linux/arch/mips/kvm/mmu.c
James Hogan 7e3d2a750b KVM: MIPS/MMU: Convert TLB mapped faults to page tables
Now that we have GVA page tables and an optimised TLB refill handler in
place, convert the handling of page faults in TLB mapped segment from
the guest to fill a single GVA page table entry and invalidate the TLB
entry, rather than filling a TLB entry pair directly.

Also remove the now unused kvm_mips_get_{kernel,user}_asid() functions
in mmu.c and kvm_mips_host_tlb_write() in tlb.c.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:20:58 +00:00

584 lines
14 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* KVM/MIPS MMU handling in the KVM module.
*
* Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
* Authors: Sanjay Lal <sanjayl@kymasys.com>
*/
#include <linux/highmem.h>
#include <linux/kvm_host.h>
#include <asm/mmu_context.h>
#include <asm/pgalloc.h>
/*
* KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels
* for which pages need to be cached.
*/
#if defined(__PAGETABLE_PMD_FOLDED)
#define KVM_MMU_CACHE_MIN_PAGES 1
#else
#define KVM_MMU_CACHE_MIN_PAGES 2
#endif
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
int min, int max)
{
void *page;
BUG_ON(max > KVM_NR_MEM_OBJS);
if (cache->nobjs >= min)
return 0;
while (cache->nobjs < max) {
page = (void *)__get_free_page(GFP_KERNEL);
if (!page)
return -ENOMEM;
cache->objects[cache->nobjs++] = page;
}
return 0;
}
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
{
while (mc->nobjs)
free_page((unsigned long)mc->objects[--mc->nobjs]);
}
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
{
void *p;
BUG_ON(!mc || !mc->nobjs);
p = mc->objects[--mc->nobjs];
return p;
}
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
}
/**
* kvm_mips_walk_pgd() - Walk page table with optional allocation.
* @pgd: Page directory pointer.
* @addr: Address to index page table using.
* @cache: MMU page cache to allocate new page tables from, or NULL.
*
* Walk the page tables pointed to by @pgd to find the PTE corresponding to the
* address @addr. If page tables don't exist for @addr, they will be created
* from the MMU cache if @cache is not NULL.
*
* Returns: Pointer to pte_t corresponding to @addr.
* NULL if a page table doesn't exist for @addr and !@cache.
* NULL if a page table allocation failed.
*/
static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache,
unsigned long addr)
{
pud_t *pud;
pmd_t *pmd;
pgd += pgd_index(addr);
if (pgd_none(*pgd)) {
/* Not used on MIPS yet */
BUG();
return NULL;
}
pud = pud_offset(pgd, addr);
if (pud_none(*pud)) {
pmd_t *new_pmd;
if (!cache)
return NULL;
new_pmd = mmu_memory_cache_alloc(cache);
pmd_init((unsigned long)new_pmd,
(unsigned long)invalid_pte_table);
pud_populate(NULL, pud, new_pmd);
}
pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd)) {
pte_t *new_pte;
if (!cache)
return NULL;
new_pte = mmu_memory_cache_alloc(cache);
clear_page(new_pte);
pmd_populate_kernel(NULL, pmd, new_pte);
}
return pte_offset(pmd, addr);
}
static int kvm_mips_map_page(struct kvm *kvm, gfn_t gfn)
{
int srcu_idx, err = 0;
kvm_pfn_t pfn;
if (kvm->arch.guest_pmap[gfn] != KVM_INVALID_PAGE)
return 0;
srcu_idx = srcu_read_lock(&kvm->srcu);
pfn = gfn_to_pfn(kvm, gfn);
if (is_error_noslot_pfn(pfn)) {
kvm_err("Couldn't get pfn for gfn %#llx!\n", gfn);
err = -EFAULT;
goto out;
}
kvm->arch.guest_pmap[gfn] = pfn;
out:
srcu_read_unlock(&kvm->srcu, srcu_idx);
return err;
}
/* Translate guest KSEG0 addresses to Host PA */
unsigned long kvm_mips_translate_guest_kseg0_to_hpa(struct kvm_vcpu *vcpu,
unsigned long gva)
{
gfn_t gfn;
unsigned long offset = gva & ~PAGE_MASK;
struct kvm *kvm = vcpu->kvm;
if (KVM_GUEST_KSEGX(gva) != KVM_GUEST_KSEG0) {
kvm_err("%s/%p: Invalid gva: %#lx\n", __func__,
