linux/net/sunrpc/xprtrdma/svc_rdma_recvfrom.c
Chuck Lever 7d81ee8722 svcrdma: Single-stage RDMA Read
Currently the generic RPC server layer calls svc_rdma_recvfrom()
twice to retrieve an RPC message that uses Read chunks. I'm not
exactly sure why this design was chosen originally.

Instead, let's wait for the Read chunk completion inline in the
first call to svc_rdma_recvfrom().

The goal is to eliminate some page allocator churn.
rdma_read_complete() replaces pages in the second svc_rqst by
calling put_page() repeatedly while the upper layer waits for the
request to be constructed, which adds unnecessary NFS WRITE round-
trip latency.

Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Tom Talpey <tom@talpey.com>
2021-03-31 15:57:39 -04:00

915 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/*
* Copyright (c) 2016-2018 Oracle. All rights reserved.
* Copyright (c) 2014 Open Grid Computing, Inc. All rights reserved.
* Copyright (c) 2005-2006 Network Appliance, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the BSD-type
* license below:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* Neither the name of the Network Appliance, Inc. nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Author: Tom Tucker <tom@opengridcomputing.com>
*/
/* Operation
*
* The main entry point is svc_rdma_recvfrom. This is called from
* svc_recv when the transport indicates there is incoming data to
* be read. "Data Ready" is signaled when an RDMA Receive completes,
* or when a set of RDMA Reads complete.
*
* An svc_rqst is passed in. This structure contains an array of
* free pages (rq_pages) that will contain the incoming RPC message.
*
* Short messages are moved directly into svc_rqst::rq_arg, and
* the RPC Call is ready to be processed by the Upper Layer.
* svc_rdma_recvfrom returns the length of the RPC Call message,
* completing the reception of the RPC Call.
*
* However, when an incoming message has Read chunks,
* svc_rdma_recvfrom must post RDMA Reads to pull the RPC Call's
* data payload from the client. svc_rdma_recvfrom sets up the
* RDMA Reads using pages in svc_rqst::rq_pages, which are
* transferred to an svc_rdma_recv_ctxt for the duration of the
* I/O. svc_rdma_recvfrom then returns zero, since the RPC message
* is still not yet ready.
*
* When the Read chunk payloads have become available on the
* server, "Data Ready" is raised again, and svc_recv calls
* svc_rdma_recvfrom again. This second call may use a different
* svc_rqst than the first one, thus any information that needs
* to be preserved across these two calls is kept in an
* svc_rdma_recv_ctxt.
*
* The second call to svc_rdma_recvfrom performs final assembly
* of the RPC Call message, using the RDMA Read sink pages kept in
* the svc_rdma_recv_ctxt. The xdr_buf is copied from the
* svc_rdma_recv_ctxt to the second svc_rqst. The second call returns
* the length of the completed RPC Call message.
*
* Page Management
*
* Pages under I/O must be transferred from the first svc_rqst to an
* svc_rdma_recv_ctxt before the first svc_rdma_recvfrom call returns.
*
* The first svc_rqst supplies pages for RDMA Reads. These are moved
* from rqstp::rq_pages into ctxt::pages. The consumed elements of
* the rq_pages array are set to NULL and refilled with the first
* svc_rdma_recvfrom call returns.
*
* During the second svc_rdma_recvfrom call, RDMA Read sink pages
* are transferred from the svc_rdma_recv_ctxt to the second svc_rqst
* (see rdma_read_complete() below).
