linux/sound/x86/intel_hdmi_audio.c
Takashi Iwai 7ceba75f21 ALSA: x86: Reduce redundant register field names
Currently each register definition contains the own prefix in the
union struct itself; for example, union aud_ch_status_0 has
status_0_regx and status_0_regval fields.  These are simply
superfluous, since usually the type of the variable is seen in its
declaration or in its name.

In this patch, we cut off these prefixes.  Now all register
definitions have regx and regval fields consistently, instead.

Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-02-03 17:37:02 +01:00

1993 lines
55 KiB
C

/*
* intel_hdmi_audio.c - Intel HDMI audio driver
*
* Copyright (C) 2016 Intel Corp
* Authors: Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
* Ramesh Babu K V <ramesh.babu@intel.com>
* Vaibhav Agarwal <vaibhav.agarwal@intel.com>
* Jerome Anand <jerome.anand@intel.com>
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* ALSA driver for Intel HDMI audio
*/
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/acpi.h>
#include <asm/cacheflush.h>
#include <sound/pcm.h>
#include <sound/core.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/control.h>
#include <sound/initval.h>
#include <drm/intel_lpe_audio.h>
#include "intel_hdmi_audio.h"
/*standard module options for ALSA. This module supports only one card*/
static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
module_param_named(index, hdmi_card_index, int, 0444);
MODULE_PARM_DESC(index,
"Index value for INTEL Intel HDMI Audio controller.");
module_param_named(id, hdmi_card_id, charp, 0444);
MODULE_PARM_DESC(id,
"ID string for INTEL Intel HDMI Audio controller.");
/*
* ELD SA bits in the CEA Speaker Allocation data block
*/
static const int eld_speaker_allocation_bits[] = {
[0] = FL | FR,
[1] = LFE,
[2] = FC,
[3] = RL | RR,
[4] = RC,
[5] = FLC | FRC,
[6] = RLC | RRC,
/* the following are not defined in ELD yet */
[7] = 0,
};
/*
* This is an ordered list!
*
* The preceding ones have better chances to be selected by
* hdmi_channel_allocation().
*/
static struct cea_channel_speaker_allocation channel_allocations[] = {
/* channel: 7 6 5 4 3 2 1 0 */
{ .ca_index = 0x00, .speakers = { 0, 0, 0, 0, 0, 0, FR, FL } },
/* 2.1 */
{ .ca_index = 0x01, .speakers = { 0, 0, 0, 0, 0, LFE, FR, FL } },
/* Dolby Surround */
{ .ca_index = 0x02, .speakers = { 0, 0, 0, 0, FC, 0, FR, FL } },
/* surround40 */
{ .ca_index = 0x08, .speakers = { 0, 0, RR, RL, 0, 0, FR, FL } },
/* surround41 */
{ .ca_index = 0x09, .speakers = { 0, 0, RR, RL, 0, LFE, FR, FL } },
/* surround50 */
{ .ca_index = 0x0a, .speakers = { 0, 0, RR, RL, FC, 0, FR, FL } },
/* surround51 */
{ .ca_index = 0x0b, .speakers = { 0, 0, RR, RL, FC, LFE, FR, FL } },
/* 6.1 */
{ .ca_index = 0x0f, .speakers = { 0, RC, RR, RL, FC, LFE, FR, FL } },
/* surround71 */
{ .ca_index = 0x13, .speakers = { RRC, RLC, RR, RL, FC, LFE, FR, FL } },
{ .ca_index = 0x03, .speakers = { 0, 0, 0, 0, FC, LFE, FR, FL } },
{ .ca_index = 0x04, .speakers = { 0, 0, 0, RC, 0, 0, FR, FL } },
{ .ca_index = 0x05, .speakers = { 0, 0, 0, RC, 0, LFE, FR, FL } },
{ .ca_index = 0x06, .speakers = { 0, 0, 0, RC, FC, 0, FR, FL } },
{ .ca_index = 0x07, .speakers = { 0, 0, 0, RC, FC, LFE, FR, FL } },
{ .ca_index = 0x0c, .speakers = { 0, RC, RR, RL, 0, 0, FR, FL } },
{ .ca_index = 0x0d, .speakers = { 0, RC, RR, RL, 0, LFE, FR, FL } },
{ .ca_index = 0x0e, .speakers = { 0, RC, RR, RL, FC, 0, FR, FL } },
{ .ca_index = 0x10, .speakers = { RRC, RLC, RR, RL, 0, 0, FR, FL } },
{ .ca_index = 0x11, .speakers = { RRC, RLC, RR, RL, 0, LFE, FR, FL } },
{ .ca_index = 0x12, .speakers = { RRC, RLC, RR, RL, FC, 0, FR, FL } },
{ .ca_index = 0x14, .speakers = { FRC, FLC, 0, 0, 0, 0, FR, FL } },
{ .ca_index = 0x15, .speakers = { FRC, FLC, 0, 0, 0, LFE, FR, FL } },
{ .ca_index = 0x16, .speakers = { FRC, FLC, 0, 0, FC, 0, FR, FL } },
{ .ca_index = 0x17, .speakers = { FRC, FLC, 0, 0, FC, LFE, FR, FL } },
{ .ca_index = 0x18, .speakers = { FRC, FLC, 0, RC, 0, 0, FR, FL } },
{ .ca_index = 0x19, .speakers = { FRC, FLC, 0, RC, 0, LFE, FR, FL } },
{ .ca_index = 0x1a, .speakers = { FRC, FLC, 0, RC, FC, 0, FR, FL } },
{ .ca_index = 0x1b, .speakers = { FRC, FLC, 0, RC, FC, LFE, FR, FL } },
{ .ca_index = 0x1c, .speakers = { FRC, FLC, RR, RL, 0, 0, FR, FL } },
{ .ca_index = 0x1d, .speakers = { FRC, FLC, RR, RL, 0, LFE, FR, FL } },
{ .ca_index = 0x1e, .speakers = { FRC, FLC, RR, RL, FC, 0, FR, FL } },
{ .ca_index = 0x1f, .speakers = { FRC, FLC, RR, RL, FC, LFE, FR, FL } },
};
static const struct channel_map_table map_tables[] = {
{ SNDRV_CHMAP_FL, 0x00, FL },
{ SNDRV_CHMAP_FR, 0x01, FR },
{ SNDRV_CHMAP_RL, 0x04, RL },
{ SNDRV_CHMAP_RR, 0x05, RR },
{ SNDRV_CHMAP_LFE, 0x02, LFE },
{ SNDRV_CHMAP_FC, 0x03, FC },
{ SNDRV_CHMAP_RLC, 0x06, RLC },
{ SNDRV_CHMAP_RRC, 0x07, RRC },
{} /* terminator */
};
/* hardware capability structure */
static const struct snd_pcm_hardware snd_intel_hadstream = {
.info = (SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_DOUBLE |
SNDRV_PCM_INFO_MMAP|
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_BATCH),
.formats = (SNDRV_PCM_FMTBIT_S24 |
SNDRV_PCM_FMTBIT_U24),
.rates = SNDRV_PCM_RATE_32000 |
SNDRV_PCM_RATE_44100 |
SNDRV_PCM_RATE_48000 |
SNDRV_PCM_RATE_88200 |
SNDRV_PCM_RATE_96000 |
SNDRV_PCM_RATE_176400 |
SNDRV_PCM_RATE_192000,
.rate_min = HAD_MIN_RATE,
.rate_max = HAD_MAX_RATE,
.channels_min = HAD_MIN_CHANNEL,
.channels_max = HAD_MAX_CHANNEL,
.buffer_bytes_max = HAD_MAX_BUFFER,
.period_bytes_min = HAD_MIN_PERIOD_BYTES,
.period_bytes_max = HAD_MAX_PERIOD_BYTES,
.periods_min = HAD_MIN_PERIODS,
.periods_max = HAD_MAX_PERIODS,
.fifo_size = HAD_FIFO_SIZE,
};
/* Get the active PCM substream;
* Call had_substream_put() for unreferecing.