__builtin_return_address(0), gva);
return KVM_INVALID_PAGE;
}
gfn = (KVM_GUEST_CPHYSADDR(gva) >> PAGE_SHIFT);
if (gfn >= kvm->arch.guest_pmap_npages) {
kvm_err("%s: Invalid gfn: %#llx, GVA: %#lx\n", __func__, gfn,
gva);
return KVM_INVALID_PAGE;
}
if (kvm_mips_map_page(vcpu->kvm, gfn) < 0)
return KVM_INVALID_ADDR;
return (kvm->arch.guest_pmap[gfn] << PAGE_SHIFT) + offset;
}
static pte_t *kvm_trap_emul_pte_for_gva(struct kvm_vcpu *vcpu,
unsigned long addr)
{
struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
pgd_t *pgdp;
int ret;
/* We need a minimum of cached pages ready for page table creation */
ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
KVM_NR_MEM_OBJS);
if (ret)
return NULL;
if (KVM_GUEST_KERNEL_MODE(vcpu))
pgdp = vcpu->arch.guest_kernel_mm.pgd;
else
pgdp = vcpu->arch.guest_user_mm.pgd;
return kvm_mips_walk_pgd(pgdp, memcache, addr);
}
void kvm_trap_emul_invalidate_gva(struct kvm_vcpu *vcpu, unsigned long addr,
bool user)
{
pgd_t *pgdp;
pte_t *ptep;
addr &= PAGE_MASK << 1;
pgdp = vcpu->arch.guest_kernel_mm.pgd;
ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
if (ptep) {
ptep[0] = pfn_pte(0, __pgprot(0));
ptep[1] = pfn_pte(0, __pgprot(0));
}
if (user) {
pgdp = vcpu->arch.guest_user_mm.pgd;
ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
if (ptep) {
ptep[0] = pfn_pte(0, __pgprot(0));
ptep[1] = pfn_pte(0, __pgprot(0));
}
}
}
/*
* kvm_mips_flush_gva_{pte,pmd,pud,pgd,pt}.
* Flush a range of guest physical address space from the VM's GPA page tables.
*/
static bool kvm_mips_flush_gva_pte(pte_t *pte, unsigned long start_gva,
unsigned long end_gva)
{
int i_min = __pte_offset(start_gva);
int i_max = __pte_offset(end_gva);
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
int i;
/*
* There's no freeing to do, so there's no point clearing individual
* entries unless only part of the last level page table needs flushing.
*/
if (safe_to_remove)
return true;
for (i = i_min; i <= i_max; ++i) {
if (!pte_present(pte[i]))
continue;
set_pte(pte + i, __pte(0));
}
return false;
}
static bool kvm_mips_flush_gva_pmd(pmd_t *pmd, unsigned long start_gva,
unsigned long end_gva)
{
pte_t *pte;
unsigned long end = ~0ul;
int i_min = __pmd_offset(start_gva);
int i_max = __pmd_offset(end_gva);
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
int i;
for (i = i_min; i <= i_max; ++i, start_gva = 0) {
if (!pmd_present(pmd[i]))
continue;
pte = pte_offset(pmd + i, 0);
if (i == i_max)
end = end_gva;
if (kvm_mips_flush_gva_pte(pte, start_gva, end)) {
pmd_clear(pmd + i);
pte_free_kernel(NULL, pte);
} else {
safe_to_remove = false;
}
}
return safe_to_remove;
}
static bool kvm_mips_flush_gva_pud(pud_t *pud, unsigned long start_gva,
unsigned long end_gva)
{
pmd_t *pmd;
unsigned long end = ~0ul;
int i_min = __pud_offset(start_gva);
int i_max = __pud_offset(end_gva);
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
int i;
for (i = i_min; i <= i_max; ++i, start_gva = 0) {
if (!pud_present(pud[i]))
continue;
pmd = pmd_offset(pud + i, 0);
if (i == i_max)
end = end_gva;
if (kvm_mips_flush_gva_pmd(pmd, start_gva, end)) {
pud_clear(pud + i);
pmd_free(NULL, pmd);
} else {
safe_to_remove = false;
}
}
return safe_to_remove;
}
static bool kvm_mips_flush_gva_pgd(pgd_t *pgd, unsigned long start_gva,
unsigned long end_gva)
{
pud_t *pud;
unsigned long end = ~0ul;
int i_min = pgd_index(start_gva);
int i_max = pgd_index(end_gva);
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
int i;
for (i = i_min; i <= i_max; ++i, start_gva = 0) {
if (!pgd_present(pgd[i]))
continue;
pud = pud_offset(pgd + i, 0);
if (i == i_max)
end = end_gva;
if (kvm_mips_flush_gva_pud(pud, start_gva, end)) {
pgd_clear(pgd + i);
pud_free(NULL, pud);
} else {
safe_to_remove = false;
}
}
return safe_to_remove;
}
void kvm_mips_flush_gva_pt(pgd_t *pgd, enum kvm_mips_flush flags)