*/
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <asm/unaligned.h>
#include <rdma/ib_verbs.h>
#include <rdma/rdma_cm.h>
#include <linux/sunrpc/xdr.h>
#include <linux/sunrpc/debug.h>
#include <linux/sunrpc/rpc_rdma.h>
#include <linux/sunrpc/svc_rdma.h>
#include "xprt_rdma.h"
#include <trace/events/rpcrdma.h>
static void svc_rdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc);
static inline struct svc_rdma_recv_ctxt *
svc_rdma_next_recv_ctxt(struct list_head *list)
{
return list_first_entry_or_null(list, struct svc_rdma_recv_ctxt,
rc_list);
}
static void svc_rdma_recv_cid_init(struct svcxprt_rdma *rdma,
struct rpc_rdma_cid *cid)
{
cid->ci_queue_id = rdma->sc_rq_cq->res.id;
cid->ci_completion_id = atomic_inc_return(&rdma->sc_completion_ids);
}
static struct svc_rdma_recv_ctxt *
svc_rdma_recv_ctxt_alloc(struct svcxprt_rdma *rdma)
{
struct svc_rdma_recv_ctxt *ctxt;
dma_addr_t addr;
void *buffer;
ctxt = kmalloc(sizeof(*ctxt), GFP_KERNEL);
if (!ctxt)
goto fail0;
buffer = kmalloc(rdma->sc_max_req_size, GFP_KERNEL);
if (!buffer)
goto fail1;
addr = ib_dma_map_single(rdma->sc_pd->device, buffer,
rdma->sc_max_req_size, DMA_FROM_DEVICE);
if (ib_dma_mapping_error(rdma->sc_pd->device, addr))
goto fail2;
svc_rdma_recv_cid_init(rdma, &ctxt->rc_cid);
pcl_init(&ctxt->rc_call_pcl);
pcl_init(&ctxt->rc_read_pcl);
pcl_init(&ctxt->rc_write_pcl);
pcl_init(&ctxt->rc_reply_pcl);
ctxt->rc_recv_wr.next = NULL;
ctxt->rc_recv_wr.wr_cqe = &ctxt->rc_cqe;
ctxt->rc_recv_wr.sg_list = &ctxt->rc_recv_sge;
ctxt->rc_recv_wr.num_sge = 1;
ctxt->rc_cqe.done = svc_rdma_wc_receive;
ctxt->rc_recv_sge.addr = addr;
ctxt->rc_recv_sge.length = rdma->sc_max_req_size;
ctxt->rc_recv_sge.lkey = rdma->sc_pd->local_dma_lkey;
ctxt->rc_recv_buf = buffer;
ctxt->rc_temp = false;
return ctxt;
fail2:
kfree(buffer);
fail1:
kfree(ctxt);
fail0:
return NULL;
}
static void svc_rdma_recv_ctxt_destroy(struct svcxprt_rdma *rdma,
struct svc_rdma_recv_ctxt *ctxt)
{
ib_dma_unmap_single(rdma->sc_pd->device, ctxt->rc_recv_sge.addr,
ctxt->rc_recv_sge.length, DMA_FROM_DEVICE);
kfree(ctxt->rc_recv_buf);
kfree(ctxt);
}
/**
* svc_rdma_recv_ctxts_destroy - Release all recv_ctxt's for an xprt
* @rdma: svcxprt_rdma being torn down
*
*/
void svc_rdma_recv_ctxts_destroy(struct svcxprt_rdma *rdma)
{
struct svc_rdma_recv_ctxt *ctxt;
struct llist_node *node;
while ((node = llist_del_first(&rdma->sc_recv_ctxts))) {
ctxt = llist_entry(node, struct svc_rdma_recv_ctxt, rc_node);
svc_rdma_recv_ctxt_destroy(rdma, ctxt);
}
}
/**
* svc_rdma_recv_ctxt_get - Allocate a recv_ctxt
* @rdma: controlling svcxprt_rdma
*
* Returns a recv_ctxt or (rarely) NULL if none are available.