* Don't call this inside had_spinlock, as it takes by itself
*/
static struct snd_pcm_substream *
had_substream_get(struct snd_intelhad *intelhaddata)
{
struct snd_pcm_substream *substream;
unsigned long flags;
spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
substream = intelhaddata->stream_info.substream;
if (substream)
intelhaddata->stream_info.substream_refcount++;
spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
return substream;
}
/* Unref the active PCM substream;
* Don't call this inside had_spinlock, as it takes by itself
*/
static void had_substream_put(struct snd_intelhad *intelhaddata)
{
unsigned long flags;
spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
intelhaddata->stream_info.substream_refcount--;
spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
}
/* Register access functions */
static inline void
mid_hdmi_audio_read(struct snd_intelhad *ctx, u32 reg, u32 *val)
{
*val = ioread32(ctx->mmio_start + ctx->had_config_offset + reg);
}
static inline void
mid_hdmi_audio_write(struct snd_intelhad *ctx, u32 reg, u32 val)
{
iowrite32(val, ctx->mmio_start + ctx->had_config_offset + reg);
}
static int had_read_register(struct snd_intelhad *intelhaddata,
u32 offset, u32 *data)
{
if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED)
return -ENODEV;
mid_hdmi_audio_read(intelhaddata, offset, data);
return 0;
}
static void fixup_dp_config(struct snd_intelhad *intelhaddata,
u32 offset, u32 *data)
{
if (intelhaddata->dp_output) {
if (offset == AUD_CONFIG && (*data & AUD_CONFIG_VALID_BIT))
*data |= AUD_CONFIG_DP_MODE | AUD_CONFIG_BLOCK_BIT;
}
}
static int had_write_register(struct snd_intelhad *intelhaddata,
u32 offset, u32 data)
{
if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED)
return -ENODEV;
fixup_dp_config(intelhaddata, offset, &data);
mid_hdmi_audio_write(intelhaddata, offset, data);
return 0;
}
static int had_read_modify(struct snd_intelhad *intelhaddata, u32 offset,
u32 data, u32 mask)
{
u32 val_tmp;
if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED)
return -ENODEV;
mid_hdmi_audio_read(intelhaddata, offset, &val_tmp);
val_tmp &= ~mask;
val_tmp |= (data & mask);
fixup_dp_config(intelhaddata, offset, &val_tmp);
mid_hdmi_audio_write(intelhaddata, offset, val_tmp);
return 0;
}
/*
* enable / disable audio configuration
*
* The had_read_modify() function should not directly be used on VLV2 for
* updating AUD_CONFIG register.
* This is because:
* Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
* HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always
* clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
* register. This field should be 1xy binary for configuration with 6 or
* more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
* causes the "channels" field to be updated as 0xy binary resulting in
* bad audio. The fix is to always write the AUD_CONFIG[6:4] with
* appropriate value when doing read-modify of AUD_CONFIG register.
*/
static void snd_intelhad_enable_audio(struct snd_pcm_substream *substream,
struct snd_intelhad *intelhaddata,
bool enable)
{
union aud_cfg cfg_val = {.regval = 0};
u8 channels, data, mask;
/*
* If substream is NULL, there is no active stream.
* In this case just set channels to 2
*/
channels = substream ? substream->runtime->channels : 2;
cfg_val.regx.num_ch = channels - 2;
data = cfg_val.regval;
if (enable)
data |= 1;
mask = AUD_CONFIG_CH_MASK | 1;
dev_dbg(intelhaddata->dev, "%s : data = %x, mask =%x\n",
__func__, data, mask);
had_read_modify(intelhaddata, AUD_CONFIG, data, mask);
}
/* enable / disable the audio interface */
static void snd_intelhad_enable_audio_int(struct snd_intelhad *ctx, bool enable)
{
u32 status_reg;
if (enable) {
mid_hdmi_audio_read(ctx, AUD_HDMI_STATUS, &status_reg);
status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
mid_hdmi_audio_write(ctx, AUD_HDMI_STATUS, status_reg);
mid_hdmi_audio_read(ctx, AUD_HDMI_STATUS, &status_reg);
}
}
static void snd_intelhad_reset_audio(struct snd_intelhad *intelhaddata,
u8 reset)
{
had_write_register(intelhaddata, AUD_HDMI_STATUS, reset);
}
/*
* initialize audio channel status registers
* This function is called in the prepare callback
*/
static int had_prog_status_reg(struct snd_pcm_substream *substream,
struct snd_intelhad *intelhaddata)
{
union aud_cfg cfg_val = {.regval = 0};
union aud_ch_status_0 ch_stat0 = {.regval = 0};
union aud_ch_status_1 ch_stat1 = {.regval = 0};
int format;
ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
IEC958_AES0_NONAUDIO) >> 1;
ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
IEC958_AES3_CON_CLOCK) >> 4;
cfg_val.regx.val_bit = ch_stat0.regx.lpcm_id;
switch (substream->runtime->rate) {
case AUD_SAMPLE_RATE_32:
ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
break;
case AUD_SAMPLE_RATE_44_1:
ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
break;
case AUD_SAMPLE_RATE_48:
ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
break;
case AUD_SAMPLE_RATE_88_2:
ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
break;
case AUD_SAMPLE_RATE_96:
ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
break;
case AUD_SAMPLE_RATE_176_4:
ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
break;
case AUD_SAMPLE_RATE_192:
ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
break;
default:
/* control should never come here */
return -EINVAL;
}
had_write_register(intelhaddata,
AUD_CH_STATUS_0, ch_stat0.regval);
format = substream->runtime->format;
if (format == SNDRV_PCM_FORMAT_S16_LE) {
ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
} else if (format == SNDRV_PCM_FORMAT_S24_LE) {
ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
} else {
ch_stat1.regx.max_wrd_len = 0;
ch_stat1.regx.wrd_len = 0;
}
had_write_register(intelhaddata,
AUD_CH_STATUS_1, ch_stat1.regval);
return 0;
}
/*
* function to initialize audio
* registers and buffer confgiuration registers
* This function is called in the prepare callback
*/
static int snd_intelhad_audio_ctrl(struct snd_pcm_substream *substream,
struct snd_intelhad *intelhaddata)
{
union aud_cfg cfg_val = {.regval = 0};
union aud_buf_config buf_cfg = {.regval = 0};
u8 channels;
had_prog_status_reg(substream, intelhaddata);
buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
buf_cfg.regx.aud_delay = 0;
had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
channels = substream->runtime->channels;
cfg_val.regx.num_ch = channels - 2;
if (channels <= 2)
cfg_val.regx.layout = LAYOUT0;
else
cfg_val.regx.layout = LAYOUT1;
cfg_val.regx.val_bit = 1;
had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
return 0;
}
/*
* Compute derived values in channel_allocations[].