{
if (flags & KMF_GPA) {
/* all of guest virtual address space could be affected */
if (flags & KMF_KERN)
/* useg, kseg0, seg2/3 */
kvm_mips_flush_gva_pgd(pgd, 0, 0x7fffffff);
else
/* useg */
kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
} else {
/* useg */
kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
/* kseg2/3 */
if (flags & KMF_KERN)
kvm_mips_flush_gva_pgd(pgd, 0x60000000, 0x7fffffff);
}
}
/* XXXKYMA: Must be called with interrupts disabled */
int kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr,
struct kvm_vcpu *vcpu)
{
gfn_t gfn;
kvm_pfn_t pfn0, pfn1;
unsigned long vaddr = 0;
struct kvm *kvm = vcpu->kvm;
pte_t *ptep_gva;
if (KVM_GUEST_KSEGX(badvaddr) != KVM_GUEST_KSEG0) {
kvm_err("%s: Invalid BadVaddr: %#lx\n", __func__, badvaddr);
kvm_mips_dump_host_tlbs();
return -1;
}
/* Find host PFNs */
gfn = (KVM_GUEST_CPHYSADDR(badvaddr) >> PAGE_SHIFT);
if ((gfn | 1) >= kvm->arch.guest_pmap_npages) {
kvm_err("%s: Invalid gfn: %#llx, BadVaddr: %#lx\n", __func__,
gfn, badvaddr);
kvm_mips_dump_host_tlbs();
return -1;
}
vaddr = badvaddr & (PAGE_MASK << 1);
if (kvm_mips_map_page(vcpu->kvm, gfn) < 0)
return -1;
if (kvm_mips_map_page(vcpu->kvm, gfn ^ 0x1) < 0)
return -1;
pfn0 = kvm->arch.guest_pmap[gfn & ~0x1];
pfn1 = kvm->arch.guest_pmap[gfn | 0x1];
/* Find GVA page table entry */
ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, vaddr);
if (!ptep_gva) {
kvm_err("No ptep for gva %lx\n", vaddr);
return -1;
}
/* Write host PFNs into GVA page table */
ptep_gva[0] = pte_mkyoung(pte_mkdirty(pfn_pte(pfn0, PAGE_SHARED)));
ptep_gva[1] = pte_mkyoung(pte_mkdirty(pfn_pte(pfn1, PAGE_SHARED)));
/* Invalidate this entry in the TLB, guest kernel ASID only */
kvm_mips_host_tlb_inv(vcpu, vaddr, false, true);
return 0;
}
int kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu *vcpu,
struct kvm_mips_tlb *tlb,
unsigned long gva)
{
struct kvm *kvm = vcpu->kvm;
kvm_pfn_t pfn;
gfn_t gfn;
long tlb_lo = 0;
pte_t *ptep_gva;
unsigned int idx;
bool kernel = KVM_GUEST_KERNEL_MODE(vcpu);
/*
* The commpage address must not be mapped to anything else if the guest
* TLB contains entries nearby, or commpage accesses will break.
*/
idx = TLB_LO_IDX(*tlb, gva);
if ((gva ^ KVM_GUEST_COMMPAGE_ADDR) & VPN2_MASK & PAGE_MASK)
tlb_lo = tlb->tlb_lo[idx];
/* Find host PFN */
gfn = mips3_tlbpfn_to_paddr(tlb_lo) >> PAGE_SHIFT;
if (gfn >= kvm->arch.guest_pmap_npages) {
kvm_err("%s: Invalid gfn: %#llx, EHi: %#lx\n",
__func__, gfn, tlb->tlb_hi);
kvm_mips_dump_guest_tlbs(vcpu);
return -1;
}
if (kvm_mips_map_page(kvm, gfn) < 0)
return -1;
pfn = kvm->arch.guest_pmap[gfn];
/* Find GVA page table entry */
ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, gva);
if (!ptep_gva) {
kvm_err("No ptep for gva %lx\n", gva);
return -1;
}
/* Write PFN into GVA page table, taking attributes from Guest TLB */
*ptep_gva = pfn_pte(pfn, (!(tlb_lo & ENTRYLO_V)) ? __pgprot(0) :
(tlb_lo & ENTRYLO_D) ? PAGE_SHARED :
PAGE_READONLY);
if (pte_present(*ptep_gva))
*ptep_gva = pte_mkyoung(pte_mkdirty(*ptep_gva));
/* Invalidate this entry in the TLB, current guest mode ASID only */
kvm_mips_host_tlb_inv(vcpu, gva, !kernel, kernel);
kvm_debug("@ %#lx tlb_lo0: 0x%08lx tlb_lo1: 0x%08lx\n", vcpu->arch.pc,
tlb->tlb_lo[0], tlb->tlb_lo[1]);
return 0;
}
void kvm_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu,
struct kvm_vcpu *vcpu)
{
unsigned long asid = asid_cache(cpu);
asid += cpu_asid_inc();
if (!(asid & cpu_asid_mask(&cpu_data[cpu]))) {
if (cpu_has_vtag_icache)
flush_icache_all();
kvm_local_flush_tlb_all(); /* start new asid cycle */
if (!asid) /* fix version if needed */
asid = asid_first_version(cpu);
}
cpu_context(cpu, mm) = asid_cache(cpu) = asid;
}
/**
* kvm_mips_migrate_count() - Migrate timer.