*/
struct svc_rdma_recv_ctxt *svc_rdma_recv_ctxt_get(struct svcxprt_rdma *rdma)
{
struct svc_rdma_recv_ctxt *ctxt;
struct llist_node *node;
node = llist_del_first(&rdma->sc_recv_ctxts);
if (!node)
goto out_empty;
ctxt = llist_entry(node, struct svc_rdma_recv_ctxt, rc_node);
out:
ctxt->rc_page_count = 0;
return ctxt;
out_empty:
ctxt = svc_rdma_recv_ctxt_alloc(rdma);
if (!ctxt)
return NULL;
goto out;
}
/**
* svc_rdma_recv_ctxt_put - Return recv_ctxt to free list
* @rdma: controlling svcxprt_rdma
* @ctxt: object to return to the free list
*
*/
void svc_rdma_recv_ctxt_put(struct svcxprt_rdma *rdma,
struct svc_rdma_recv_ctxt *ctxt)
{
unsigned int i;
for (i = 0; i < ctxt->rc_page_count; i++)
put_page(ctxt->rc_pages[i]);
pcl_free(&ctxt->rc_call_pcl);
pcl_free(&ctxt->rc_read_pcl);
pcl_free(&ctxt->rc_write_pcl);
pcl_free(&ctxt->rc_reply_pcl);
if (!ctxt->rc_temp)
llist_add(&ctxt->rc_node, &rdma->sc_recv_ctxts);
else
svc_rdma_recv_ctxt_destroy(rdma, ctxt);
}
/**
* svc_rdma_release_rqst - Release transport-specific per-rqst resources
* @rqstp: svc_rqst being released
*
* Ensure that the recv_ctxt is released whether or not a Reply
* was sent. For example, the client could close the connection,
* or svc_process could drop an RPC, before the Reply is sent.
*/
void svc_rdma_release_rqst(struct svc_rqst *rqstp)
{
struct svc_rdma_recv_ctxt *ctxt = rqstp->rq_xprt_ctxt;
struct svc_xprt *xprt = rqstp->rq_xprt;
struct svcxprt_rdma *rdma =
container_of(xprt, struct svcxprt_rdma, sc_xprt);
rqstp->rq_xprt_ctxt = NULL;
if (ctxt)
svc_rdma_recv_ctxt_put(rdma, ctxt);
}
static bool svc_rdma_refresh_recvs(struct svcxprt_rdma *rdma,
unsigned int wanted, bool temp)
{
const struct ib_recv_wr *bad_wr = NULL;
struct svc_rdma_recv_ctxt *ctxt;
struct ib_recv_wr *recv_chain;
int ret;
if (test_bit(XPT_CLOSE, &rdma->sc_xprt.xpt_flags))
return false;
recv_chain = NULL;
while (wanted--) {
ctxt = svc_rdma_recv_ctxt_get(rdma);
if (!ctxt)
break;
trace_svcrdma_post_recv(ctxt);
ctxt->rc_temp = temp;
ctxt->rc_recv_wr.next = recv_chain;
recv_chain = &ctxt->rc_recv_wr;
rdma->sc_pending_recvs++;
}
if (!recv_chain)
return false;
ret = ib_post_recv(rdma->sc_qp, recv_chain, &bad_wr);
if (ret)
goto err_free;
return true;
err_free:
trace_svcrdma_rq_post_err(rdma, ret);
while (bad_wr) {
ctxt = container_of(bad_wr, struct svc_rdma_recv_ctxt,
rc_recv_wr);
bad_wr = bad_wr->next;
svc_rdma_recv_ctxt_put(rdma, ctxt);
}
/* Since we're destroying the xprt, no need to reset
* sc_pending_recvs. */
return false;
}
/**
* svc_rdma_post_recvs - Post initial set of Recv WRs
* @rdma: fresh svcxprt_rdma
*
* Returns true if successful, otherwise false.
*/
bool svc_rdma_post_recvs(struct svcxprt_rdma *rdma)
{
return svc_rdma_refresh_recvs(rdma, rdma->sc_max_requests, true);
}
/**
* svc_rdma_wc_receive - Invoked by RDMA provider for each polled Receive WC
* @cq: Completion Queue context
* @wc: Work Completion object
*
*/
static void svc_rdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc)
{
struct svcxprt_rdma *rdma = cq->cq_context;
struct ib_cqe *cqe = wc->wr_cqe;
struct svc_rdma_recv_ctxt *ctxt;
rdma->sc_pending_recvs--;
/* WARNING: Only wc->wr_cqe and wc->status are reliable */
ctxt = container_of(cqe, struct svc_rdma_recv_ctxt, rc_cqe);
trace_svcrdma_wc_receive(wc, &ctxt->rc_cid);
if (wc->status != IB_WC_SUCCESS)
goto flushed;
/* If receive posting fails, the connection is about to be
* lost anyway. The server will not be able to send a reply
* for this RPC, and the client will retransmit this RPC
* anyway when it reconnects.
