT allocation size until the allocated memory is large
|
|
* enough. EFI allocations are in EFI_PAGE_SIZE granules,
|
|
* which are fixed at 4K bytes, so in most cases the first
|
|
* allocation should succeed.
|
|
* EFI boot services are exited at the end of this function.
|
|
* There must be no allocations between the get_memory_map()
|
|
* call and the exit_boot_services() call, so the exiting of
|
|
* boot services is very tightly tied to the creation of the FDT
|
|
* with the final memory map in it.
|
|
*/
|
|
|
|
efi_status_t allocate_new_fdt_and_exit_boot(void *handle,
|
|
unsigned long *new_fdt_addr,
|
|
unsigned long max_addr,
|
|
u64 initrd_addr, u64 initrd_size,
|
|
char *cmdline_ptr,
|
|
unsigned long fdt_addr,
|
|
unsigned long fdt_size)
|
|
{
|
|
unsigned long map_size, desc_size, buff_size;
|
|
u32 desc_ver;
|
|
unsigned long mmap_key;
|
|
efi_memory_desc_t *memory_map, *runtime_map;
|
|
efi_status_t status;
|
|
int runtime_entry_count;
|
|
struct efi_boot_memmap map;
|
|
struct exit_boot_struct priv;
|
|
|
|
map.map = &runtime_map;
|
|
map.map_size = &map_size;
|
|
map.desc_size = &desc_size;
|
|
map.desc_ver = &desc_ver;
|
|
map.key_ptr = &mmap_key;
|
|
map.buff_size = &buff_size;
|
|
|
|
/*
|
|
* Get a copy of the current memory map that we will use to prepare
|
|
* the input for SetVirtualAddressMap(). We don't have to worry about
|
|
* subsequent allocations adding entries, since they could not affect
|
|
* the number of EFI_MEMORY_RUNTIME regions.
|
|
*/
|
|
status = efi_get_memory_map(&map);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Unable to retrieve UEFI memory map.\n");
|
|
return status;
|
|
}
|
|
|
|
efi_info("Exiting boot services and installing virtual address map...\n");
|
|
|
|
map.map = &memory_map;
|
|
status = efi_allocate_pages(MAX_FDT_SIZE, new_fdt_addr, max_addr);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Unable to allocate memory for new device tree.\n");
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Now that we have done our final memory allocation (and free)
|
|
* we can get the memory map key needed for exit_boot_services().
|
|
*/
|
|
status = efi_get_memory_map(&map);
|
|
if (status != EFI_SUCCESS)
|
|
goto fail_free_new_fdt;
|
|
|
|
status = update_fdt((void *)fdt_addr, fdt_size,
|
|
(void *)*new_fdt_addr, MAX_FDT_SIZE, cmdline_ptr,
|
|
initrd_addr, initrd_size);
|
|
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Unable to construct new device tree.\n");
|
|
goto fail_free_new_fdt;
|
|
}
|
|
|
|
runtime_entry_count = 0;
|
|
priv.runtime_map = runtime_map;
|
|
priv.runtime_entry_count = &runtime_entry_count;
|
|
priv.new_fdt_addr = (void *)*new_fdt_addr;
|
|
|
|
status = efi_exit_boot_services(handle, &map, &priv, exit_boot_func);
|
|
|
|
if (status == EFI_SUCCESS) {
|
|
efi_set_virtual_address_map_t *svam;
|
|
|
|
if (efi_novamap)
|
|
return EFI_SUCCESS;
|
|
|
|
/* Install the new virtual address map */
|
|
svam = efi_system_table->runtime->set_virtual_address_map;
|
|
status = svam(runtime_entry_count * desc_size, desc_size,
|
|
desc_ver, runtime_map);
|
|
|
|
/*
|
|
* We are beyond the point of no return here, so if the call to
|
|
* SetVirtualAddressMap() failed, we need to signal that to the
|
|
* incoming kernel but proceed normally otherwise.
|
|
*/
|
|
if (status != EFI_SUCCESS) {
|
|
int l;
|
|
|
|
/*
|
|
* Set the virtual address field of all
|
|
* EFI_MEMORY_RUNTIME entries to 0. This will signal
|
|
* the incoming kernel that no virtual translation has
|
|
* been installed.
|
|
*/
|
|
for (l = 0; l < map_size; l += desc_size) {
|
|
efi_memory_desc_t *p = (void *)memory_map + l;
|
|
|
|
if (p->attribute & EFI_MEMORY_RUNTIME)
|
|
p->virt_addr = 0;
|
|
}
|
|
}
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
efi_err("Exit boot services failed.\n");
|
|
|
|
fail_free_new_fdt:
|
|
efi_free(MAX_FDT_SIZE, *new_fdt_addr);
|
|
|
|
fail:
|
|
efi_system_table->boottime->free_pool(runtime_map);
|
|
|
|
return EFI_LOAD_ERROR;
|
|
}
|
|
|
|
void *get_fdt(unsigned long *fdt_size)
|
|
{
|
|
void *fdt;
|
|
|
|
fdt = get_efi_config_table(DEVICE_TREE_GUID);
|
|
|
|
if (!fdt)
|
|
return NULL;
|
|
|
|
if (fdt_check_header(fdt) != 0) {
|
|
efi_err("Invalid header detected on UEFI supplied FDT, ignoring ...\n");
|
|
return NULL;
|
|
}
|
|
*fdt_size = fdt_totalsize(fdt);
|
|
return fdt;
|
|
}
|