* @vcpu: Virtual CPU.
*
* Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it
* if it was running prior to being cancelled.
*
* Must be called when the VCPU is migrated to a different CPU to ensure that
* timer expiry during guest execution interrupts the guest and causes the
* interrupt to be delivered in a timely manner.
*/
static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu)
{
if (hrtimer_cancel(&vcpu->arch.comparecount_timer))
hrtimer_restart(&vcpu->arch.comparecount_timer);
}
/* Restore ASID once we are scheduled back after preemption */
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
unsigned long flags;
kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu);
local_irq_save(flags);
if (vcpu->arch.last_sched_cpu != cpu) {
kvm_debug("[%d->%d]KVM VCPU[%d] switch\n",
vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id);
/*
* Migrate the timer interrupt to the current CPU so that it
* always interrupts the guest and synchronously triggers a
* guest timer interrupt.
*/
kvm_mips_migrate_count(vcpu);
}
/* restore guest state to registers */
kvm_mips_callbacks->vcpu_load(vcpu, cpu);
local_irq_restore(flags);
}
/* ASID can change if another task is scheduled during preemption */
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
unsigned long flags;
int cpu;
local_irq_save(flags);
cpu = smp_processor_id();
vcpu->arch.last_sched_cpu = cpu;
/* save guest state in registers */
kvm_mips_callbacks->vcpu_put(vcpu, cpu);
local_irq_restore(flags);
}
u32 kvm_get_inst(u32 *opc, struct kvm_vcpu *vcpu)
{
struct mips_coproc *cop0 = vcpu->arch.cop0;
unsigned long paddr, flags, vpn2, asid;
unsigned long va = (unsigned long)opc;
void *vaddr;
u32 inst;
int index;
if (KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0 ||
KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) {
local_irq_save(flags);
index = kvm_mips_host_tlb_lookup(vcpu, va);
if (index >= 0) {
inst = *(opc);
} else {
vpn2 = va & VPN2_MASK;
asid = kvm_read_c0_guest_entryhi(cop0) &
KVM_ENTRYHI_ASID;
index = kvm_mips_guest_tlb_lookup(vcpu, vpn2 | asid);
if (index < 0) {
kvm_err("%s: get_user_failed for %p, vcpu: %p, ASID: %#lx\n",
__func__, opc, vcpu, read_c0_entryhi());
kvm_mips_dump_host_tlbs();
kvm_mips_dump_guest_tlbs(vcpu);
local_irq_restore(flags);
return KVM_INVALID_INST;
}
if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu,
&vcpu->arch.guest_tlb[index], va)) {
kvm_err("%s: handling mapped seg tlb fault failed for %p, index: %u, vcpu: %p, ASID: %#lx\n",
__func__, opc, index, vcpu,
read_c0_entryhi());
kvm_mips_dump_guest_tlbs(vcpu);
local_irq_restore(flags);
return KVM_INVALID_INST;
}
inst = *(opc);
}
local_irq_restore(flags);
} else if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) {
paddr = kvm_mips_translate_guest_kseg0_to_hpa(vcpu, va);
vaddr = kmap_atomic(pfn_to_page(PHYS_PFN(paddr)));
vaddr += paddr & ~PAGE_MASK;
inst = *(u32 *)vaddr;
kunmap_atomic(vaddr);
} else {
kvm_err("%s: illegal address: %p\n", __func__, opc);
return KVM_INVALID_INST;
}
return inst;
}