*
* Therefore we drop the Receive, even if status was SUCCESS
* to reduce the likelihood of replayed requests once the
* client reconnects.
*/
if (rdma->sc_pending_recvs < rdma->sc_max_requests)
if (!svc_rdma_refresh_recvs(rdma, rdma->sc_recv_batch, false))
goto flushed;
/* All wc fields are now known to be valid */
ctxt->rc_byte_len = wc->byte_len;
spin_lock(&rdma->sc_rq_dto_lock);
list_add_tail(&ctxt->rc_list, &rdma->sc_rq_dto_q);
/* Note the unlock pairs with the smp_rmb in svc_xprt_ready: */
set_bit(XPT_DATA, &rdma->sc_xprt.xpt_flags);
spin_unlock(&rdma->sc_rq_dto_lock);
if (!test_bit(RDMAXPRT_CONN_PENDING, &rdma->sc_flags))
svc_xprt_enqueue(&rdma->sc_xprt);
return;
flushed:
svc_rdma_recv_ctxt_put(rdma, ctxt);
svc_xprt_deferred_close(&rdma->sc_xprt);
}
/**
* svc_rdma_flush_recv_queues - Drain pending Receive work
* @rdma: svcxprt_rdma being shut down
*
*/
void svc_rdma_flush_recv_queues(struct svcxprt_rdma *rdma)
{
struct svc_rdma_recv_ctxt *ctxt;
while ((ctxt = svc_rdma_next_recv_ctxt(&rdma->sc_read_complete_q))) {
list_del(&ctxt->rc_list);
svc_rdma_recv_ctxt_put(rdma, ctxt);
}
while ((ctxt = svc_rdma_next_recv_ctxt(&rdma->sc_rq_dto_q))) {
list_del(&ctxt->rc_list);
svc_rdma_recv_ctxt_put(rdma, ctxt);
}
}
static void svc_rdma_build_arg_xdr(struct svc_rqst *rqstp,
struct svc_rdma_recv_ctxt *ctxt)
{
struct xdr_buf *arg = &rqstp->rq_arg;
arg->head[0].iov_base = ctxt->rc_recv_buf;
arg->head[0].iov_len = ctxt->rc_byte_len;
arg->tail[0].iov_base = NULL;
arg->tail[0].iov_len = 0;
arg->page_len = 0;
arg->page_base = 0;
arg->buflen = ctxt->rc_byte_len;
arg->len = ctxt->rc_byte_len;
}
/**
* xdr_count_read_segments - Count number of Read segments in Read list
* @rctxt: Ingress receive context
* @p: Start of an un-decoded Read list
*
* Before allocating anything, ensure the ingress Read list is safe
* to use.
*
* The segment count is limited to how many segments can fit in the
* transport header without overflowing the buffer. That's about 40
* Read segments for a 1KB inline threshold.
*
* Return values:
* %true: Read list is valid. @rctxt's xdr_stream is updated to point
* to the first byte past the Read list. rc_read_pcl and
* rc_call_pcl cl_count fields are set to the number of
* Read segments in the list.
* %false: Read list is corrupt. @rctxt's xdr_stream is left in an
* unknown state.
*/
static bool xdr_count_read_segments(struct svc_rdma_recv_ctxt *rctxt, __be32 *p)
{
rctxt->rc_call_pcl.cl_count = 0;
rctxt->rc_read_pcl.cl_count = 0;
while (xdr_item_is_present(p)) {
u32 position, handle, length;
u64 offset;
p = xdr_inline_decode(&rctxt->rc_stream,
rpcrdma_readseg_maxsz * sizeof(*p));
if (!p)
return false;
xdr_decode_read_segment(p, &position, &handle,
&length, &offset);
if (position) {
if (position & 3)
return false;
++rctxt->rc_read_pcl.cl_count;
} else {
++rctxt->rc_call_pcl.cl_count;
}
p = xdr_inline_decode(&rctxt->rc_stream, sizeof(*p));
if (!p)
return false;
}
return true;
}
/* Sanity check the Read list.