*/
static void init_channel_allocations(void)
{
int i, j;
struct cea_channel_speaker_allocation *p;
for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
p = channel_allocations + i;
p->channels = 0;
p->spk_mask = 0;
for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
if (p->speakers[j]) {
p->channels++;
p->spk_mask |= p->speakers[j];
}
}
}
/*
* The transformation takes two steps:
*
* eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
* spk_mask => (channel_allocations[]) => ai->CA
*
* TODO: it could select the wrong CA from multiple candidates.
*/
static int snd_intelhad_channel_allocation(struct snd_intelhad *intelhaddata,
int channels)
{
int i;
int ca = 0;
int spk_mask = 0;
/*
* CA defaults to 0 for basic stereo audio
*/
if (channels <= 2)
return 0;
/*
* expand ELD's speaker allocation mask
*
* ELD tells the speaker mask in a compact(paired) form,
* expand ELD's notions to match the ones used by Audio InfoFrame.
*/
for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
spk_mask |= eld_speaker_allocation_bits[i];
}
/* search for the first working match in the CA table */
for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
if (channels == channel_allocations[i].channels &&
(spk_mask & channel_allocations[i].spk_mask) ==
channel_allocations[i].spk_mask) {
ca = channel_allocations[i].ca_index;
break;
}
}
dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
return ca;
}
/* from speaker bit mask to ALSA API channel position */
static int spk_to_chmap(int spk)
{
const struct channel_map_table *t = map_tables;
for (; t->map; t++) {
if (t->spk_mask == spk)
return t->map;
}
return 0;
}
static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
{
int i, c;
int spk_mask = 0;
struct snd_pcm_chmap_elem *chmap;
u8 eld_high, eld_high_mask = 0xF0;
u8 high_msb;
chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
if (!chmap) {
intelhaddata->chmap->chmap = NULL;
return;
}
dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
intelhaddata->eld[DRM_ELD_SPEAKER]);
/* WA: Fix the max channel supported to 8 */
/*
* Sink may support more than 8 channels, if eld_high has more than
* one bit set. SOC supports max 8 channels.
* Refer eld_speaker_allocation_bits, for sink speaker allocation
*/
/* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
/* eld_high & (eld_high-1): if more than 1 bit set */
/* 0x1F: 7 channels */
for (i = 1; i < 4; i++) {
high_msb = eld_high & (0x80 >> i);
if (high_msb) {
intelhaddata->eld[DRM_ELD_SPEAKER] &=
high_msb | 0xF;
break;
}
}
}
for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
spk_mask |= eld_speaker_allocation_bits[i];
}
for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
if (spk_mask == channel_allocations[i].spk_mask) {
for (c = 0; c < channel_allocations[i].channels; c++) {
chmap->map[c] = spk_to_chmap(
channel_allocations[i].speakers[
(MAX_SPEAKERS - 1) - c]);
}
chmap->channels = channel_allocations[i].channels;
intelhaddata->chmap->chmap = chmap;
break;
}
}
if (i >= ARRAY_SIZE(channel_allocations)) {
intelhaddata->chmap->chmap = NULL;
kfree(chmap);
}
}
/*
* ALSA API channel-map control callbacks
*/
static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
struct snd_intelhad *intelhaddata = info->private_data;
if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED)
return -ENODEV;
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = HAD_MAX_CHANNEL;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = SNDRV_CHMAP_LAST;
return 0;
}
static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
struct snd_intelhad *intelhaddata = info->private_data;
int i;
const struct snd_pcm_chmap_elem *chmap;
if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED)
return -ENODEV;
mutex_lock(&intelhaddata->mutex);
if (!intelhaddata->chmap->chmap) {
mutex_unlock(&intelhaddata->mutex);
return -ENODATA;
}
chmap = intelhaddata->chmap->chmap;
for (i = 0; i < chmap->channels; i++)
ucontrol->value.integer.value[i] = chmap->map[i];
mutex_unlock(&intelhaddata->mutex);
return 0;
}
static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
struct snd_pcm *pcm)
{
int err;
err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
NULL, 0, (unsigned long)intelhaddata,
&intelhaddata->chmap);
if (err < 0)
return err;
intelhaddata->chmap->private_data = intelhaddata;
intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
intelhaddata->chmap->chmap = NULL;
return 0;
}
/*
* snd_intelhad_prog_dip - to initialize Data Island Packets registers
*
* @substream:substream for which the prepare function is called
* @intelhaddata:substream private data
*
* This function is called in the prepare callback
*/
static void snd_intelhad_prog_dip(struct snd_pcm_substream *substream,
struct snd_intelhad *intelhaddata)
{
int i;
union aud_ctrl_st ctrl_state = {.regval = 0};
union aud_info_frame2 frame2 = {.regval = 0};
union aud_info_frame3 frame3 = {.regval = 0};
u8 checksum = 0;
u32 info_frame;
int channels;
channels = substream->runtime->channels;
had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
if (intelhaddata->dp_output) {
info_frame = DP_INFO_FRAME_WORD1;
frame2.regval = 1;
} else {
info_frame = HDMI_INFO_FRAME_WORD1;
frame2.regx.chnl_cnt = substream->runtime->channels - 1;
frame3.regx.chnl_alloc = snd_intelhad_channel_allocation(
intelhaddata, channels);
/* Calculte the byte wide checksum for all valid DIP words */
for (i = 0; i < BYTES_PER_WORD; i++)
checksum += (info_frame >> (i * 8)) & 0xff;
for (i = 0; i < BYTES_PER_WORD; i++)
checksum += (frame2.regval >> (i * 8)) & 0xff;
for (i = 0; i < BYTES_PER_WORD; i++)
checksum += (frame3.regval >> (i * 8)) & 0xff;
frame2.regx.chksum = -(checksum);
}
had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
/* program remaining DIP words with zero */
for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
ctrl_state.regx.dip_freq = 1;
ctrl_state.regx.dip_en_sta = 1;
had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
}
/*
* snd_intelhad_prog_buffer - programs buffer address and length registers
* @substream: substream for which the prepare function is called
* @intelhaddata: substream private data
*
* This function programs ring buffer address and length into registers.