*
* Sanity checks:
* - Read list does not overflow Receive buffer.
* - Chunk size limited by largest NFS data payload.
*
* Return values:
* %true: Read list is valid. @rctxt's xdr_stream is updated
* to point to the first byte past the Read list.
* %false: Read list is corrupt. @rctxt's xdr_stream is left
* in an unknown state.
*/
static bool xdr_check_read_list(struct svc_rdma_recv_ctxt *rctxt)
{
__be32 *p;
p = xdr_inline_decode(&rctxt->rc_stream, sizeof(*p));
if (!p)
return false;
if (!xdr_count_read_segments(rctxt, p))
return false;
if (!pcl_alloc_call(rctxt, p))
return false;
return pcl_alloc_read(rctxt, p);
}
static bool xdr_check_write_chunk(struct svc_rdma_recv_ctxt *rctxt)
{
u32 segcount;
__be32 *p;
if (xdr_stream_decode_u32(&rctxt->rc_stream, &segcount))
return false;
/* A bogus segcount causes this buffer overflow check to fail. */
p = xdr_inline_decode(&rctxt->rc_stream,
segcount * rpcrdma_segment_maxsz * sizeof(*p));
return p != NULL;
}
/**
* xdr_count_write_chunks - Count number of Write chunks in Write list
* @rctxt: Received header and decoding state
* @p: start of an un-decoded Write list
*
* Before allocating anything, ensure the ingress Write list is
* safe to use.
*
* Return values:
* %true: Write list is valid. @rctxt's xdr_stream is updated
* to point to the first byte past the Write list, and
* the number of Write chunks is in rc_write_pcl.cl_count.
* %false: Write list is corrupt. @rctxt's xdr_stream is left
* in an indeterminate state.
*/
static bool xdr_count_write_chunks(struct svc_rdma_recv_ctxt *rctxt, __be32 *p)
{
rctxt->rc_write_pcl.cl_count = 0;
while (xdr_item_is_present(p)) {
if (!xdr_check_write_chunk(rctxt))
return false;
++rctxt->rc_write_pcl.cl_count;
p = xdr_inline_decode(&rctxt->rc_stream, sizeof(*p));
if (!p)
return false;
}
return true;
}
/* Sanity check the Write list.
*
* Implementation limits:
* - This implementation currently supports only one Write chunk.
*
* Sanity checks:
* - Write list does not overflow Receive buffer.
* - Chunk size limited by largest NFS data payload.
*
* Return values:
* %true: Write list is valid. @rctxt's xdr_stream is updated
* to point to the first byte past the Write list.
* %false: Write list is corrupt. @rctxt's xdr_stream is left
* in an unknown state.
*/
static bool xdr_check_write_list(struct svc_rdma_recv_ctxt *rctxt)
{
__be32 *p;
p = xdr_inline_decode(&rctxt->rc_stream, sizeof(*p));
if (!p)
return false;
if (!xdr_count_write_chunks(rctxt, p))
return false;
if (!pcl_alloc_write(rctxt, &rctxt->rc_write_pcl, p))
return false;
rctxt->rc_cur_result_payload = pcl_first_chunk(&rctxt->rc_write_pcl);
return true;
}
/* Sanity check the Reply chunk.
*
* Sanity checks:
* - Reply chunk does not overflow Receive buffer.
* - Chunk size limited by largest NFS data payload.
*
* Return values:
* %true: Reply chunk is valid. @rctxt's xdr_stream is updated
* to point to the first byte past the Reply chunk.
* %false: Reply chunk is corrupt. @rctxt's xdr_stream is left
* in an unknown state.
*/
static bool xdr_check_reply_chunk(struct svc_rdma_recv_ctxt *rctxt)
{
__be32 *p;
p = xdr_inline_decode(&rctxt->rc_stream, sizeof(*p));
if (!p)
return false;
if (!xdr_item_is_present(p))
return true;
if (!xdr_check_write_chunk(rctxt))
return false;
rctxt->rc_reply_pcl.cl_count = 1;
return pcl_alloc_write(rctxt, &rctxt->rc_reply_pcl, p);
}
/* RPC-over-RDMA Version One private extension: Remote Invalidation.
* Responder's choice: requester signals it can handle Send With
* Invalidate, and responder chooses one R_key to invalidate.
*
* If there is exactly one distinct R_key in the received transport
* header, set rc_inv_rkey to that R_key. Otherwise, set it to zero.
*/
static void svc_rdma_get_inv_rkey(struct svcxprt_rdma *rdma,
struct svc_rdma_recv_ctxt *ctxt)
{
struct svc_rdma_segment *segment;
struct svc_rdma_chunk *chunk;
u32 inv_rkey;
ctxt->rc_inv_rkey = 0;
if (!rdma->sc_snd_w_inv)
return;
inv_rkey = 0;
pcl_for_each_chunk(chunk, &ctxt->rc_call_pcl) {
pcl_for_each_segment(segment, chunk) {
if (inv_rkey == 0)
inv_rkey = segment->rs_handle;
else if (inv_rkey != segment->rs_handle)
return;
}
}
pcl_for_each_chunk(chunk, &ctxt->rc_read_pcl) {
pcl_for_each_segment(segment, chunk) {
if (inv_rkey == 0)
inv_rkey = segment->rs_handle;
else if (inv_rkey != segment->rs_handle)
return;
}
}
pcl_for_each_chunk(chunk, &ctxt->rc_write_pcl) {
pcl_for_each_segment(segment, chunk) {
if (inv_rkey == 0)
inv_rkey = segment->rs_handle;
else if (inv_rkey != segment->rs_handle)
return;
}
}
pcl_for_each_chunk(chunk, &ctxt->rc_reply_pcl) {
pcl_for_each_segment(segment, chunk) {
if (inv_rkey == 0)
inv_rkey = segment->rs_handle;
else if (inv_rkey != segment->rs_handle)
return;
}
}
ctxt->rc_inv_rkey = inv_rkey;
}
/**
* svc_rdma_xdr_decode_req - Decode the transport header
* @rq_arg: xdr_buf containing ingress RPC/RDMA message
* @rctxt: state of decoding
*
* On entry, xdr->head[0].iov_base points to first byte of the
* RPC-over-RDMA transport header.
*
* On successful exit, head[0] points to first byte past the
* RPC-over-RDMA header. For RDMA_MSG, this is the RPC message.
*
* The length of the RPC-over-RDMA header is returned.
*
* Assumptions:
* - The transport header is entirely contained in the head iovec.