*/
static int snd_intelhad_prog_buffer(struct snd_pcm_substream *substream,
struct snd_intelhad *intelhaddata,
int start, int end)
{
u32 ring_buf_addr, ring_buf_size, period_bytes;
u8 i, num_periods;
ring_buf_addr = substream->runtime->dma_addr;
ring_buf_size = snd_pcm_lib_buffer_bytes(substream);
intelhaddata->stream_info.ring_buf_size = ring_buf_size;
period_bytes = frames_to_bytes(substream->runtime,
substream->runtime->period_size);
num_periods = substream->runtime->periods;
/*
* buffer addr should be 64 byte aligned, period bytes
* will be used to calculate addr offset
*/
period_bytes &= ~0x3F;
/* Hardware supports MAX_PERIODS buffers */
if (end >= HAD_MAX_PERIODS)
return -EINVAL;
for (i = start; i <= end; i++) {
/* Program the buf registers with addr and len */
intelhaddata->buf_info[i].buf_addr = ring_buf_addr +
(i * period_bytes);
if (i < num_periods-1)
intelhaddata->buf_info[i].buf_size = period_bytes;
else
intelhaddata->buf_info[i].buf_size = ring_buf_size -
(i * period_bytes);
had_write_register(intelhaddata,
AUD_BUF_A_ADDR + (i * HAD_REG_WIDTH),
intelhaddata->buf_info[i].buf_addr |
BIT(0) | BIT(1));
had_write_register(intelhaddata,
AUD_BUF_A_LENGTH + (i * HAD_REG_WIDTH),
period_bytes);
intelhaddata->buf_info[i].is_valid = true;
}
dev_dbg(intelhaddata->dev, "%s:buf[%d-%d] addr=%#x and size=%d\n",
__func__, start, end,
intelhaddata->buf_info[start].buf_addr,
intelhaddata->buf_info[start].buf_size);
intelhaddata->valid_buf_cnt = num_periods;
return 0;
}
static int snd_intelhad_read_len(struct snd_intelhad *intelhaddata)
{
int i, retval = 0;
u32 len[4];
for (i = 0; i < 4 ; i++) {
had_read_register(intelhaddata,
AUD_BUF_A_LENGTH + (i * HAD_REG_WIDTH),
&len[i]);
if (!len[i])
retval++;
}
if (retval != 1) {
for (i = 0; i < 4 ; i++)
dev_dbg(intelhaddata->dev, "buf[%d] size=%d\n",
i, len[i]);
}
return retval;
}
static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
{
u32 maud_val;
/* Select maud according to DP 1.2 spec */
if (link_rate == DP_2_7_GHZ) {
switch (aud_samp_freq) {
case AUD_SAMPLE_RATE_32:
maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_44_1:
maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_48:
maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_88_2:
maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_96:
maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_176_4:
maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
break;
case HAD_MAX_RATE:
maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
break;
default:
maud_val = -EINVAL;
break;
}
} else if (link_rate == DP_1_62_GHZ) {
switch (aud_samp_freq) {
case AUD_SAMPLE_RATE_32:
maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_44_1:
maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_48:
maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_88_2:
maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_96:
maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_176_4:
maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
break;
case HAD_MAX_RATE:
maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
break;
default:
maud_val = -EINVAL;
break;
}
} else
maud_val = -EINVAL;
return maud_val;
}
/*
* snd_intelhad_prog_cts - Program HDMI audio CTS value
*
* @aud_samp_freq: sampling frequency of audio data
* @tmds: sampling frequency of the display data
* @n_param: N value, depends on aud_samp_freq
* @intelhaddata:substream private data
*
* Program CTS register based on the audio and display sampling frequency
*/
static void snd_intelhad_prog_cts(u32 aud_samp_freq, u32 tmds,
u32 link_rate, u32 n_param,
struct snd_intelhad *intelhaddata)
{
u32 cts_val;
u64 dividend, divisor;
if (intelhaddata->dp_output) {
/* Substitute cts_val with Maud according to DP 1.2 spec*/
cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
} else {
/* Calculate CTS according to HDMI 1.3a spec*/
dividend = (u64)tmds * n_param*1000;
divisor = 128 * aud_samp_freq;
cts_val = div64_u64(dividend, divisor);
}
dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
tmds, n_param, cts_val);
had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
}
static int had_calculate_n_value(u32 aud_samp_freq)
{
int n_val;
/* Select N according to HDMI 1.3a spec*/
switch (aud_samp_freq) {
case AUD_SAMPLE_RATE_32:
n_val = 4096;
break;
case AUD_SAMPLE_RATE_44_1:
n_val = 6272;
break;
case AUD_SAMPLE_RATE_48:
n_val = 6144;
break;
case AUD_SAMPLE_RATE_88_2:
n_val = 12544;
break;
case AUD_SAMPLE_RATE_96:
n_val = 12288;
break;
case AUD_SAMPLE_RATE_176_4:
n_val = 25088;
break;
case HAD_MAX_RATE:
n_val = 24576;
break;
default:
n_val = -EINVAL;
break;
}
return n_val;
}
/*
* snd_intelhad_prog_n - Program HDMI audio N value
*
* @aud_samp_freq: sampling frequency of audio data
* @n_param: N value, depends on aud_samp_freq
* @intelhaddata:substream private data
*
* This function is called in the prepare callback.
* It programs based on the audio and display sampling frequency
*/
static int snd_intelhad_prog_n(u32 aud_samp_freq, u32 *n_param,
struct snd_intelhad *intelhaddata)
{
int n_val;
if (intelhaddata->dp_output) {
/*
* According to DP specs, Maud and Naud values hold
* a relationship, which is stated as:
* Maud/Naud = 512 * fs / f_LS_Clk
* where, fs is the sampling frequency of the audio stream
* and Naud is 32768 for Async clock.
*/
n_val = DP_NAUD_VAL;
} else
n_val = had_calculate_n_value(aud_samp_freq);
if (n_val < 0)
return n_val;
had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
*n_param = n_val;
return 0;
}
static void snd_intelhad_handle_underrun(struct snd_intelhad *intelhaddata)
{
u32 hdmi_status = 0, i = 0;
/* Handle Underrun interrupt within Audio Unit */
had_write_register(intelhaddata, AUD_CONFIG, 0);
/* Reset buffer pointers */
had_write_register(intelhaddata, AUD_HDMI_STATUS, 1);
had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
/*
* The interrupt status 'sticky' bits might not be cleared by
* setting '1' to that bit once...