*/
static int svc_rdma_xdr_decode_req(struct xdr_buf *rq_arg,
struct svc_rdma_recv_ctxt *rctxt)
{
__be32 *p, *rdma_argp;
unsigned int hdr_len;
rdma_argp = rq_arg->head[0].iov_base;
xdr_init_decode(&rctxt->rc_stream, rq_arg, rdma_argp, NULL);
p = xdr_inline_decode(&rctxt->rc_stream,
rpcrdma_fixed_maxsz * sizeof(*p));
if (unlikely(!p))
goto out_short;
p++;
if (*p != rpcrdma_version)
goto out_version;
p += 2;
rctxt->rc_msgtype = *p;
switch (rctxt->rc_msgtype) {
case rdma_msg:
break;
case rdma_nomsg:
break;
case rdma_done:
goto out_drop;
case rdma_error:
goto out_drop;
default:
goto out_proc;
}
if (!xdr_check_read_list(rctxt))
goto out_inval;
if (!xdr_check_write_list(rctxt))
goto out_inval;
if (!xdr_check_reply_chunk(rctxt))
goto out_inval;
rq_arg->head[0].iov_base = rctxt->rc_stream.p;
hdr_len = xdr_stream_pos(&rctxt->rc_stream);
rq_arg->head[0].iov_len -= hdr_len;
rq_arg->len -= hdr_len;
trace_svcrdma_decode_rqst(rctxt, rdma_argp, hdr_len);
return hdr_len;
out_short:
trace_svcrdma_decode_short_err(rctxt, rq_arg->len);
return -EINVAL;
out_version:
trace_svcrdma_decode_badvers_err(rctxt, rdma_argp);
return -EPROTONOSUPPORT;
out_drop:
trace_svcrdma_decode_drop_err(rctxt, rdma_argp);
return 0;
out_proc:
trace_svcrdma_decode_badproc_err(rctxt, rdma_argp);
return -EINVAL;
out_inval:
trace_svcrdma_decode_parse_err(rctxt, rdma_argp);
return -EINVAL;
}
static void rdma_read_complete(struct svc_rqst *rqstp,
struct svc_rdma_recv_ctxt *head)
{
int page_no;
/* Move Read chunk pages to rqstp so that they will be released
* when svc_process is done with them.
*/
for (page_no = 0; page_no < head->rc_page_count; page_no++) {
put_page(rqstp->rq_pages[page_no]);
rqstp->rq_pages[page_no] = head->rc_pages[page_no];
}
head->rc_page_count = 0;
/* Point rq_arg.pages past header */
rqstp->rq_arg.pages = &rqstp->rq_pages[head->rc_hdr_count];
rqstp->rq_arg.page_len = head->rc_arg.page_len;
/* rq_respages starts after the last arg page */
rqstp->rq_respages = &rqstp->rq_pages[page_no];
rqstp->rq_next_page = rqstp->rq_respages + 1;
/* Rebuild rq_arg head and tail. */
rqstp->rq_arg.head[0] = head->rc_arg.head[0];
rqstp->rq_arg.tail[0] = head->rc_arg.tail[0];
rqstp->rq_arg.len = head->rc_arg.len;
rqstp->rq_arg.buflen = head->rc_arg.buflen;
}
static void svc_rdma_send_error(struct svcxprt_rdma *rdma,
struct svc_rdma_recv_ctxt *rctxt,
int status)
{
struct svc_rdma_send_ctxt *sctxt;
sctxt = svc_rdma_send_ctxt_get(rdma);
if (!sctxt)
return;
svc_rdma_send_error_msg(rdma, sctxt, rctxt, status);
}
/* By convention, backchannel calls arrive via rdma_msg type
* messages, and never populate the chunk lists. This makes
* the RPC/RDMA header small and fixed in size, so it is
* straightforward to check the RPC header's direction field.
*/
static bool svc_rdma_is_reverse_direction_reply(struct svc_xprt *xprt,
struct svc_rdma_recv_ctxt *rctxt)
{
__be32 *p = rctxt->rc_recv_buf;
if (!xprt->xpt_bc_xprt)
return false;
if (rctxt->rc_msgtype != rdma_msg)
return false;
if (!pcl_is_empty(&rctxt->rc_call_pcl))
return false;
if (!pcl_is_empty(&rctxt->rc_read_pcl))
return false;
if (!pcl_is_empty(&rctxt->rc_write_pcl))
return false;
if (!pcl_is_empty(&rctxt->rc_reply_pcl))
return false;
/* RPC call direction */
if (*(p + 8) == cpu_to_be32(RPC_CALL))
return false;
return true;
}
/**
* svc_rdma_recvfrom - Receive an RPC call
* @rqstp: request structure into which to receive an RPC Call
*
* Returns:
* The positive number of bytes in the RPC Call message,
* %0 if there were no Calls ready to return,
* %-EINVAL if the Read chunk data is too large,
* %-ENOMEM if rdma_rw context pool was exhausted,
* %-ENOTCONN if posting failed (connection is lost),
* %-EIO if rdma_rw initialization failed (DMA mapping, etc).
*
* Called in a loop when XPT_DATA is set. XPT_DATA is cleared only
* when there are no remaining ctxt's to process.
*
* The next ctxt is removed from the "receive" lists.
*
* - If the ctxt completes a Read, then finish assembling the Call
* message and return the number of bytes in the message.
*
* - If the ctxt completes a Receive, then construct the Call
* message from the contents of the Receive buffer.
*
* - If there are no Read chunks in this message, then finish
* assembling the Call message and return the number of bytes
* in the message.
*
* - If there are Read chunks in this message, post Read WRs to
* pull that payload and return 0.
*/
int svc_rdma_recvfrom(struct svc_rqst *rqstp)
{
struct svc_xprt *xprt = rqstp->rq_xprt;
struct svcxprt_rdma *rdma_xprt =
container_of(xprt, struct svcxprt_rdma, sc_xprt);
struct svc_rdma_recv_ctxt *ctxt;
int ret;
rqstp->rq_xprt_ctxt = NULL;
spin_lock(&rdma_xprt->sc_rq_dto_lock);
ctxt = svc_rdma_next_recv_ctxt(&rdma_xprt->sc_read_complete_q);
if (ctxt) {
list_del(&ctxt->rc_list);
spin_unlock(&rdma_xprt->sc_rq_dto_lock);
rdma_read_complete(rqstp, ctxt);
goto complete;
}
ctxt = svc_rdma_next_recv_ctxt(&rdma_xprt->sc_rq_dto_q);
if (!ctxt) {
/* No new incoming requests, terminate the loop */
clear_bit(XPT_DATA, &xprt->xpt_flags);
spin_unlock(&rdma_xprt->sc_rq_dto_lock);
svc_xprt_received(xprt);
return 0;
}
list_del(&ctxt->rc_list);
spin_unlock(&rdma_xprt->sc_rq_dto_lock);
percpu_counter_inc(&svcrdma_stat_recv);
/* Unblock the transport for the next receive */
svc_xprt_received(xprt);
ib_dma_sync_single_for_cpu(rdma_xprt->sc_pd->device,
ctxt->rc_recv_sge.addr, ctxt->rc_byte_len,
DMA_FROM_DEVICE);
svc_rdma_build_arg_xdr(rqstp, ctxt);
/* Prevent svc_xprt_release from releasing pages in rq_pages
* if we return 0 or an error.
*/
rqstp->rq_respages = rqstp->rq_pages;
rqstp->rq_next_page = rqstp->rq_respages;
ret = svc_rdma_xdr_decode_req(&rqstp->rq_arg, ctxt);
if (ret < 0)
goto out_err;
if (ret == 0)
goto out_drop;
rqstp->rq_xprt_hlen = ret;
if (svc_rdma_is_reverse_direction_reply(xprt, ctxt))
goto out_backchannel;
svc_rdma_get_inv_rkey(rdma_xprt, ctxt);
if (!pcl_is_empty(&ctxt->rc_read_pcl) ||
!pcl_is_empty(&ctxt->rc_call_pcl))
goto out_readlist;
complete:
rqstp->rq_xprt_ctxt = ctxt;
rqstp->rq_prot = IPPROTO_MAX;
svc_xprt_copy_addrs(rqstp, xprt);
return rqstp->rq_arg.len;
out_readlist:
ret = svc_rdma_process_read_list(rdma_xprt, rqstp, ctxt);
if (ret < 0)
goto out_readfail;
goto complete;
out_err:
svc_rdma_send_error(rdma_xprt, ctxt, ret);
svc_rdma_recv_ctxt_put(rdma_xprt, ctxt);
return 0;
out_readfail:
if (ret == -EINVAL)
svc_rdma_send_error(rdma_xprt, ctxt, ret);
svc_rdma_recv_ctxt_put(rdma_xprt, ctxt);
return ret;
out_backchannel:
svc_rdma_handle_bc_reply(rqstp, ctxt);
out_drop:
svc_rdma_recv_ctxt_put(rdma_xprt, ctxt);
return 0;
}