*/
do { /* clear bit30, 31 AUD_HDMI_STATUS */
had_read_register(intelhaddata, AUD_HDMI_STATUS,
&hdmi_status);
dev_dbg(intelhaddata->dev, "HDMI status =0x%x\n", hdmi_status);
if (hdmi_status & AUD_CONFIG_MASK_UNDERRUN) {
i++;
had_write_register(intelhaddata,
AUD_HDMI_STATUS, hdmi_status);
} else
break;
} while (i < MAX_CNT);
if (i >= MAX_CNT)
dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
}
/*
* snd_intelhad_open - stream initializations are done here
* @substream:substream for which the stream function is called
*
* This function is called whenever a PCM stream is opened
*/
static int snd_intelhad_open(struct snd_pcm_substream *substream)
{
struct snd_intelhad *intelhaddata;
struct snd_pcm_runtime *runtime;
int retval;
intelhaddata = snd_pcm_substream_chip(substream);
runtime = substream->runtime;
intelhaddata->underrun_count = 0;
pm_runtime_get_sync(intelhaddata->dev);
if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) {
dev_dbg(intelhaddata->dev, "%s: HDMI cable plugged-out\n",
__func__);
retval = -ENODEV;
goto error;
}
/* set the runtime hw parameter with local snd_pcm_hardware struct */
runtime->hw = snd_intel_hadstream;
retval = snd_pcm_hw_constraint_integer(runtime,
SNDRV_PCM_HW_PARAM_PERIODS);
if (retval < 0)
goto error;
/* Make sure, that the period size is always aligned
* 64byte boundary
*/
retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
if (retval < 0) {
dev_dbg(intelhaddata->dev, "%s:step_size=64 failed,err=%d\n",
__func__, retval);
goto error;
}
spin_lock_irq(&intelhaddata->had_spinlock);
intelhaddata->stream_info.substream = substream;
intelhaddata->stream_info.substream_refcount++;
spin_unlock_irq(&intelhaddata->had_spinlock);
return retval;
error:
pm_runtime_put(intelhaddata->dev);
return retval;
}
/*
* snd_intelhad_close - to free parameteres when stream is stopped
* @substream: substream for which the function is called
*
* This function is called by ALSA framework when stream is stopped
*/
static int snd_intelhad_close(struct snd_pcm_substream *substream)
{
struct snd_intelhad *intelhaddata;
intelhaddata = snd_pcm_substream_chip(substream);
intelhaddata->stream_info.buffer_rendered = 0;
spin_lock_irq(&intelhaddata->had_spinlock);
intelhaddata->stream_info.substream = NULL;
intelhaddata->stream_info.substream_refcount--;
while (intelhaddata->stream_info.substream_refcount > 0) {
spin_unlock_irq(&intelhaddata->had_spinlock);
cpu_relax();
spin_lock_irq(&intelhaddata->had_spinlock);
}
spin_unlock_irq(&intelhaddata->had_spinlock);
/* Check if following drv_status modification is required - VA */
if (intelhaddata->drv_status != HAD_DRV_DISCONNECTED) {
intelhaddata->drv_status = HAD_DRV_CONNECTED;
dev_dbg(intelhaddata->dev,
"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
__func__, __LINE__);
}
pm_runtime_put(intelhaddata->dev);
return 0;
}
/*
* snd_intelhad_hw_params - to setup the hardware parameters
* like allocating the buffers
* @substream: substream for which the function is called
* @hw_params: hardware parameters
*
* This function is called by ALSA framework when hardware params are set
*/
static int snd_intelhad_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct snd_intelhad *intelhaddata;
unsigned long addr;
int pages, buf_size, retval;
if (!hw_params)
return -EINVAL;
intelhaddata = snd_pcm_substream_chip(substream);
buf_size = params_buffer_bytes(hw_params);
retval = snd_pcm_lib_malloc_pages(substream, buf_size);
if (retval < 0)
return retval;
dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
__func__, buf_size);
/* mark the pages as uncached region */
addr = (unsigned long) substream->runtime->dma_area;
pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) / PAGE_SIZE;
retval = set_memory_uc(addr, pages);
if (retval) {
dev_err(intelhaddata->dev, "set_memory_uc failed.Error:%d\n",
retval);
return retval;
}
memset(substream->runtime->dma_area, 0, buf_size);
return retval;
}
/*
* snd_intelhad_hw_free - to release the resources allocated during
* hardware params setup
* @substream: substream for which the function is called
*
* This function is called by ALSA framework before close callback.
*/
static int snd_intelhad_hw_free(struct snd_pcm_substream *substream)
{
unsigned long addr;
u32 pages;
/* mark back the pages as cached/writeback region before the free */
if (substream->runtime->dma_area != NULL) {
addr = (unsigned long) substream->runtime->dma_area;
pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) /
PAGE_SIZE;
set_memory_wb(addr, pages);
return snd_pcm_lib_free_pages(substream);
}
return 0;
}
/*
* snd_intelhad_pcm_trigger - stream activities are handled here
* @substream: substream for which the stream function is called
* @cmd: the stream commamd thats requested from upper layer
*
* This function is called whenever an a stream activity is invoked
*/
static int snd_intelhad_pcm_trigger(struct snd_pcm_substream *substream,
int cmd)
{
int retval = 0;
struct snd_intelhad *intelhaddata;
intelhaddata = snd_pcm_substream_chip(substream);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
case SNDRV_PCM_TRIGGER_RESUME:
/* Disable local INTRs till register prgmng is done */
if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) {
dev_dbg(intelhaddata->dev,
"_START: HDMI cable plugged-out\n");
retval = -ENODEV;
break;
}
intelhaddata->stream_info.running = true;
/* Enable Audio */
snd_intelhad_enable_audio_int(intelhaddata, true);
snd_intelhad_enable_audio(substream, intelhaddata, true);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
case SNDRV_PCM_TRIGGER_SUSPEND:
spin_lock(&intelhaddata->had_spinlock);
intelhaddata->curr_buf = 0;
/* Stop reporting BUFFER_DONE/UNDERRUN to above layers */
intelhaddata->stream_info.running = false;
spin_unlock(&intelhaddata->had_spinlock);
/* Disable Audio */
snd_intelhad_enable_audio_int(intelhaddata, false);
snd_intelhad_enable_audio(substream, intelhaddata, false);
/* Reset buffer pointers */
snd_intelhad_reset_audio(intelhaddata, 1);
snd_intelhad_reset_audio(intelhaddata, 0);
snd_intelhad_enable_audio_int(intelhaddata, false);
break;
default:
retval = -EINVAL;
}
return retval;
}
/*
* snd_intelhad_pcm_prepare - internal preparation before starting a stream
* @substream: substream for which the function is called
*
* This function is called when a stream is started for internal preparation.
*/
static int snd_intelhad_pcm_prepare(struct snd_pcm_substream *substream)
{
int retval;
u32 disp_samp_freq, n_param;
u32 link_rate = 0;
struct snd_intelhad *intelhaddata;
struct snd_pcm_runtime *runtime;
intelhaddata = snd_pcm_substream_chip(substream);
runtime = substream->runtime;
if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) {
dev_dbg(intelhaddata->dev, "%s: HDMI cable plugged-out\n",
__func__);
retval = -ENODEV;
goto prep_end;
}
dev_dbg(intelhaddata->dev, "period_size=%d\n",
(int)frames_to_bytes(runtime, runtime->period_size));
dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
(int)snd_pcm_lib_buffer_bytes(substream));
dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
intelhaddata->stream_info.buffer_rendered = 0;
/* Get N value in KHz */
disp_samp_freq = intelhaddata->tmds_clock_speed;
retval = snd_intelhad_prog_n(substream->runtime->rate, &n_param,
intelhaddata);
if (retval) {
dev_err(intelhaddata->dev,
"programming N value failed %#x\n", retval);
goto prep_end;
}
if (intelhaddata->dp_output)
link_rate = intelhaddata->link_rate;
snd_intelhad_prog_cts(substream->runtime->rate,
disp_samp_freq, link_rate,
n_param, intelhaddata);
snd_intelhad_prog_dip(substream, intelhaddata);
retval = snd_intelhad_audio_ctrl(substream, intelhaddata);
/* Prog buffer address */
retval = snd_intelhad_prog_buffer(substream, intelhaddata,
HAD_BUF_TYPE_A, HAD_BUF_TYPE_D);
/*
* Program channel mapping in following order:
* FL, FR, C, LFE, RL, RR
*/
had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
prep_end:
return retval;
}
/*
* snd_intelhad_pcm_pointer- to send the current buffer pointerprocessed by hw
* @substream: substream for which the function is called
*
* This function is called by ALSA framework to get the current hw buffer ptr
* when a period is elapsed
*/
static snd_pcm_uframes_t snd_intelhad_pcm_pointer(
struct snd_pcm_substream *substream)
{
struct snd_intelhad *intelhaddata;
u32 bytes_rendered = 0;
u32 t;
int buf_id;
intelhaddata = snd_pcm_substream_chip(substream);
if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED)
return SNDRV_PCM_POS_XRUN;
/* Use a hw register to calculate sub-period position reports.
* This makes PulseAudio happier.
*/
buf_id = intelhaddata->curr_buf % 4;
had_read_register(intelhaddata,
AUD_BUF_A_LENGTH + (buf_id * HAD_REG_WIDTH), &t);
if ((t == 0) || (t == ((u32)-1L))) {
intelhaddata->underrun_count++;
dev_dbg(intelhaddata->dev,
"discovered buffer done for buf %d, count = %d\n",
buf_id, intelhaddata->underrun_count);
if (intelhaddata->underrun_count > (HAD_MIN_PERIODS/2)) {
dev_dbg(intelhaddata->dev,
"assume audio_codec_reset, underrun = %d - do xrun\n",
intelhaddata->underrun_count);
intelhaddata->underrun_count = 0;
return SNDRV_PCM_POS_XRUN;
}
} else {
/* Reset Counter */
intelhaddata->underrun_count = 0;
}
t = intelhaddata->buf_info[buf_id].buf_size - t;
if (intelhaddata->stream_info.buffer_rendered)
div_u64_rem(intelhaddata->stream_info.buffer_rendered,
intelhaddata->stream_info.ring_buf_size,
&(bytes_rendered));
return bytes_to_frames(substream->runtime, bytes_rendered + t);
}
/*
* snd_intelhad_pcm_mmap- mmaps a kernel buffer to user space for copying data
* @substream: substream for which the function is called
* @vma: struct instance of memory VMM memory area
*
* This function is called by OS when a user space component
* tries to get mmap memory from driver
*/
static int snd_intelhad_pcm_mmap(struct snd_pcm_substream *substream,
struct vm_area_struct *vma)
{
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
return remap_pfn_range(vma, vma->vm_start,
substream->dma_buffer.addr >> PAGE_SHIFT,
vma->vm_end - vma->vm_start, vma->vm_page_prot);
}
/* process mode change of the running stream; called in mutex */
static int hdmi_audio_mode_change(struct snd_intelhad *intelhaddata)
{
struct snd_pcm_substream *substream;
int retval = 0;
u32 disp_samp_freq, n_param;
u32 link_rate = 0;
substream = had_substream_get(intelhaddata);
if (!substream)
return 0;
/* Disable Audio */
snd_intelhad_enable_audio(substream, intelhaddata, false);
/* Update CTS value */
disp_samp_freq = intelhaddata->tmds_clock_speed;
retval = snd_intelhad_prog_n(substream->runtime->rate, &n_param,
intelhaddata);
if (retval) {
dev_err(intelhaddata->dev,
"programming N value failed %#x\n", retval);
goto out;
}
if (intelhaddata->dp_output)
link_rate = intelhaddata->link_rate;
snd_intelhad_prog_cts(substream->runtime->rate,
disp_samp_freq, link_rate,
n_param, intelhaddata);
/* Enable Audio */
snd_intelhad_enable_audio(substream, intelhaddata, true);
out:
had_substream_put(intelhaddata);
return retval;
}
static inline int had_chk_intrmiss(struct snd_intelhad *intelhaddata,
enum intel_had_aud_buf_type buf_id)
{
int i, intr_count = 0;
enum intel_had_aud_buf_type buff_done;
u32 buf_size, buf_addr;
buff_done = buf_id;
intr_count = snd_intelhad_read_len(intelhaddata);
if (intr_count > 1) {
/* In case of active playback */
dev_err(intelhaddata->dev,
"Driver detected %d missed buffer done interrupt(s)\n",
(intr_count - 1));
if (intr_count > 3)
return intr_count;
buf_id += (intr_count - 1);
/* Reprogram registers*/
for (i = buff_done; i < buf_id; i++) {
int j = i % 4;
buf_size = intelhaddata->buf_info[j].buf_size;
buf_addr = intelhaddata->buf_info[j].buf_addr;
had_write_register(intelhaddata,
AUD_BUF_A_LENGTH +
(j * HAD_REG_WIDTH), buf_size);
had_write_register(intelhaddata,
AUD_BUF_A_ADDR+(j * HAD_REG_WIDTH),
(buf_addr | BIT(0) | BIT(1)));
}
buf_id = buf_id % 4;
intelhaddata->buff_done = buf_id;
}
return intr_count;
}
/* called from irq handler */
static int had_process_buffer_done(struct snd_intelhad *intelhaddata)
{
u32 len = 1;
enum intel_had_aud_buf_type buf_id;
enum intel_had_aud_buf_type buff_done;
struct pcm_stream_info *stream;
struct snd_pcm_substream *substream;
u32 buf_size;
int intr_count;
unsigned long flags;
stream = &intelhaddata->stream_info;
intr_count = 1;
spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) {
spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
dev_dbg(intelhaddata->dev,
"%s:Device already disconnected\n", __func__);
return 0;
}
buf_id = intelhaddata->curr_buf;
intelhaddata->buff_done = buf_id;
buff_done = intelhaddata->buff_done;
buf_size = intelhaddata->buf_info[buf_id].buf_size;
/* Every debug statement has an implication
* of ~5msec. Thus, avoid having >3 debug statements
* for each buffer_done handling.
*/
/* Check for any intr_miss in case of active playback */
if (stream->running) {
intr_count = had_chk_intrmiss(intelhaddata, buf_id);
if (!intr_count || (intr_count > 3)) {
spin_unlock_irqrestore(&intelhaddata->had_spinlock,
flags);
dev_err(intelhaddata->dev,
"HAD SW state in non-recoverable mode\n");
return 0;
}
buf_id += (intr_count - 1);
buf_id = buf_id % 4;
}
intelhaddata->buf_info[buf_id].is_valid = true;
if (intelhaddata->valid_buf_cnt-1 == buf_id) {
if (stream->running)
intelhaddata->curr_buf = HAD_BUF_TYPE_A;
} else
intelhaddata->curr_buf = buf_id + 1;
spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) {
dev_dbg(intelhaddata->dev, "HDMI cable plugged-out\n");
return 0;
}
/* Reprogram the registers with addr and length */
had_write_register(intelhaddata,
AUD_BUF_A_LENGTH + (buf_id * HAD_REG_WIDTH),
buf_size);
had_write_register(intelhaddata,
AUD_BUF_A_ADDR + (buf_id * HAD_REG_WIDTH),
intelhaddata->buf_info[buf_id].buf_addr |
BIT(0) | BIT(1));
had_read_register(intelhaddata,
AUD_BUF_A_LENGTH + (buf_id * HAD_REG_WIDTH),
&len);
dev_dbg(intelhaddata->dev, "%s:Enabled buf[%d]\n", __func__, buf_id);
/* In case of actual data,
* report buffer_done to above ALSA layer
*/
substream = had_substream_get(intelhaddata);
if (substream) {
buf_size = intelhaddata->buf_info[buf_id].buf_size;
intelhaddata->stream_info.buffer_rendered +=
(intr_count * buf_size);
snd_pcm_period_elapsed(substream);
had_substream_put(intelhaddata);
}
return 0;
}
/* called from irq handler */
static int had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
{
enum intel_had_aud_buf_type buf_id;
struct pcm_stream_info *stream;
struct snd_pcm_substream *substream;
unsigned long flags;
int drv_status;
stream = &intelhaddata->stream_info;
spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
buf_id = intelhaddata->curr_buf;
intelhaddata->buff_done = buf_id;
drv_status = intelhaddata->drv_status;
if (stream->running)
intelhaddata->curr_buf = HAD_BUF_TYPE_A;
spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
dev_dbg(intelhaddata->dev, "Enter:%s buf_id=%d, stream_running=%d\n",
__func__, buf_id, stream->running);
snd_intelhad_handle_underrun(intelhaddata);
if (drv_status == HAD_DRV_DISCONNECTED) {
dev_dbg(intelhaddata->dev,
"%s:Device already disconnected\n", __func__);
return 0;
}
/* Report UNDERRUN error to above layers */
substream = had_substream_get(intelhaddata);
if (substream) {
snd_pcm_stop_xrun(substream);
had_substream_put(intelhaddata);
}
return 0;
}
/* process hot plug, called from wq with mutex locked */
static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
{
enum intel_had_aud_buf_type buf_id;
struct snd_pcm_substream *substream;
spin_lock_irq(&intelhaddata->had_spinlock);
if (intelhaddata->drv_status == HAD_DRV_CONNECTED) {
dev_dbg(intelhaddata->dev, "Device already connected\n");
spin_unlock_irq(&intelhaddata->had_spinlock);
return;
}
buf_id = intelhaddata->curr_buf;
intelhaddata->buff_done = buf_id;
intelhaddata->drv_status = HAD_DRV_CONNECTED;
dev_dbg(intelhaddata->dev,
"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
__func__, __LINE__);
spin_unlock_irq(&intelhaddata->had_spinlock);
dev_dbg(intelhaddata->dev, "Processing HOT_PLUG, buf_id = %d\n",
buf_id);
/* Safety check */
substream = had_substream_get(intelhaddata);
if (substream) {
dev_dbg(intelhaddata->dev,
"Force to stop the active stream by disconnection\n");
/* Set runtime->state to hw_params done */
snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
had_substream_put(intelhaddata);
}
had_build_channel_allocation_map(intelhaddata);
}
/* process hot unplug, called from wq with mutex locked */
static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
{
enum intel_had_aud_buf_type buf_id;
struct snd_pcm_substream *substream;
buf_id = intelhaddata->curr_buf;
substream = had_substream_get(intelhaddata);
spin_lock_irq(&intelhaddata->had_spinlock);
if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) {
dev_dbg(intelhaddata->dev, "Device already disconnected\n");
spin_unlock_irq(&intelhaddata->had_spinlock);
goto out;
}
/* Disable Audio */
snd_intelhad_enable_audio_int(intelhaddata, false);
snd_intelhad_enable_audio(substream, intelhaddata, false);
intelhaddata->drv_status = HAD_DRV_DISCONNECTED;
dev_dbg(intelhaddata->dev,
"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
__func__, __LINE__);
spin_unlock_irq(&intelhaddata->had_spinlock);
/* Report to above ALSA layer */
if (substream)
snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
out:
if (substream)
had_substream_put(intelhaddata);
kfree(intelhaddata->chmap->chmap);
intelhaddata->chmap->chmap = NULL;
}
/* PCM operations structure and the calls back for the same */
static struct snd_pcm_ops snd_intelhad_playback_ops = {
.open = snd_intelhad_open,
.close = snd_intelhad_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_intelhad_hw_params,
.hw_free = snd_intelhad_hw_free,
.prepare = snd_intelhad_pcm_prepare,
.trigger = snd_intelhad_pcm_trigger,
.pointer = snd_intelhad_pcm_pointer,
.mmap = snd_intelhad_pcm_mmap,
};
static int had_iec958_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int had_iec958_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
mutex_lock(&intelhaddata->mutex);
ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
ucontrol->value.iec958.status[2] =
(intelhaddata->aes_bits >> 16) & 0xff;
ucontrol->value.iec958.status[3] =
(intelhaddata->aes_bits >> 24) & 0xff;
mutex_unlock(&intelhaddata->mutex);
return 0;
}
static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
ucontrol->value.iec958.status[0] = 0xff;
ucontrol->value.iec958.status[1] = 0xff;
ucontrol->value.iec958.status[2] = 0xff;
ucontrol->value.iec958.status[3] = 0xff;
return 0;
}
static int had_iec958_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
unsigned int val;
struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
int changed = 0;
val = (ucontrol->value.iec958.status[0] << 0) |
(ucontrol->value.iec958.status[1] << 8) |
(ucontrol->value.iec958.status[2] << 16) |
(ucontrol->value.iec958.status[3] << 24);
mutex_lock(&intelhaddata->mutex);
if (intelhaddata->aes_bits != val) {
intelhaddata->aes_bits = val;
changed = 1;
}
mutex_unlock(&intelhaddata->mutex);
return changed;
}
static struct snd_kcontrol_new had_control_iec958_mask = {
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
.info = had_iec958_info, /* shared */
.get = had_iec958_mask_get,
};
static struct snd_kcontrol_new had_control_iec958 = {
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
.info = had_iec958_info,
.get = had_iec958_get,
.put = had_iec958_put
};
static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
{
struct snd_intelhad *ctx = dev_id;
u32 audio_stat, audio_reg;
audio_reg = AUD_HDMI_STATUS;
mid_hdmi_audio_read(ctx, audio_reg, &audio_stat);
if (audio_stat & HDMI_AUDIO_UNDERRUN) {
mid_hdmi_audio_write(ctx, audio_reg, HDMI_AUDIO_UNDERRUN);
had_process_buffer_underrun(ctx);
}
if (audio_stat & HDMI_AUDIO_BUFFER_DONE) {
mid_hdmi_audio_write(ctx, audio_reg, HDMI_AUDIO_BUFFER_DONE);
had_process_buffer_done(ctx);
}
return IRQ_HANDLED;
}
static void notify_audio_lpe(struct platform_device *pdev)
{
struct snd_intelhad *ctx = platform_get_drvdata(pdev);
schedule_work(&ctx->hdmi_audio_wq);
}
static void had_audio_wq(struct work_struct *work)
{
struct snd_intelhad *ctx =
container_of(work, struct snd_intelhad, hdmi_audio_wq);
struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
pm_runtime_get_sync(ctx->dev);
mutex_lock(&ctx->mutex);
if (!pdata->hdmi_connected) {
dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG\n",
__func__);
had_process_hot_unplug(ctx);
} else {
struct intel_hdmi_lpe_audio_eld *eld = &pdata->eld;
dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
__func__, eld->port_id, pdata->tmds_clock_speed);
switch (eld->pipe_id) {
case 0:
ctx->had_config_offset = AUDIO_HDMI_CONFIG_A;
break;
case 1:
ctx->had_config_offset = AUDIO_HDMI_CONFIG_B;
break;
case 2:
ctx->had_config_offset = AUDIO_HDMI_CONFIG_C;
break;
default:
dev_dbg(ctx->dev, "Invalid pipe %d\n",
eld->pipe_id);
break;
}
memcpy(ctx->eld, eld->eld_data, sizeof(ctx->eld));
ctx->dp_output = pdata->dp_output;
ctx->tmds_clock_speed = pdata->tmds_clock_speed;
ctx->link_rate = pdata->link_rate;
had_process_hot_plug(ctx);
/* Process mode change if stream is active */
hdmi_audio_mode_change(ctx);
}
mutex_unlock(&ctx->mutex);
pm_runtime_put(ctx->dev);
}
/*
* PM callbacks
*/
static int hdmi_lpe_audio_runtime_suspend(struct device *dev)
{
struct snd_intelhad *ctx = dev_get_drvdata(dev);
struct snd_pcm_substream *substream;
substream = had_substream_get(ctx);
if (substream) {
snd_pcm_suspend(substream);
had_substream_put(ctx);
}
return 0;
}
static int hdmi_lpe_audio_suspend(struct device *dev)
{
struct snd_intelhad *ctx = dev_get_drvdata(dev);
int err;
err = hdmi_lpe_audio_runtime_suspend(dev);
if (!err)
snd_power_change_state(ctx->card, SNDRV_CTL_POWER_D3hot);
return err;
}
static int hdmi_lpe_audio_resume(struct device *dev)
{
struct snd_intelhad *ctx = dev_get_drvdata(dev);
snd_power_change_state(ctx->card, SNDRV_CTL_POWER_D0);
return 0;
}
/* release resources */
static void hdmi_lpe_audio_free(struct snd_card *card)
{
struct snd_intelhad *ctx = card->private_data;
cancel_work_sync(&ctx->hdmi_audio_wq);
if (ctx->mmio_start)
iounmap(ctx->mmio_start);
if (ctx->irq >= 0)
free_irq(ctx->irq, ctx);
}
/*
* hdmi_lpe_audio_probe - start bridge with i915
*
* This function is called when the i915 driver creates the
* hdmi-lpe-audio platform device.
*/
static int hdmi_lpe_audio_probe(struct platform_device *pdev)
{
struct snd_card *card;
struct snd_intelhad *ctx;
struct snd_pcm *pcm;
struct intel_hdmi_lpe_audio_pdata *pdata;
int irq;
struct resource *res_mmio;
int ret;
dev_dbg(&pdev->dev, "dma_mask: %p\n", pdev->dev.dma_mask);
pdata = pdev->dev.platform_data;
if (!pdata) {
dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
return -EINVAL;
}
/* get resources */
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "Could not get irq resource\n");
return -ENODEV;
}
res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res_mmio) {
dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
return -ENXIO;
}
/* create a card instance with ALSA framework */
ret = snd_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
THIS_MODULE, sizeof(*ctx), &card);
if (ret)
return ret;
ctx = card->private_data;
spin_lock_init(&ctx->had_spinlock);
mutex_init(&ctx->mutex);
ctx->drv_status = HAD_DRV_DISCONNECTED;
ctx->dev = &pdev->dev;
ctx->card = card;
ctx->aes_bits = SNDRV_PCM_DEFAULT_CON_SPDIF;
strcpy(card->driver, INTEL_HAD);
strcpy(card->shortname, INTEL_HAD);
ctx->irq = -1;
ctx->tmds_clock_speed = DIS_SAMPLE_RATE_148_5;
INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
card->private_free = hdmi_lpe_audio_free;
/* assume pipe A as default */
ctx->had_config_offset = AUDIO_HDMI_CONFIG_A;
platform_set_drvdata(pdev, ctx);
dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
__func__, (unsigned int)res_mmio->start,
(unsigned int)res_mmio->end);
ctx->mmio_start = ioremap_nocache(res_mmio->start,
(size_t)(resource_size(res_mmio)));
if (!ctx->mmio_start) {
dev_err(&pdev->dev, "Could not get ioremap\n");
ret = -EACCES;
goto err;
}
/* setup interrupt handler */
ret = request_irq(irq, display_pipe_interrupt_handler, 0,
pdev->name, ctx);
if (ret < 0) {
dev_err(&pdev->dev, "request_irq failed\n");
goto err;
}
ctx->irq = irq;
ret = snd_pcm_new(card, INTEL_HAD, PCM_INDEX, MAX_PB_STREAMS,
MAX_CAP_STREAMS, &pcm);
if (ret)
goto err;
/* setup private data which can be retrieved when required */
pcm->private_data = ctx;
pcm->info_flags = 0;
strncpy(pcm->name, card->shortname, strlen(card->shortname));
/* setup the ops for playabck */
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
&snd_intelhad_playback_ops);
/* allocate dma pages for ALSA stream operations
* memory allocated is based on size, not max value
* thus using same argument for max & size
*/
snd_pcm_lib_preallocate_pages_for_all(pcm,
SNDRV_DMA_TYPE_DEV, NULL,
HAD_MAX_BUFFER, HAD_MAX_BUFFER);
/* IEC958 controls */
ret = snd_ctl_add(card, snd_ctl_new1(&had_control_iec958_mask, ctx));
if (ret < 0)
goto err;
ret = snd_ctl_add(card, snd_ctl_new1(&had_control_iec958, ctx));
if (ret < 0)
goto err;
init_channel_allocations();
/* Register channel map controls */
ret = had_register_chmap_ctls(ctx, pcm);
if (ret < 0)
goto err;
ret = snd_card_register(card);
if (ret)
goto err;
spin_lock_irq(&pdata->lpe_audio_slock);
pdata->notify_audio_lpe = notify_audio_lpe;
pdata->notify_pending = false;
spin_unlock_irq(&pdata->lpe_audio_slock);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
schedule_work(&ctx->hdmi_audio_wq);
return 0;
err:
snd_card_free(card);
return ret;
}
/*
* hdmi_lpe_audio_remove - stop bridge with i915
*
* This function is called when the platform device is destroyed.
*/
static int hdmi_lpe_audio_remove(struct platform_device *pdev)
{
struct snd_intelhad *ctx = platform_get_drvdata(pdev);
if (ctx->drv_status != HAD_DRV_DISCONNECTED)
snd_intelhad_enable_audio_int(ctx, false);
snd_card_free(ctx->card);
return 0;
}
static const struct dev_pm_ops hdmi_lpe_audio_pm = {
SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
SET_RUNTIME_PM_OPS(hdmi_lpe_audio_runtime_suspend, NULL, NULL)
};
static struct platform_driver hdmi_lpe_audio_driver = {
.driver = {
.name = "hdmi-lpe-audio",
.pm = &hdmi_lpe_audio_pm,
},
.probe = hdmi_lpe_audio_probe,
.remove = hdmi_lpe_audio_remove,
};
module_platform_driver(hdmi_lpe_audio_driver);
MODULE_ALIAS("platform:hdmi_lpe_audio");
MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
MODULE_DESCRIPTION("Intel HDMI Audio driver");
MODULE_LICENSE("GPL v2");
MODULE_SUPPORTED_DEVICE("{Intel,Intel_HAD}");